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Preface 

The International Conference on Intelligent Computing (ICIC) was started to 

provide an annual forum dedicated to emerging and challenging topics in artificial 

intelligence, machine learning, pattern recognition, bioinformatics, and 

computational biology. It aims to bring together researchers and practitioners 

from both academia and industry to share ideas, problems, and solutions related 

to the multifaceted aspects of intelligent computing. 

ICIC 2025, held in Ningbo, China, July 26-29, 2025, constituted the 21st 

International Conference on Intelligent Computing. It built upon the success of 

ICIC 2024 (Tianjin, China), ICIC 2023 (Zhengzhou, China), ICIC 2022 (Xi'an, 

China), ICIC 2021 (Shenzhen, China), ICIC 2020 (Bari, Italy), ICIC 2019 

(Nanchang, China), ICIC 2018 (Wuhan, China), ICIC 2017 (Liverpool, UK), 

ICIC 2016 (Lanzhou, China), ICIC 2015 (Fuzhou, China), ICIC 2014 (Taiyuan, 

China), ICIC 2013 (Nanning, China), ICIC 2012 (Huangshan, China), ICIC 2011 

(Zhengzhou, China), ICIC 2010 (Changsha, China), ICIC 2009 (Ulsan, South 

Korea), ICIC 2008 (Shanghai, China), ICIC 2007 (Qingdao, China), ICIC 2006 

(Kunming, China), and ICIC 2005 (Hefei, China). 

This year, the conference concentrated mainly on the theories and 

methodologies as well as the emerging applications of intelligent computing. Its 

aim was to unify the picture of contemporary intelligent computing techniques as 

an integral concept that highlights the trends in advanced computational 

intelligence and bridges theoretical research with applications. Therefore, the 

theme for this conference was "Advanced Intelligent Computing Technology and 

Applications". Papers that focused on this theme were solicited, addressing 

theories, methodologies, and applications in science and technology. 

ICIC 2025 received 4032 submissions from 21 countries and regions. We 

selected 328 Poster papers from the remaining papers, included in four volumes. 

These four volumes of Poster papers will be arranged on the open access website 

http://poster-openaccess.com/. 

The volume Ⅰ includes 82 poster papers.  

The volume Ⅱ includes 82 poster papers. 

The volume Ⅲ includes 81 poster papers. 

The volume Ⅳ includes 83 poster papers. 

http://poster-openaccess.com/


The organizers of ICIC 2025, including The Society of International 

Computing, Ningbo University, Eastern Institute of Technology, Ningbo, Ningbo 

Institute of Digital Twin, Ningbo EIT Industrial Technology Institute, The 

University of Nottingham Ningbo China, Tianjin University of Science and 

Technology, and Xinjiang Institute of Engineering, made an enormous effort to 

ensure the success of the conference. We hereby would like to thank the members 

of the Program Committee and the referees for their collective effort in reviewing 

and soliciting the papers. In particular, we would like to thank all the authors for 

contributing their papers. Without the high-quality submissions from the authors, 

the success of the conference would not have been possible. Finally, we are 

especially grateful to the International Neural Network Society and the National 

Science Foundation of China for their sponsorship. 
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 The Task Scheduling of IMA based on The Multi-stage 

Q-learning Differential Evolution 

Shuying Feng1[0009-0006-5315-4814], Lisong Wang1()[0000-0001-6482-3717], Shaohan Liu1[0000-

0003-4290-6591], Fengtao Xu2[0009-0009-6308-4946], Yizhuo Sun2[0009-0000-7755-8561] 

1 Nanjing University of Aeronautics and Astronautics, Nanjing, China 
2 China Academy of Launch Vehicle Technology, Beijing 100076, China 

fengshuying@nuaa.edu.cn 

Abstract. With the increasing complexity of the integrated modular avionics 

(IMA) and the growing demand for efficient operation in multi-task environ-

ments, IMA systems must not only utilize various resources efficiently but also 

consider communication latency, system safety and real-time responsiveness dur-

ing task execution. Because of the number and complexity of tasks increasing, 

the system faces dual challenges: real-time task scheduling and resource utiliza-

tion optimization. Therefore, we propose a task scheduling method based on a 

multi-stage Q-learning differential evolution algorithm. First, a bilevel schedul-

ing model for IMA systems is constructed, which comprehensively considering 

key factors such as resource utilization, communication latency and safety. Sec-

ond, an enhanced differential evolution algorithm is employed to optimize the 

model. Specifically, in the population initialization stage, the proposed algorithm 

uses a chaotic logistic map to ensure a uniform distribution of the initial popula-

tion in the solution space. During the population evolution process, the fitness of 

each infeasible individual is corrected through the penalty function. Meanwhile, 

the proposed algorithm utilizes a Q-learning mechanism to dynamically adjust 

the evolutionary operators to improve their adaptability and employs a multi-

stage constraint addition strategy to expand the search space of the algorithm. 

Finally, experimental results comparing the proposed algorithm with other algo-

rithms demonstrate its superior performance, which indicates its effectiveness in 

solving task scheduling problems in integrated avionics systems. 

Keywords: IMA Task Scheduling, Constraint Handling, Differential Evolution 

(DE), Q-learning Algorithm, Adaptive Operator. 

1 Introduction 

With the rapid development of aviation technology, traditional avionics system archi-

tectures can't meet the complex requirements of modernization. To enhance system op-

erational efficiency and ensure flight safety and reliability, IMA system has emerged 

[1]. Currently, several advanced aircraft have adopted the IMA architecture, for in-

stance, the Boeing 787, Airbus A350, and COMAC C919 [1,2].  In IMA system, task 

scheduling follows the bilevel scheduling model defined by the ARINC 653 standard. 
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This model includes both inter-partition scheduling and intra-partition scheduling and 

ensures that all applications execute within spatially and temporally separated partitions 

[3]. By this partitioning mechanism, the IMA architecture guarantees that tasks running 

in different partitions do not interfere with each other [4]. Compared to traditional fed-

erated and integrated avionics systems, the IMA architecture has the advantages of 

time-partitioning and resource sharing, which effectively enhance the operational effi-

ciency and fault tolerance of the system. However, these advantages also make the sys-

tem more complex and present new challenges for system design. In the design process 

of IMA architecture, the core challenge is how to effectively allocate tasks while en-

suring system schedulability [5]. Kim et al. [6] solved the maximum task load bounda-

ries for each IMA partition using linear programming. Davis et al. [7] used both greedy 

algorithms and exhaustive search algorithms to explore the entire solution space, ob-

taining a globally optimal set of parameters. Al-Sheikh et al. [8] proposed an optimal 

response algorithm based on game theory to obtain the optimal solution. Considering 

the optimization of the IMA task scheduling system is a complex non-linear and non-

convex optimization problem [9], the traditional optimization algorithms used in the 

above studies are difficult to meet these multi-objective requirements at the same time. 

The complexity of task scheduling in IMA system requires balancing multiple con-

flicting objectives and constraints. Single-objective optimization algorithms struggle 

with this challenge, so an appropriate multi-objective optimization algorithm is key to 

solving the IMA task scheduling problem. CHEN [10] improved the decomposition-

based multi-objective evolutionary algorithm (MOEA/D) by introducing the con-

strained dominance principle to solve the IMA partition parameter configuration prob-

lem. However, this method relies on too many parameters. Chu [11] solved the IMA 

resource parameter configuration problem using a forward-checking algorithm and an 

NSGAII with an elite retention strategy. However, this approach is prone to uneven 

solution distribution and premature convergence. Aminifar et al. [12] addressed real-

time system task allocation using a simulated annealing algorithm, but the model is 

easy to getting trapped in local optima. Shojafar et al. [13, 14] optimized job allocation 

in cloud computing using fuzzy theory and genetic algorithms, but their study did not 

address constraints. The DE algorithm [15] is widely used in multi-objective optimiza-

tion because of its strong global search capability, fast convergence speed, ease of im-

plementation and simple parameter settings. However, traditional DE algorithms have 

some limitations. For instance, they initialize populations randomly, which may cause 

the initial population to be concentrated in certain regions of the solution space. Addi-

tionally, they use fixed evolutionary operators, which can lead to slow and unstable 

convergence.  

To address this, this paper proposes an improved DE-based solution for the task 

scheduling problem in IMA systems. The main contributions of this paper are summa-

rized as follows: 

─ A bilevel scheduling model is constructed, including task scheduling and partition 

scheduling, which considers resource constraints, communication delays, and sys-

tem safety. 
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─ A multi-stage Q-learning DE algorithm is designed, which optimizes aspects such 

as population initialization, constraint handling, and adaptive adjustment of crosso-

ver and mutation operators. 

─ Simulation experiments validate the proposed algorithm's superiority in optimization 

performance, demonstrating its potential for solving complex system task scheduling 

problems. 

2 System Model and Problem Formulation 

2.1 The Bilevel Scheduling Model 

The IMA system typically employs a distributed processing framework. It consists of 

multiple embedded processing nodes interconnected via the AFDX network. Each pro-

cessing node can host multiple partitions, and each partition allocated one or more pre-

defined real-time tasks, as illustrated in Fig. 1.  

 

Fig. 1. IMA system framework.  

We define a bilevel scheduling model as shown in Fig. 2. The first level scheduling 

divides tasks into task groups, and each group resides in a partition. The second level 

scheduling assigns partitions to nodes and establishes a scheduling model to optimize 

and obtain the final allocation results. We define a set of tasks as 𝑇 = {𝑡1, 𝑡2, … , 𝑡𝑛𝑇}. 

Each task can be represented as a triple 𝑡1 = (𝑇𝑀𝑖 , 𝐶𝑖, 𝐷𝑖), where 𝑇𝑀𝑖 is the memory 

requirement, 𝐶𝑖 is the maximum execution time, and 𝐷𝑖  is the deadline. Task priorities 

are determined using the Earliest Deadline First (EDF) algorithm. The set of 𝑛𝑃 parti-

tions is defined as {𝑝1, 𝑝2, … , 𝑝𝑛𝑃}. Each partition is characterized by 𝑝𝑗 = (𝑃𝑀𝑗 , 𝑃𝑇𝑗), 

where 𝑃𝑀𝑗 is the partition’s memory size and 𝑃𝑇𝑗 is the partition frame time. A set of 

𝑛𝑁 nodes is represented as {𝑛1, 𝑛2, … , 𝑛𝑛𝑁}. Each node is defined as 𝑛𝑘 = (𝑁𝑀𝑘 , 𝑁𝑇𝑘), 

where 𝑁𝑀𝑘 is the memory capacity and 𝑁𝑇𝑘 represents the main frame time. 
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Fig. 2. The bilevel scheduling model.  

2.2 Task Scheduling Problem Modeling 

Task-to-Partition Scheduling. In this scheduling level, 𝐴𝑇is defined as an allocation 

matrix, where 𝐴𝑖𝑗
𝑇  represents the allocation of task 𝑡𝑖 to partition 𝑝𝑗. Considering safety 

factors in the scheduling process, some tasks cannot be assigned to the same partition. 

To address this, we define 𝑀𝑇as the task mutual exclusion matrix, where 𝑀𝑖𝑗
𝑇  indicates 

that task 𝑡𝑖 and task 𝑡𝑗 are mutually exclusive. 

To meet the different resource requirements of tasks, some constraints must be sat-

isfied during the allocation process.  

The schedulability constraint requires that the completion time of each task does not 

exceed its deadline, which can be expressed as: 

 𝑇𝑖
𝑓𝑖𝑛𝑖𝑠ℎ

= ∑  𝑚∈ℎ𝑝(𝑖) 𝐴𝑚𝑗
𝑇 ⋅ 𝐴𝑖𝑗

𝑇 ⋅ 𝐶𝑚 + 𝐶𝑖 ≤ 𝐷𝑖 (1) 

where ℎ𝑝(𝑖) denotes the set of tasks with higher priority than task 𝑡𝑖.  

The memory constraint requires that the total memory occupied in the same partition 

does not exceed the partition's available memory, which can be expressed as: 

 ∑  𝑛𝑇

𝑖=1 𝐴𝑖𝑗
𝑇 ⋅ 𝑇𝑀𝑖 ≤ 𝑃𝑀𝑗 (2) 

The CPU utilization constraint requires the total execution time of tasks assigned to 

the same partition does not exceed the partition's frame time. It can be expressed as: 

 ∑  𝑛𝑇

𝑖=1 𝐴𝑖𝑗
𝑇 ⋅ 𝐶𝑖 ≤ 𝑃𝑇𝑗 (3) 

 For safety reasons, two mutually exclusive tasks cannot be assigned to the same par-

tition. This constraint can be expressed as: 
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 ∑  𝑛𝑇

𝑖=1 ∑  𝑛𝑇

𝑗=1 ∑  𝑛𝑃

𝑘=1 𝐴𝑖𝑘
𝑇 ⋅ 𝐴𝑗𝑘

𝑇 ⋅ 𝑀𝑖𝑗
𝑇 = 0 (4) 

To evaluate the quality of the task scheduling results, this paper employs two opti-

mization objectives. The maximum partition utilization is used to measure the load bal-

ancing between partitions. It consists of the partition memory utilization and partition 

CPU utilization, and can be expressed as: 

 𝑃𝑢𝑠𝑒 = 𝑚𝑎𝑥
1≤𝑗≤𝑛𝑃

 (𝜆1 ⋅
∑  𝑛𝑇

𝑖=1 𝐴𝑖𝑗
𝑇 ⋅𝐶𝑖

𝑃𝑇𝑗
+ 𝜆2 ⋅

∑  𝑛𝑇

𝑖=1 𝐴𝑖𝑗
𝑇 ⋅𝑇𝑀𝑖

𝑃𝑀𝑗
)  (5) 

where 𝜆1 and 𝜆2 represent the weights and the sum equal to 1.  

The average completion time is defined as the mean of the completion times of all 

tasks. This objective can be expressed as: 

 𝐹𝑇𝑎𝑣𝑔 =
1

𝑛𝑇
∑  𝑛𝑇

𝑖=1 𝑇𝑖
𝑓𝑖𝑛𝑖𝑠ℎ

 (6) 

In summary, the optimization objectives for task-to-partition scheduling can be ex-

pressed as: 

 𝑚𝑖𝑛{𝑃𝑢𝑠𝑒 , 𝐹𝑇𝑎𝑣𝑔} (7) 

Partition-to-Node Scheduling. In this scheduling level, the matrix 𝐴𝑃 is used to rep-

resent the allocation of partitions on nodes.  𝐴𝑗𝑘
𝑃 = 1 represents that 𝑝𝑗 is allocated to 

𝑛𝑘. Matrix 𝑀𝑃 represents the partition mutual exclusion matrix, where 𝑀𝑖𝑗
𝑇 = 1 indi-

cates that 𝑝𝑖  and 𝑝𝑗 are mutually exclusive. In addition, a matrix 𝐸 of size 𝑛𝑃 × 𝑛𝑃 rep-

resents the communication delay between partitions, where 𝐸𝑗𝑘 represents the commu-

nication delay caused by 𝑝𝑗 and 𝑝𝑘 on different processing nodes. 

We also define the memory constraint, the CPU utilization constraint and the parti-

tion mutual exclusion constraint, which are similar to the task-to-partition scheduling. 

 ∑  𝑛𝑃

𝑗=1 𝐴𝑗𝑘
𝑃 ⋅ 𝑃𝑀𝑗 ≤ 𝑁𝑀𝑘 (8) 

 ∑  𝑛𝑃

𝑗=1 𝐴𝑗𝑘
𝑃 ⋅ 𝑃𝑇𝑗 ≤ 𝑁𝑇𝑘 (9) 

 ∑  𝑛𝑃

𝑖=1 ∑  𝑛𝑃

𝑗=1 ∑  𝑛𝑁

𝑘=1 𝐴𝑖𝑘
𝑃 ⋅ 𝐴𝑗𝑘

𝑃 ⋅ 𝑀𝑖𝑗
𝑃 = 0 (10) 

The optimization goal of partition-node scheduling comprises two parts. The maxi-

mum node usage consists of node memory usage and node CPU usage. 

 𝑁𝑢𝑠𝑒 = 𝑚𝑎𝑥
1≤𝑗≤𝑛𝑁

 (𝜇1 ⋅
∑  𝑛𝑃

𝑖=1 𝐴𝑖𝑗
𝑃 ⋅𝑃𝑇𝑖

𝑁𝑇𝑗
+ 𝜇2 ⋅

∑  𝑛𝑃

𝑖=1 𝐴𝑖𝑗
𝑃 ⋅𝑃𝑀𝑖

𝑁𝑀𝑗
) (11) 

In the formula, 𝜇1 and 𝜇2 represent the weights and their sum is 1.  

The communication delay refers to the time delay caused by data exchange between 

partitions located on different processing nodes in a multi-processor system or a multi-

partition system.  
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 𝐶𝑜𝑠𝑡 = ∑  𝑛𝑃

𝑖=1 ∑  𝑛𝑃

𝑗=1 𝐸𝑖𝑗 − ∑  𝑛𝑃

𝑖=1 ∑  𝑛𝑃

𝑗=1 ∑  𝑛𝑁

𝑘=1 𝐴𝑖𝑘
𝑃 ⋅ 𝐴𝑗𝑘

𝑃 ⋅ 𝐸𝑖𝑗 (12) 

In summary, the optimization goal of partition-to-node scheduling can be expressed 

as: 

 𝑚𝑖𝑛{𝑁𝑢𝑠𝑒 , 𝐶𝑜𝑠𝑡} (13) 

3 Proposed Algorithm 

3.1 Overall Framework of MSQ-MODE 

Algorithm 1: Procedure of the proposed MSQ-MODE 

Input: population size: 𝑁𝑃; maximum number of iterations: 𝐺; set of constraints: 𝐶. 

Output: population: 𝑃. 

1. Initialize the current constraint set 𝑐𝑢𝑟𝐶 ← ∅ and external archive 𝐴 ← ∅; 

2. for 𝑖 ← 1 to 𝑁𝑃 do 

3.       𝐹(𝑖) = 𝑟𝑎𝑛𝑑𝑜𝑚(0,1); 𝐶𝑅(𝑖) = 𝑟𝑎𝑛𝑑𝑜𝑚(0,1); 

4. 𝑃1 ← Evolve 𝑃 using DE for 𝐺 generations; 

5. for 𝑖 ← 1 to 𝑙𝑒𝑛(𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠) do 

6.      𝑖𝑓𝑟(𝑖) ← Calculate the infeasibility rate 𝑖𝑓𝑟 of constraint 𝑖 on 𝑃; 

7. 𝑝𝑟𝑖𝑜𝑟𝐶 ← Sort constraints in descending order according to 𝑖𝑓𝑟; 

8. while 𝑐𝑢𝑟𝐶 is not equal to 𝐶 do 

9.      if |𝐴| ≥ 𝑁𝑃 then 

10.           𝑃 ← Select 𝑁 individuals from 𝐴 based on the SPEA2 strategy; 

11.      if |𝐴| < 𝑁𝑃 then 

12.           𝑟𝑒𝑚𝑎𝑖𝑛𝑃 ←  Generate 𝑁𝑃 − |𝐴|  individuals according to ( 𝑥𝑖 = ⌊𝑧𝑖 ⋅ 𝑛⌋

 (15); 

13.           𝑃 ← 𝐴 ∪ 𝑟𝑒𝑚𝑎𝑖𝑛𝑃; 

14.      𝑐𝑜𝑛𝑠 ← Select from 𝑝𝑟𝑖𝑜𝑟𝐶 based on the priority order; 

15.      𝑐𝑢𝑟𝐶 = 𝑐𝑢𝑟𝐶 ∪ 𝑐𝑜𝑛𝑠; 

16.      while the transformation conditions are not satisfied do 

17.           Calculate 𝑟𝑘, 𝑟𝑧𝑘 and 𝑟𝑛𝑘 according to (𝑟𝑘 ≡ 𝑚𝑎𝑥{𝑟𝑧𝑘 , 𝑟𝑛𝑘} ≤ 𝜖 (20), 

(𝑟𝑧𝑘 = 𝑚𝑎𝑥
𝑖=1,…,𝑚

 {
|𝑧𝑖

𝑘−𝑧𝑖
𝑘−𝑙|

𝑚𝑎𝑥{|𝑧𝑖
𝑘−𝑙|,Δ}

} (21) and (𝑟𝑛𝑘 = 𝑚𝑎𝑥
𝑖=1,…,𝑚

 {
|𝑛𝑖

𝑘−𝑛𝑖
𝑘−𝑙|

𝑚𝑎𝑥{|𝑛𝑖
𝑘−𝑙|,Δ}

} (22); 

18.           for 𝑖 ← 1 to 𝑁𝑃 do 

19.                Calculate 𝐹(𝑖) and 𝐶𝑅(𝑖); 

20.                𝑜 ← Generate offspring based on the DE/rand/1 strategy and binary 

crossover strategy; 

21.                Calculate the fitness of 𝑜 based on (𝐹𝑖
𝑇 = {𝑃𝑖

𝑢𝑠𝑒 + 𝑃𝑖
𝑇 , 𝐹𝑇𝑖

𝑎𝑣𝑔
+ 𝑃𝑖

𝑇} (18) 

or (𝐹𝑖
𝑃 = {𝑁𝑖

𝑢𝑠𝑒 + 𝑃𝑖
𝑃, 𝐶𝑜𝑠𝑡𝑖 + 𝑃𝑖

𝑃} (19); 

22.                Update 𝑃 based on the dominance relationship between 𝑥 and 𝑜, and 

update the rewards and actions; 

23.                Update the Q-table; 

24.          𝐴 ← Add non-dominated feasible solutions in 𝑃; 
25. return 𝑃; 
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Algorithm 1 provides the pseudocode for MSQ-MODE, and the steps are as follows: 

In lines 1-3, the relevant parameters are initialized. In lines 4-7, the priority of con-

straints is determined. In lines 9-13, the initial population for each stage is initialized. 

In lines 14-15, constraints are added based on priority and the stage is determined. In 

line 17, the maximum rate of change between the ideal and worst points over the past 𝑙 
generations is calculated. In lines 18-23, the population evolves. In line 24, the external 

archive is updated based on the non-dominated feasible solutions of the population. 

Finally, the final P is output. 

3.2 Population Initialization based on Chaotic Logistic Mapping 

The chaotic logistic map [16] can enable the generated initial population to cover the 

solution space more extensively and improve the global search ability. The chaotic lo-

gistic map is generally described by the following mathematical formulation:  

 𝑧𝑖+1 = 𝜃 ⋅ 𝑧𝑖 ⋅ (1 − 𝑧𝑖) (14) 

where 𝜃 ∈ [1,4].  
Each individual represents a scheduling scheme, which is encoded using the real 

coded method shown in Fig. 3.  

 

Fig. 3. Real coded.  

The population initialization combined with the chaotic logistic map can be repre-

sented as:  

 𝑥𝑖 = ⌊𝑧𝑖 ⋅ 𝑛⌋ (15) 

where 𝑥𝑖  represents the value of the 𝑖-th position of individual 𝑥, 𝑖 is the number of 

tasks or partitions to be scheduled, and 𝑛 represents the number of partitions or nodes. 

3.3 Fitness Handling Mechanism based on Penalty Function 

In this section, a penalty function is used to adjust the fitness of individuals failing to 

satisfy the constraints. This adjustment puts them at a disadvantage during the selection 

process, and prevents them from negatively affecting the optimization. In the task-to-

partition scheduling, the penalty value of the 𝑖-th individual’s fitness can be defined as:  

 

𝑃𝑖
𝑇 =     10 ⋅ (∑  𝑛𝑇

𝑖=1 𝑚𝑎𝑥(0, 𝑇𝑖
𝑓𝑖𝑛𝑖𝑠ℎ

− 𝐷𝑖)

    + ∑  𝑛𝑃

𝑗=1 𝑚𝑎𝑥(0, ∑  𝑛𝑇

𝑖=1 𝐴𝑖𝑗
𝑇 ⋅ 𝑇𝑀𝑖 − 𝑃𝑀𝑗)

    + ∑  𝑛𝑃

𝑗=1 𝑚𝑎𝑥(0, ∑  𝑛𝑇

𝑖=1 𝐴𝑖𝑗
𝑇 ⋅ 𝐶𝑖 − 𝑃𝑇𝑗)

    + ∑  𝑛𝑇

𝑖=1 ∑  𝑛𝑇

𝑗=1 𝑚𝑎𝑥(0, ∑  𝑛𝑃

𝑘=1 𝐴𝑖𝑘
𝑇 ⋅ 𝐴𝑗𝑘

𝑇 ⋅ 𝑀𝑖𝑗
𝑇 ))

 (16) 
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Similarly, the penalty function for partition-to-node scheduling is defined as:  

 

𝑃𝑖
𝑃 =     10 ⋅ (∑  𝑛𝑁

𝑗=1 𝑚𝑎𝑥(0, ∑  𝑛𝑃

𝑖=1 𝐴𝑖𝑗
𝑃 ⋅ 𝑃𝑀𝑖 − 𝑁𝑀𝑗)

    + ∑  𝑛𝑁

𝑗=1 𝑚𝑎𝑥(0, ∑  𝑛𝑃

𝑖=1 𝐴𝑖𝑗
𝑃 ⋅ 𝑃𝑇𝑖 − 𝑁𝑇𝑗)

    + ∑  𝑛𝑃

𝑖=1 ∑  𝑛𝑃

𝑗=1 𝑚𝑎𝑥(0, ∑  𝑛𝑁

𝑘=1 𝐴𝑖𝑘
𝑃 ⋅ 𝐴𝑗𝑘

𝑃 ⋅ 𝑀𝑖𝑗
𝑃 ))

 (17) 

Based on the penalty function, the fitness value of individual 𝑖 can be modified as:  

 𝐹𝑖
𝑇 = {𝑃𝑖

𝑢𝑠𝑒 + 𝑃𝑖
𝑇 , 𝐹𝑇𝑖

𝑎𝑣𝑔
+ 𝑃𝑖

𝑇} (18) 

 𝐹𝑖
𝑃 = {𝑁𝑖

𝑢𝑠𝑒 + 𝑃𝑖
𝑃, 𝐶𝑜𝑠𝑡𝑖 + 𝑃𝑖

𝑃} (19) 

3.4 The Adaptive Operators based on Q-learning Algorithm 

In this paper, each individual independently maintains and updates the operators using 

the Q-learning algorithm. We define an individual as an agent. Similar to [17], the states 

are set according to the dominance relationship between offspring and parents: the off-

spring dominates the parent; the parent dominates the offspring; the offspring and the 

parent do not dominate each other. Here, different adjustment schemes of the operators 

are set as actions, mainly including：𝑓 = −0.1, 𝑐𝑟 = 0.1；𝑓 = 0.1, 𝑐𝑟 = 0.1; 𝑓 = 0, 

𝑐𝑟 = 0. These actions are transformed into a feedback mechanism to update the opera-

tors: 𝐹 = 𝐹 + 𝑓 , 𝐶𝑅 = 𝐶𝑅 + 𝑐𝑟. If the offspring dominates the parent, it indicates that 

the current local search direction is effective, so the reward is 1. If the parent dominates 

the offspring, it suggests that the current local search direction may be ineffective, thus 

the reward is −1. For other situations, the reward is 0. The update of the Q-table uses 

the Bellman equation. The agent uses the 𝜖-greedy strategy to select the action and re-

ceives the corresponding reward to update the Q-table. 

3.5 Constraint-handling based on Multi-stage Constraint Addition 

In multi-objective optimization problems, there are usually multiple constraints, impos-

ing constraints too early may limit the exploration of the solution space. To ensure that 

the algorithm has good global search ability and convergence, we propose a multi-stage 

constraint addition method, which enables the algorithm to smoothly transition from 

the initial stage with loose constraints to the later stage with strict constraints, thereby 

improving the quality of the final solution. The specific steps are as follows: 

Determining the priority of constraints. Firstly, we randomly generate an initial 

population. Then let the population evolve to the approximate unconstrained Pareto 

Front. Next, we calculate the infeasibility rate of the population on each constraint and 

sort the constraints in descending order based on the infeasibility rates. 

Adding constraints stage by stage. To increase the diversity of solutions and find 

potential effective solution regions, we do not add any constraints in the initial stage. 

In the subsequent stages, one constraint will be gradually added in each round according 

to the priority level. As the number of constraints gradually increases, the search scope 

gradually narrows, and finally focuses on a solution space that satisfies all constraints. 
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To improve the stability and diversity of the constraint addition process, we use an 

external archive to store the non-dominated feasible solutions from each stage. At each 

stage, the initial solution set is obtained from the external archive.  

Stage transition conditions. We introduce the switching strategy of PPS [18] to 

dynamically determine whether to add new constraints based on the optimization status 

of the population. The strategy is as follows: 

 𝑟𝑘 ≡ 𝑚𝑎𝑥{𝑟𝑧𝑘 , 𝑟𝑛𝑘} ≤ 𝜖 (20) 

 𝑟𝑧𝑘 = 𝑚𝑎𝑥
𝑖=1,…,𝑚

 {
|𝑧𝑖

𝑘−𝑧𝑖
𝑘−𝑙|

𝑚𝑎𝑥{|𝑧𝑖
𝑘−𝑙|,Δ}

} (21) 

 𝑟𝑛𝑘 = 𝑚𝑎𝑥
𝑖=1,…,𝑚

 {
|𝑛𝑖

𝑘−𝑛𝑖
𝑘−𝑙|

𝑚𝑎𝑥{|𝑛𝑖
𝑘−𝑙|,Δ}

} (22) 

where 𝑟𝑘 denotes the maximum rate of change between the ideal and nadir points over 

the past 𝑙 generations. 𝑧𝑖
𝑘 and 𝑛𝑖

𝑘 represent the ideal point and the nadir point in the 𝑘-

th generation, respectively. 𝜖 is set to 1𝑒 − 3 and Δ is set to 1𝑒 − 6. 

4 Experimental Results 

4.1 Experiment Settings 

The basic configuration information of the IMA system in the experiment is shown in 

Table 1 and Table 2. In the task-to-partition scheduling, we set that 𝑡2 and 𝑡5, 𝑡3 and 

𝑡10 , 𝑡9 and 𝑡16 , 𝑡1  and 𝑡11 , 𝑡7  and 𝑡10  are mutually exclusive (i.e., the corresponding 

positions in 𝑀𝑇 are set to 1, and all other positions set to 0). Similarly, in the partition-

to-node scheduling, we set that 𝑝1 and 𝑝4, 𝑝3 and 𝑝7 are mutually exclusive. The com-

munication delays between partitions are shown in Table 3. 

Table 1. Task parameters. 

Task 𝑡1 𝑡2 𝑡3 𝑡4 𝑡5 𝑡6 𝑡7 𝑡8 𝑡9 

TM 13 8 13 10 19 26 26 44 24 

C 2 2 4 1 3 2 4 7 2 

D 32 30 40 25 35 34 42 55 36 

Task 𝑡10 𝑡11 𝑡12 𝑡13 𝑡14 𝑡15 𝑡16 𝑡17 𝑡18 

TM 48 56 26 48 50 59 43 46 49 

C 3 4 1 4 5 2 4 2 3 

D 39 44 26 43 45 38 41 37 50 

Table 2. Partition parameters and node parameters. 

Partition 𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 𝑝6 𝑝7 Node 𝑛1 𝑛2 𝑛3 

PM 200 120 250 190 130 110 140 NM 1000 900 500 

PT 50 35 65 30 98 32 41 NT 300 200 100 
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Table 3. Partition Communication Delay. 

Partition 𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 𝑝6 𝑝7 

𝑝1 0 45 23 67 12 9 34 

𝑝2 45 0 12 43 56 78 90 

𝑝3 23 12 0 34 67 21 89 

𝑝4 67 43 65 0 65 32 54 

𝑝5 12 56 67 65 0 56 87 

𝑝6 89 78 21 32 56 0 43 

𝑝7 34 90 89 54 87 43 0 

NSGAII [19], CMOEA/D [20],  CCMO [21] and PPS [18] are selected as the com-

parison algorithms for MSQ-MODE. NSGAII and CMOEA/D are very representative 

algorithms, and CCMO and PPS are multi-stage constrained MOEAs. We set the cross-

over and mutation operators for NSGAII, CMOEA/D and CCMO to 0.9 and 0.1, re-

spectively. The population size is set to 100 and the maximum number of iterations set 

to 150. In CMOEA/D, the number of neighbors is set to 5, and the evolutionary process 

uses the DE component (DE/rand/1 and binary crossover). The remaining parameters 

of these algorithms align with those specified in the original papers. To account for the 

randomness of the algorithms, each algorithm is run 30 times. 

Since the true Pareto front of the IMA task scheduling problem is difficult to obtain 

directly, the IGD index cannot be used for this problem. We adopt the hypervolume 

(HV) as the performance index. The larger the HV value, the better the comprehensive 

performance of the algorithm. 

4.2 Result Analysis 

Effectiveness test. Table 4 lists the max, min, mean and std HV values for each algo-

rithm obtained in the bilevel scheduling model. From Table 4, MSQ-MODE achieves 

the best mean HV values in both task-to-partition scheduling and partition-to-node 

scheduling. This indicates that the algorithm is capable of consistently producing high-

quality solution sets over multiple runs, demonstrating strong global search ability and 

consistency. Additionally, MSQ-MODE also performs best in terms of both the max 

and min HV values, indicating that the algorithm can find high quality solutions and 

reflect its strong ability to explore the potential solution space. In contrast, in the task-

partition scheduling, the minimum HV values of CCMO and PPS are 0, and in the par-

tition-node scheduling, the minimum HV values of CMOEA/D and PPS are 0, which 

indicates that they failed to find any feasible solutions during the evolutionary process. 

As we can see from Fig. 4 and Table 4, our algorithm has the smallest std for HV, 

indicating that it is more stable compared to other algorithms. This is because our algo-

rithm introduces a penalty function in the fitness evaluation, reducing ineffective 

searches within the population and guiding the evolution direction towards the feasible 

solution set, ensuring convergence stability. Moreover, our algorithm uses the Q-learn-

ing mechanism to ensure that individuals evolve in favorable directions, which not only 
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improves the average HV value but also reduces the variance in convergence paths 

across different experiments, thereby lowering the standard deviation. In addition, our 

algorithm employs a multi-stage constraint-handling strategy, and through gradual con-

vergence, it reduces fluctuations caused by randomness, leading to more consistent so-

lution quality across different experiments and ultimately resulting in a smaller standard 

deviation. 

Significance test. Table 4 lists the P-values and test results of the Wilcoxon signed-

rank test comparing MSQ-MODE with NSGAII, CMOEA/D, CCMO and PPS at a sig-

nificance level of 0.05. In the table, the symbols "+", "≈", and "−" represent that the 

performance of MSQ-MODE is significantly better than that of the competitors, similar 

to that of the competitors, and significantly worse than that of the competitors, respec-

tively. Table 4 shows that, from a statistical perspective, the MSQ-MODE algorithm 

significantly outperforms other comparison algorithms. Notably, the Wilcoxon signed-

rank test, which is specifically designed to compare median differences between two 

related samples, furnishes robust and incontrovertible evidence. This evidence strongly 

supports the assertion that MSQ-MODE not only attains an exceptionally high optimi-

zation quality in the task scheduling problem but also exhibits strikingly significant 

differences in its optimization outcomes. Therefore, the test results further confirm that 

the MSQ-MODE algorithm has superior performance and higher stability compared to 

other comparison algorithms in solving this problem. This strongly validates its ap-

plicability and reliability in practical applications. 

Table 4. The min, max, mean, std of the HV values for different algorithms and the P-values 

and test results of the Wilcoxon signed-rank test comparing different algorithms at a signifi-

cance level of 0.05. 

Scheduling model Algorithm Min Max Mean Std P-value R 

Task-to-partition 

MSQ-MODE 1.1123 1.2057 1.1598 0.0221 - - 

NSGAII 0.7386 1.1928 0.9329 0.0828 3.72529E-09 + 

CMOEA/D 1.0109 1.1807 1.0925 0.0491 1.30385E-07 + 

CCMO 0.0000 1.1807 0.8579 0.4768 1.21836E-05 + 

PPS 0.0000 0.8935 0.3617 0.3472 1.86265E-09 + 

Partition-to-node 

MSQ-MODE 0.1865 0.1882 0.1879 0.0004 - - 

NSGAII 0.1784 0.1874 0.1847 0.0026 1.86265E-09 + 

CMOEA/D 0.0000 0.0122 0.0076 0.0047 1.86265E-09 + 

CCMO 0.1241 0.1807 0.1544 0.0136 1.73255E-09 + 

PPS 0.0000 0.0122 0.0065 0.0054 1.86265E-09 + 
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Fig. 4. HV values distribution of the bilevel scheduling model. 

5 Conclusion 

In this article, the task scheduling problem in integrated electronic systems is studied. 

The core of this problem is to optimize the task scheduling scheme while satisfying the 

constraints of resources, communication delays, and safety. This paper proposes a two-

layer scheduling model based on task scheduling, which is used to optimize task-parti-

tion scheduling and partition-node scheduling. Subsequently, a multi-stage Q-learning 

differential evolution algorithm (MSQ-MODE) is proposed. This algorithm combines 

chaotic initialization, an adaptive penalty function, a dynamic adjustment mechanism 

based on Q-learning, and a multi-stage constraint addition strategy. Compared with 

other heuristic algorithms, MSQ-MODE has stronger adaptability and better optimiza-

tion performance. In the future, combining machine learning techniques to automati-

cally learn and optimize task scheduling strategies will become an important research 

direction. 
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Abstract. In adversarial attacks, most existing methods adopt global attack meth-

ods, which attack by changing all image pixels, but this is not realistic. On the 

contrary, sparse attacks indicate that only perturbing local regions of the input 

image can deceive DNN models into making incorrect predictions. However, this 

method requires a large number of queries to generate adversarial examples, and 

the key issues it faces are locating the perturbation area and optimizing the mag-

nitude of the perturbation. Currently, generating high-quality adversarial exam-

ples and improving query efficiency in restricted environments is a challenge for 

black-box attacks. In this paper, we propose a sparse black-box attack method 

based on the Active Subspace Evolution Strategy (AS-ES), which locates the ac-

tive subspace of the input image through the multi-arm bandit method, and uses 

the Covariance Matrix Adaptive Evolution Strategy algorithm for perturbation 

search in the low-dimensional subspace. We model this problem as a bi-level 

optimization problem, optimizing both the perturbation position and magnitude 

to generate high-quality adversarial examples while achieving efficient attacks. 

We conducted extensive experiments on multiple datasets and verified that the 

AS-ES method generates adversarial examples with higher quality and query ef-

ficiency than existing state-of-the-art attack methods. 

Keywords: Adversarial Example, Black-box Attack, Sparse Perturbation, Ac-

tive Subspace, Covariance Matrix Adaptive Evolution Strategy. 

1 Introduction 

Deep neural networks (DNNs) have demonstrated exceptional performance across var-

ious domains, including image classification [1], natural language processing [2], au-

tonomous driving [3], and face recognition [4]. However, recent studies have shown 

that deep learning models are highly susceptible to adversarial attacks. Adversarial ex-

amples (AEs) can deceive DNNs into making incorrect predictions by introducing sub-

tle, human-imperceptible perturbations to input images [5]. This phenomenon exposes 

the vulnerabilities of deep learning models in real-world applications.  

To evaluate and improve the robustness of DNNs, researchers worked on developing 

more powerful adversarial attack methods, which can promote the development of more 

effective model defense mechanisms [6]. The key issues in this field include effectively 
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generating high-quality adversarial examples and improving the query efficiency and 

success rate of black-box attacks. The quality of adversarial examples is usually con-

strained by different norms, such as ℓ0, ℓ1, ℓ2 and ℓ∞-norm. A smaller ℓp value means 

that the generated perturbation is more difficult to detect, thereby increasing the stealth-

iness of the attack. Considering generate AEs requires a high query cost in black-box 

attacks, generating high-quality adversarial examples within a limited number of que-

ries has become a key challenge. In addition, a high success rate of attacks indicates 

that attackers are able to make the target model misclassify adversarial examples with 

a high probability, this reflects the vulnerability of the model. 

Researchers have made significant progress in studying black-box attacks, such as 

the state-of-the-art (SOTA) Square attack [7], which can significantly reduce the num-

ber of queries for black-box attacks under ℓ∞ and ℓ2 constraints. The perturbation gen-

erated by this method is a global perturbation, which can usually improve the success 

rate of attacks [8]. However, adding this perturbation to the original image will result 

in significant visual differences, and the quality of the adversarial examples is very low 

[9,10]. There are many existing studies on sparse attacks that can fool deep learning 

models by perturbing local regions of the original image [11]. The key to sparse attacks 

is to determine the location of perturbations and optimize their magnitude [12]. Most 

existing adversarial attacks mainly optimize the magnitude of perturbations, making 

them imperceptible, but the location of perturbations is all pixels of the input image, 

which results in low efficiency in searching for adversarial perturbations in high-di-

mensional space [13]. 

In adversarial attacks, there is a trade-off between perturbation norm and query num-

bers. To address this issue, a natural idea is that we can guide the black-box attack 

search to the active subspace of the input image, which can most significantly affect 

the predicted output of the target model, thereby realizing perturbation search in a low-

dimensional space, greatly improving the efficiency of search and query. Therefore, we 

propose a score-based black-box sparse attack method. We divide the input image into 

multiple subspaces and sample in different subspaces. By adaptively adjusting the sen-

sitivity and importance of the subspaces, we select the best subspace to generate high-

quality adversarial examples while achieving efficient attacks. The key idea is to select 

a low dimensional subspace and perform search perturbation within that region, con-

straining the perturbation norm within a small range. The selection of subspaces and 

the generation of perturbations follow a dynamic learning process, where the chosen 

subspaces are evaluated based on the function loss values of the adversarial examples, 

allowing the model to learn and identify active subspaces. 

We propose a sparse black-box attack method to learn and obtain the active subspace 

of input images and generate high-quality adversarial examples, which is called the 

active subspace evolution strategy (AS-ES) method. In summary, we make the follow-

ing contributions in this work. 

• We propose an effective black-box attack method, called Active Subspace Evolution 

Strategy (AS-ES), which dynamically learns the active subspace and optimizes the 

perturbation magnitude in this sensitive region through a bi-level optimization mech-

anism. 

15/1242

AS-ES: Sparse Black-box Adversarial Attack by Active Subspace Evolution Strategy

Jinling Duan and Zhenhua Li.



 

 

 

2025 International Conference on Intelligent Computing 

July 26-29, Ningbo, China 

https://www.ic-icc.cn/2025/index.php 

 

• We explored sparse perturbation search in low-dimensional subspaces and greatly 

improved the search efficiency by using the covariance matrix adaptation evolution-

ary strategy(CMA-ES). We also designed an effective active subspace evaluation 

method to evaluate the sampled subspace by optimizing the search information, 

thereby learning the active subspace. 

• Extensive experiments show that the proposed AS-ES attack method achieves the 

expected results on multiple datasets and CNN models, and its attack success rate 

and query efficiency are better than the state-of-the-art black-box attack methods. 

We also performed ablation experiments to select the most effective experimental 

parameters. 

2 Related Work 

In this section, we give a general representation of adversarial attacks. Next, we intro-

duce relative research on sparse attack and global attack. Finally, we explain the re-

search motivation of this work. 

2.1 Adversarial Attack 

Researching adversarial examples can improve the robustness and stability of deep 

learning models. In image classification tasks, given a well-trained DNN classifier 

𝐻(𝑥) = argmax𝑖𝐹(𝑥)𝑖, where 𝑥 ∈ [0,1]dim(𝑥) is an input to the neural network 𝐹(⋅), 

and 𝑛 is the number of classes 𝑖 = 1, … , 𝑛. 

When the DNN correctly classifies the input image, i.e., 𝐻(𝑥) = 𝑦, where y is the 

ground-truth label of the input 𝑥. When conducting adversarial attacks, the attacker’s 

goal is to find an adversarial example 𝑥𝑎𝑑𝑣 that is very close to the original input 𝑥. 

Even if the perturbation 𝛿 is very small and imperceptible, it can trick the deep neural 

network into making incorrect classification predictions, i.e., 𝐻(𝑥𝑎𝑑𝑣) ≠ 𝑦. We define 

the distance between adversarial examples and the original image as ∥ 𝑥 − 𝑥𝑎𝑑𝑣 ∥𝑝≤ 𝜖, 

This is usually restricted with a perturbation norm ℓ𝑝, 𝑝 = 0,1,2, ∞, this is an important 

indicator used to measure the quality of adversarial examples. By using the perturbation 

magnitude as a constraint for the AEs, and then maximizing the confidence distance 

between the AEs and the original image 𝑥, thus generate adversarial examples that are 

as similar as possible to the original image. We can construct the generation of adver-

sarial examples as the following optimization problem: 

                                             𝑚𝑎𝑥
𝛿

 |𝐻(𝑥 + 𝛿) − 𝐻(𝑥)|, 𝑠. 𝑡. ∥ 𝛿 ∥𝑝≤ 𝜖                                (1) 

2.2 Sparse Attack and Global Attack 

According to the different perturbation regions, adversarial perturbations can be di-

vided into global and local perturbations. Global perturbation attacks usually change 

all pixels of the image [9]. This attack method can achieve a high attack success rate, 

but it requires perturbation search in high dimensions, and the scope of modification is 
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too large [10], resulting in obvious visual differences between the generated AEs and 

the original images. Existing global attacks [14] usually rely on optimizing the magni-

tude of the perturbation to ensure the minimum perception of the perturbation, thereby 

achieving an attack on the target model, but the adversarial examples have low quality. 

Recently, sparse attacks have become a hot topic in adversarial attack research as a 

local perturbation strategy. Unlike traditional global perturbation attack methods, 

sparse attacks [15] indicate that by perturbing only a portion of the input image, DNNs 

can make incorrect classification results. However, the key challenge for sparse attacks 

is to determine the location of perturbations and to optimize the magnitude of pertur-

bations at these locations [12]. Existing sparse attack methods are usually divided into 

three types: manual attack, heuristic attack, and optimization attack. Manual attacks are 

often achieved by adding visible local patches to the image [16], which lacks automa-

tion and is inefficient. Heuristic attacks, such as Jacobian-based saliency map attacks 

[17], use salient regions of the image to select perturbation positions, but they also suf-

fer from poor localization accuracy and high computational complexity. Optimization 

attacks search for the optimal perturbation location through optimization algorithms, 

such as one pixel attack [18], which use differential evolution algorithms to search for 

one pixel and only perturb in one pixel. Current sparse attack methods focus on opti-

mizing perturbation magnitude to ensure imperceptibility [19], but their efficiency in 

searching for the optimal perturbation region in high-dimensional spaces remains a ma-

jor challenge. 

2.3 Motivation 

Although existing sparse attacks have made some significant progress, it is often diffi-

cult to balance the localization of salient regions in the input image and minimize the 

perturbation ℓp norm. Most sparse attack methods tend to prioritize query efficiency 

without limiting the magnitude of the perturbation [20], or achieve imperceptibility of 

the perturbation by constraining ℓp  norm [21], but this requires large queries. 

To address the issues of sparse attacks, a natural idea is to find a scientifically effec-

tive method to locate the active subspace of the input image, guide adversarial attacks 

to perturb sensitive areas, while constraining and optimizing the magnitude of pertur-

bations, and efficiently generate adversarial examples by finding suitable sampling per-

turbations. Therefore, we propose an active subspace evolution strategy(AS-ES) algo-

rithm aimed at dynamically learning the active subspace of the input image. We design 

a subspace evaluation mechanism to evaluate and update the sensitivity of each region, 

and use a covariance matrix adaptive evolution strategy(CMA-ES) to simulate the local 

geometric shape of the search, reducing the dimensionality of the search space and 

achieving higher query efficiency. 

3 Proposed Method 

In this section, we introduce the proposed method called AS-ES attack, which effi-

ciently generates high-quality adversarial examples. 
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3.1 Multi-Arm Bandit Model for Subspace Attack 

Subspace Attack Objective Function. In the adversarial attack task, we let 𝐻(𝑥) =
arg𝑚𝑎𝑥𝑖𝐹(𝑥)𝑖 denote the maximum logit value of the target model, where 𝐹(𝑥) ∈ ℝ𝑛 

represents the softmax output for input 𝑥 ∈ [0,1]𝑑. The adversarial attack aims to find 

a perturbation vector 𝛿 ∈ ℝ𝑑. Inspired by Carlini and Wagner’s work, We set the ob-

jective loss function to minimize the distance between the logit values of the target class 

and the second largest class [22]. 

                     min𝛿 ℒ(𝑥 + 𝛿) = 𝐻𝑦(𝑥 + 𝛿) − max
𝑗≠𝑦

𝐻𝑗(𝑥 + 𝛿),  𝑠. 𝑡. ∥ 𝛿 ∥𝑝≤ 𝜖             (2) 

where 𝐻𝑗(⋅) denotes the logit value for class 𝑗, 𝑦 is the target class, 𝜖 controls the per-

turbation magnitude. 

Global adversarial perturbations often suffer from high ℓ𝑝-norms that degrade the 

quality of adversarial examples. Therefore, we propose a sparse attack method that op-

erates on active subspaces. Research has shown that not all input image subspaces can 

generate adversarial examples. In contrast, some of these subspaces are more active and 

more likely to generate high-quality adversarial examples. We abuse notation slightly 

to better illustrate this issue. 𝛿 denotes the generated global perturbation, 𝛿𝐵 denotes 

the sparse perturbation on the subspace 𝐵. Thus the above problem can be transformed 

into an attack problem based on the active subspace. 

                                            max
δ𝐵∈𝐵

|𝐻(x + δ𝐵) − 𝐻(x)|, 𝑠. 𝑡. ∥ δ𝐵 ∥𝑝≤ 𝜖                             (3) 

Establish Multi-Arm Bandit Model. We divide the input image 𝑥 ∈ ℝ3×𝐻×𝑊 into 𝐾 

non-overlapping subspaces ℬ = {𝐵𝑖}𝑖=1
𝐾 , where each subspace 𝐵𝑖 ⊂ ℝ3×𝑚×𝑚 has di-

mensions satisfying 𝑚 ≪ min(𝐻, 𝑊). At each iteration 𝑡, we select a subspace 𝐵𝑖 ∈ ℬ 

from 𝐾 subspaces for perturbation search. The simplest method is to sequentially ac-

cess one subspace at a time, but this method requires a large number of queries and has 

very low efficiency in generating adversarial examples. In addition, the number of 𝐾 

usually increases exponentially with the increase of input image dimensions, and the 

algorithm cannot sample every subspace. Therefore, we will model the sparse black-

box attack problem based on active subspaces as a multi-arm bandit (MAB) problem. 

We can describe this problem as a bi-level optimization problem expressed as follows: 

                                           

(Outer) 𝐵∗ = argmax
𝐵𝑖∈ℬ

𝒮(𝐵𝑖)

(Inner) 𝛿𝐵𝑖

∗ = argmax
𝛿𝐵𝑖

|𝐻(𝑥 + 𝛿𝐵𝑖
) − 𝐻(𝑥)|                      

 s.t. ∥ 𝛿𝐵𝑖
∥𝑝≤ 𝜖

(4) 

where 𝒮: ℬ → ℝ+  quantifies the activity level of subspace 𝐵𝑖 , updated dynamically 

through the average perturbation magnitude of the objective function loss within the 

subspace 𝐵𝑖 . 

                                                 𝐵∗ = argmax
𝐵𝑖∈ℬ

𝔼𝛿∈𝐵,𝛿∼𝒩(0,𝐼𝐵) [ℒ(𝛿)].                                  (5) 
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We establish a sampling probability 𝑝𝑖 ∈ ℙ  for each subspace 𝐵𝑖 , where ℙ =
[𝑝1, … , 𝑝𝐾]𝑇 and ∑ 𝑝𝑖

𝐾
𝑖=1 = 1. We employ an Upper Confidence Bound (UCB) strategy 

to dynamically select 𝑁 subspaces per iteration (𝑁 ≪ 𝐾), balancing exploration of un-

certain regions and exploitation of known high-potential areas. Then, based on opti-

mized search information, evaluate the sampled subspaces 𝐵𝑖  and update the sampling 

probability 𝑝𝑖 , so that the probability of subspaces that meet the requirements is sam-

pled increases, thereby we can learn to obtain the active subspaces. 

3.2 Active Subspace Evolution Strategy 

Generate Sparse Perturbations. In black-box attacks, only the output information of 

the target model can be obtained through queries, with very limited accessible infor-

mation. Therefore, finding the correct search direction can effectively improve attack 

efficiency. We employ the Covariance Matrix Adaptation Evolution Strategy (CMA-

ES) to explore random perturbations. 

We propose generating sparse adversarial perturbations within an active subspace. 

Given an input image partitioned into 𝐾 disjoint regions {𝐵𝑖}𝑖=1
𝐾 , we maintain sparsity 

by generating perturbations only in 𝜆 ≪ 𝐾 selected regions per iteration. The CMA-ES 

algorithm is mainly implemented by controlling the mean 𝑚, step size 𝜎, and covari-

ance matrix 𝐶. It can simulate the local geometric shape of the search space, achieving 

higher search efficiency. In CMA-ES, each iteration generates 𝜆 candidate solutions 

from 𝑁(𝑚𝑡 , 𝜎𝑡
2𝐶𝑡), sampled in the following form, where each 𝑦𝑖 ∈ 𝑅𝑛 is a search di-

rection. 

                                         𝛿𝑖 ∼ 𝑚𝑡 + 𝜎𝑡𝑦𝑖 , 𝑦𝑖 ∼ 𝑁(0, 𝐶𝑡), 𝑖 = 1, … , 𝜆                               (6) 

Since the sampled mean 𝑚𝑡 and 𝑦𝑖  are global, the perturbation 𝛿 generated by the 

CMA-ES algorithm is of the same size as the input image 𝑥. To ensure that the obtained 

perturbation is sparse, we need to project the generated global perturbation 𝛿𝑖 onto the 

sampled subspace 𝐵𝑖 , retaining only the perturbations within that subspace to obtain 

𝛿𝐵𝑖
, while setting the perturbations in the unsampled coordinate region to 0 to obtain a 

sparse perturbation. 

                                                                𝛿𝐵𝑖
= 𝑃𝑟𝑜𝑗𝐵𝑖

(𝛿)                                                      (7) 

                                                      𝛿 = [
𝛿1

⋮
𝛿𝑛

] ,   𝛿𝐵𝑖
= {

𝛿𝑗, 𝑗 ∈ 𝐵𝑖

0, 𝑗 ∉ 𝐵𝑖
                                           (8) 

Evaluation of Subspace. At each iteration, we perform 𝜆 sampling on all regions of 

the input image 𝑥. Utilizing evolutionary strategy algorithm to generate sparse adver-

sarial perturbations 𝛿𝐵𝑖
 in each subspace 𝐵𝑖 . Adding the sparse perturbation to the orig-

inal image 𝑥 to obtain an adversarial example 𝑥′. We evaluate the generated adversarial 

examples using the 𝐶&𝑊 loss to compute the objective function value for the new so-

lution. 
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                                                    ℒ(𝑥1:𝜆
′ ) ≤ ℒ(𝑥2:𝜆

′ ) ≤ ⋯ ≤ ℒ(𝑥𝜆:𝜆
′ )                                  (9) 

To determine the active subspace of perturbation, we established a subspace evalua-

tion mechanism that rewards the sampled subspace based on the ranking of the loss 

function ℒ(𝑥′) of adversarial examples. We define the subspace reward for sampling 

selection as 𝑟𝑖 . For the rank 𝑟𝑎𝑛𝑘𝑖  (𝑟𝑎𝑛𝑘𝑖 = 1 is optimal), the higher the subspace 

ranking, the higher the reward given. 

                                                    𝑟𝑖
(𝑡)

=
𝜆 − 𝑟𝑎𝑛𝑘𝑖

∑ 𝑗𝜆
𝑗=1

,  𝑖 ∈ 1, … , 𝐾                                       (10) 

We use a sliding window mechanism to store the rewards corresponding to the last 𝑡 

iterations in the subspace, ignoring the old reward information stored in historical iter-

ations. Each subspace 𝐵𝑖  maintains a reward history queue 𝑅𝑖
(𝑡)

 with a length not ex-

ceeding 𝑊, representing the reward history sequence of the 𝑖𝑡ℎ subspace at the 𝑡𝑡ℎ iter-

ation, denoted as [𝑟𝑖,1
(𝑡)

, 𝑟𝑖,2
(𝑡)

, … , 𝑟𝑖,𝑛
(𝑡)

], and 𝑖 ∈ 1, … , 𝐾. When the number of information 

stored in the reward history queue exceeds the size of the sliding window 𝑊, we re-

move the old data from the queue head and add the new reward 𝑟𝑖
(𝑡)

 corresponding to 

the subspace from the queue tail. 

                            𝑅𝑖
(𝑡+1)

= {
𝑃𝑟𝑜𝑗𝑡𝑎𝑖𝑙(𝑊−1)(𝑅𝑖

(𝑡)
) ⊕ 𝑟𝑖

(𝑡)
if |𝑅𝑖

(𝑡)
| ≥ 𝑊

𝑅𝑖
(𝑡)

⊕ 𝑟𝑖
(𝑡)

otherwise
                    (11) 

where the 𝑟𝑖
(𝑡)

 represents the newly observed reward value for the 𝑖𝑡ℎ subspace in the 

current iteration, 𝑡𝑎𝑖𝑙(𝑛) represents taking the last 𝑛 elements in the sequence (remov-

ing the first element of the sequence), ⊕ is an append operation, that is [𝑎, 𝑏]  ⊕ 𝑐 =
[𝑎, 𝑏, 𝑐]. 

In addition, we calculate the average reward for each subspace based on the reward 

history queue information mentioned above. 

                                               𝑅‾𝑖
(𝑡+1)

= {𝔼[𝑅𝑖
(𝑡+1)

] if 𝑅𝑖
(𝑡+1)

≠ 0

0 otherwise
                                  (12) 

Combining historical performance with current rewards, we use Exponential Moving 

Averages (EMA) with momentum factor 𝛼 = 0.9 to balance new and old Information 

and update the sampling probability of each subspace. 

                                                   𝑝𝑖
(𝑡+1)

= 𝛼𝑝𝑖
(𝑡)

+ (1 − 𝛼) ⋅ 𝑅‾𝑖
(𝑡+1)

                                   (13) 

This balances long-term performance and short-term rewards, enabling both conver-

gence in stationary environments and dynamic tracking in non-stationary scenarios. 

We introduced the epsilon-greedy mechanism to select the subspaces. We dynami-

cally adjust the value of 𝜖 on based on the current search situation. At the beginning, 

we set 𝜖 = 𝜖𝑚𝑎𝑥 = 1, and as the number of iterations 𝑡 increases 𝜖 gradually decays to 

𝜖𝑚𝑖𝑛. 
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                                              𝜖(𝑡+1) = 𝜖min + (𝜖max − 𝜖min) ⋅ 𝑒−𝜂𝑡                                 (14) 

where 𝜂 is the attenuation coefficient, the larger 𝜂 is, the faster the attenuation. 𝜖𝑚𝑖𝑛 

ensure long-term exploration probability. This article set 𝜖𝑚𝑖𝑛 = 0.1, 𝜂 = 0.01. 

Sampling of Subspace.  We formulate subspace sampling as a multi-armed bandit 

problem solved through Upper Confidence Bound (UCB) optimization. Each subspace 

𝐵𝑖  maintains an adaptive score combining historical performance and uncertainty esti-

mation, which can quantify the potential of each subspace (upper bound of reward ex-

pectation), and prioritize selecting the subspace with the highest potential. 

                                                          𝑈𝐶𝐵𝑖 = 𝑅‾𝑖  + √
2ln𝑁

𝑁𝑖

                                                 (15) 

where 𝑅‾𝑖 denotes empirical reward average. The second term is the confidence interval 

term, which is used to measure the uncertainty of subspace. 𝑁𝑖 represents the number 

of sampling times in the 𝑖𝑡ℎ subspace, and 𝑁 represents the total number of sampling 

selections for all 𝐾 subspaces. To generate the selection probability, we apply temper-

ature-controlled softmax normalization. 

                                                       𝑃𝑢𝑐𝑏
(𝑡+1)

=
exp(𝑈𝐶𝐵𝑖/𝜏)

∑ exp𝐾
𝑗=1 (𝑈𝐶𝐵𝑗/𝜏)

                                       (16) 

The temperature parameter 𝜏  dynamically regulates exploration and exploitation 

trade-off. A higher 𝜏 promotes uniform exploration while lower 𝜏 focuses on high-re-

ward subspaces. Through iterative updates, this mechanism spontaneously converges 

to optimal subspace distributions. 

The sampling of subspaces requires a balance between exploration and exploit mech-

anisms. At each iteration, with probability 𝜖, we perform explorative sampling from the 

UCB-optimized distribution. prioritizing subspaces with high uncertainty-adjusted re-

wards. 

                                                   𝑘 ← 𝑃explore

(𝑡+1)
= 𝑃ucb

(𝑡+1)
,  𝑘 ∈ 1, … , 𝐾                                   (17) 

Conversely, with probability 1 − 𝜖, we exploit historical knowledge by sampling 

from the normalized EMA-updated probabilities. 

                                                  𝑘 ← 𝑃exploit

(𝑡+1)
,  𝑃exploit

(𝑡+1)
=

𝑝𝑖
(𝑡+1)

∑ 𝑝𝑖

(𝑡+1)𝐾
𝑖=1

                                   (18) 

Intuitively, active subspaces are more likely to generate high-quality random pertur-

bations. By continuously iterating, the sampling probability of this subspace will be-

come higher, prompting the algorithm to focus on searching within such subspaces, 

thereby achieving the learning of active subspaces. 
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Update the Evolutionary Strategy Parameters. We consider the solutions with the 

top 𝜇 objective function values ℒ(𝑥) as the better perturbations for this iteration, and 

they are more likely to obtain high-quality adversarial examples. We perform a 

weighted summation of these 𝜇 sampled data [𝛿𝑖, … , 𝛿𝜇] to update the sampling mean 

of the evolutionary strategy. In the algorithm, the sum of the weights of all the sampled 

data is 1, and 𝑤1 ≥ 𝑤2 ≥ ⋯ ≥ 𝑤𝜇 > 0 is usually taken to emphasize those candidate 

solutions that are ranked at the top. 

                                                𝒎(𝑡+1) = ∑ 𝑤𝑖

𝜇

𝑖=1

𝛿𝑖:𝜆 ,  ∑ 𝑤𝑖

𝜇

𝑖=1

= 1                                       (19) 

The update of the covariance matrix is crucial as it determines the shape of the sam-

pling distribution and the search direction for perturbations. In black box attack scenar-

ios, the dimensions of the search space typically range from 103 ∼ 106, which is far 

beyond the scope of covariance matrix calculations. Therefore, to deal with high di-

mensions, we adopt a simple rank-1 evolutionary strategy in CMA-ES. In addition, we 

set the appropriate step size 𝜎 and then update the evolutionary path 𝑝𝑖
(𝑡+1)

 and covar-

iance matrix 𝐶𝑖
(𝑡+1)

. 

                          𝒑𝑖
(𝑡+1)

= (1 − 𝑐𝑐)𝒑𝑖
(𝑡)

+ √𝑐𝑐(2 − 𝑐𝑐)𝜇𝑒𝑓𝑓

𝒎(𝑡+1) − 𝒎(𝑡)

𝜎(𝑡)
                 (20) 

                                          𝑪𝑖
(𝑡+1)

= (1 − 𝑐1)𝑪𝑖
(𝑡)

+ 𝑐1𝒑𝑖
(𝑡+1)

𝒑𝑖
(𝑡+1)𝘛

                                (21) 

3.3 Algorithm of AS-ES 

In the following, we will give the details of the AS-ES algorithm. 

Initialization: Firstly, we initialize the required variables. Set the CMA-ES evolu-

tionary strategy population size to 𝜆 = 4 + 3⌊ln3 ∗ 𝑑 ∗ 𝑑⌋, 𝜎 = 0.5 as the coordinate 

wise standard deviation, the learning rate for updating the covariance matrix is 𝑐𝑐𝑜𝑣 =
0.01, Initialize the subspace with sides of length 𝑚 = 3, Since the input image size is 

𝑥 ∈ 𝑅3∗𝑑∗𝑑, then we set the total number of subspaces divided by the original image is 

𝐾 = ⌊(𝑑/𝑚)2⌋. 
Select the active subspace: At each iteration 𝑡, we use the Upper Confidence Bound 

algorithm to select 𝜆 ≪ 𝐾 from all subspaces. The initialization region selection prob-

ability 𝑝𝑖 ∈ ℙ is uniformly distributed, meaning that the probability of sampling each 

region is equal, set to 𝑝𝑖 = 1/𝐾. We introduce the epsilon-greedy mechanism for sub-

space sampling. To balance exploration and exploitation, with a probability of 𝜖, ran-

domly select a subspace from the 𝑃𝑢𝑐𝑏  distribution. In addition, with a probability of 

1 − 𝜖, sample subspace from the normalized EMA-updated probabilities 𝑃 utilizing 

known information. 
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Generate sparse perturbation: At each iteration, based on the 𝜆 subspaces selected 

for sampling, use the CMA-ES algorithm to generate 𝜆 adversarial perturbations 𝛿 , 

which are projected into the sampled subspaces 𝐵𝑖 ⊂ ℝ3×𝑚×𝑚 to obtain sparse pertur-

bations 𝛿𝐵𝑖
. In addition, we need to constrain the sparse perturbation with ∥ 𝛿𝐵𝑖

∥𝑝≤ 𝜖 
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and add 𝛿𝐵𝑖
 to the input image 𝑥 to obtain adversarial examples 𝑥′ with ∥ 𝑥 + 𝛿𝐵𝑖

∥𝑝∈

[0,1]. 
Objective function value evaluation: We use 𝐶&𝑊  loss to calculate the corre-

sponding objective function value ℒ(𝑥𝑖
′) and sort it ℒ(𝑥1:𝜆

′ ) ≤ ℒ(𝑥2:𝜆
′ ) ≤ ⋯ ≤ ℒ(𝑥𝜆:𝜆

′ ). 

This can obtain the top 𝜇 candidate solutions that have the greatest impact on the clas-

sifier decision of the target model, and continue to perform perturbation optimization 

in the next iteration. 

Evaluate and update active subspaces: We measure the sampling subspace 𝐵𝑖  

based on the ranking of the objective function loss ℒ(𝑥). We set up a reward mecha-

nism for the sampling subspaces, believing that the subspaces ranked first are more 

active and have a higher probability of obtaining high-quality adversarial examples. 

Therefore, we give different rewards 𝑟𝑖 for the sampling subspaces, update the subspace 

historical reward queue 𝑅𝑖
(𝑡)

 and adjust the sampling probability 𝑝𝑖
(𝑡)

, and finally update 

the greedy coefficient 𝜖(𝑡). 

Update evolutionary strategy parameters: Select the top 𝜇 solutions based on the 

ranking of the objective function loss, perform weighted maximum likelihood estima-

tion to update the distribution mean of the samples 𝑚𝑡, as well as the evolutionary path 

𝑝𝑡 and covariance matrix 𝐶𝑡. By adjusting these parameters, the probability of gener-

ating the optimal solution increases. 

4 Experiment 

In this section, we will fully validate the effectiveness of the AS-ES method. We con-

duct experiments on MNIST, CIFAR10 and ImageNet64 and compare AS-ES method 

with several state-of-the-art(SOTA) global and sparse adversarial attack methods. We 

aim to achieve efficient adversarial attacks and generate high-quality AEs. In addition, 

we conducted ablation experiments to validate the effectiveness of the AS-ES method 

mechanism and select the most efficient experimental parameters. 

We use attack success rate (ASR), average query count (AQ), and perturbations norm 

ℓ𝑝 to assess the attack performance of the algorithm. Generally speaking, larger pertur-

bations can improve ASR, but at the same time, they can also lead to the low quality of 

the AEs. Therefore, we use the 𝜌 metric to measure the ratio of the perturbation ℓ2 to 

the ASR, with smaller values indicating better attack performance. 

                                                              𝜌 =
𝑎𝑣𝑒𝑟𝑎𝑔𝑒  ℓ2

𝐴𝑆𝑅
                                                      (22) 

4.1 Comparative Experiment 

We compare AS-ES with several SOTA adversarial attacks, including the black-box 

global attack methods ZOO [9], AutoZOOM [10], the black-box sparse attack methods 

Square Attack [7], CornerSearch [21], One-Pixel [18]. All parameter settings of these 

comparison methods are consistent with the original text. We set the side length 𝑚 of 

the active subspace to 10% of the input image. 
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MNIST. The MNIST dataset consists of handwritten digit images and numerical labels 

ranging from 0 to 9. Each image is a 28 × 28 pixel grayscale handwritten digit image, 

with a total of 10 categories. We randomly select 1000 correctly classified test set im-

ages for the attack, set the maximum query count 𝑄𝑚𝑎𝑥 to 1000, and select the pre-

trained VGG16 model as the target model. 

Table 1. Attack performance comparison on MNIST 

Method ASR AQ average ℓ0 average ℓ1 average ℓ2 
𝜌 with 50 

queries 

ZOO 0.001 832 784 2.458 48.764 — 

AutoZOOM 0.063 586 784 1.653 29.451 4202.85 

Square 0.412 301 274.47 32.178 2.977 10.904 

CornerSearch 0.045 657 1.089 1.078 1.026 — 

AS-ES(ours) 0.585 164 4 1.043 0.925 3.069 

 

Fig. 1. An example of the original image, adversarial example, and the perturbation on MNIST. 

It shows that the perturbation is rather sparse. 

Evaluation: Table 1 presents the experimental results comparing the method with the 

AS-ES algorithm on the MNIST dataset. In black-box attacks, our AS-ES method 

achieved attack performance comparable to white-box attacks, while the success rate 

of other compared methods was less than 0.5. The AS-ES attack achieves good sparsity, 

with the lowest perturbation norm compared to other attack methods, and can generate 

high-quality adversarial examples. The AS-ES method has the lowest 𝜌 value, achiev-

ing the best attack performance. Figure 1 shows the visualization of the original image 

and adversarial examples on the MNIST dataset, indicating that our method generates 

small and imperceptible perturbations. 

CIFAR10. The CIFAR-10 dataset contains a total of 60000 samples, each of which is 

a 32 × 32 pixel RGB color image, divided into 10 categories. We randomly select 1000 

correctly classified testset images for our experiments, and normalize the input space 

into [0,1]𝑑𝑖𝑚(𝑥𝑜𝑟𝑖) by 𝑥𝑜𝑟𝑖/255, and set the maximum number of queries for the attack 

𝑄𝑚𝑎𝑥 to 1000. We choose the pre-trained VGG16 model as the threat model for the 

attack and set the active subspace size to m=3. 
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Table 2. Attack performance comparison on CIFAR10 

Method ASR AQ average ℓ0 average ℓ1 average ℓ2 
𝜌 with 50 

queries 

ZOO 0.092 758 3072 4.913 56.748 14183.75 

AutoZOOM 0.316 625 3072 3.704 32.152 1284.81 

Square 0.784 417 1758.57 29.067 2.974 13.123 

CornerSearch 0.462 854 3.275 2.025 1.171 — 

One-Pixel 0.002 897 3 1.902 0.945 — 

AS-ES(ours) 0.818 168 27 1.773 0.913 1.892 

 

Fig. 2. The attack success rate varies with the query number on CIFAR10. It can be observed 

that AS-ES achieves a high success rate with the number of queries increasing from 50 to 1000. 

Evaluation: Table 2 shows the comparison of attack performance between the com-

parison method and our AS-ES algorithm in CIFAR10 dataset. In the black-box attacks, 

our AS-ES algorithm has a higher attack success rate than several state-of-the-art attack 

methods. The ZOO attack has a low success rate and generates large perturbations. The 

One-Pixel attack achieves sparsity by only changing one pixel, but the success rate is 

extremely low. Square attacks generate perturbations are easily noticeable. Our AS-ES 

attack requires only a small number of queries to achieve a high success rate, and has 

performance comparable to white-box attacks. From Figure 2, it can be seen that as the 

number of queries increases, the success rate of the AS-ES method is much higher than 

other state-of-the-art comparison methods, proving that the AS-ES method has high 

attack performance. In addition, Our AS-ES algorithm has the lowest 𝜌 value compared 
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to other state-of-the-art attack methods. Figure 3 shows the visualization of sparse and 

imperceptible perturbation and adversarial samples generated on the CIFAR10 dataset. 

 

Fig. 3. An example of the original image, adversarial example, and the perturbation on CIFAR10. 

It shows that the perturbation is rather sparse. 

ImageNet64. The ImageNet64 dataset is a subset of ImageNet, where the validation 

set contains a total of 10,000 images, each of which is an RGB color image of 64 × 64 

size, divided into a total of 200 categories. For evaluation, we randomly select 1000 

correctly classified images from the validation set and normalize them. We set the max-

imum query count 𝑄𝑚𝑎𝑥 for the attack to 500 and select the pre-trained VGG16 model 

as the target model for the attack. 

Table 3. Attack performance comparison on ImageNet64 

Method ASR AQ average ℓ0 average ℓ1 average ℓ2 
𝜌 with 50 

queries 

ZOO 0.005 914 12288 11.318 65.472 — 

AutoZOOM 0.347 896 12288 7.762 43.823 504.581 

Square 0.614 386 8923.097 189.115 4.972 12.634 

One-Pixel 0.011 852 3 1.795 1.102 — 

AS-ES(ours) 0.763 154 108 5.413 0.948 1.706 

 

Evaluation: From Table 3, it can be seen that compared with other comparative attack 

methods, our AS-ES method achieved a higher success rate in black-box attacks, and 

the average number of queries is only 154, and the generated perturbations are sparse 

and imperceptible. Among them, the 𝜌 value is the lowest and has the lowest perturba-

tion ℓ2 norm size. Our AS-ES method has comparable attack performance to white-box 

attacks, achieving a high success rate and query efficiency, and generating high-quality 

adversarial examples. Figure 4 shows the results of the attack on the ImageNet64 da-

taset, and it can be observed from the experiment that the perturbation generated by the 

AS-ES attack is small and imperceptible. 
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Fig. 4. An example of the original image, adversarial example, and the perturbation on 

ImageNet64. It shows that the perturbation is rather sparse. 

4.2 Ablation Study 

We evaluated the active subspace side length 𝑚 in the AS-ES method and the mecha-

nism of the sliding window introduced when using the MAB method to locate the active 

subspace. By setting different subspace sizes 𝑚 and sliding window sizes 𝑤 for exper-

iments, we can select the settings of the effective experimental parameters. 

Table 4. Ablation Study of Active Subspace Size. 

DataSet size m ASR AQ average ℓ0 
𝜌 with 50 

queries 

CIFAR10 

1 0.411 187 3 2.988 

2 0.564 182 9 1.973 

3 0.818 168 27 1.892 

4 0.824 150 48 2.062 

5 0.881 126 75 2.221 

ImageNet64 

3 0.575 168 27 3.178 

6 0.763 154 108 1.706 

9 0.774 152 243 4.153 

12 0.812 138 432 6.347 

15 0.843 133 675 7.206 

Active Subspace Size m. Different active subspace sizes imply different sparsity of the 

generated perturbations. In general, when setting large active subspace side 𝑚, this can 

get the higher ASR but the lower the quality of the generated adversarial examples. 

Therefore, in practical attack scenarios, setting a reasonable size of active subspace side 

length 𝑚 can not only achieve a high ASR, but also obtain sparse and imperceptible 

adversarial examples. 

In Table 4, we set different sizes of subspace side length 𝑚 values based on different 

datasets. As the value of 𝑚 increases, ASR gradually increases, and the average pertur-

bation ℓ0 norm also increases. The average queries (AQ) shows a decreasing region, 

which is consistent with intuition. However, it can obtain the higher 𝜌 values, which 
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means that the attack performance gradually decreases. In our work, we set 𝑚 = 3 for 

the CIFAR10 dataset and 𝑚 = 6 for the ImageNet64 dataset, which not only can obtain 

a high ASR and low number of queries, but also has the best attack performance. When 

𝑚 is set too low, it can also lead to ASR being too low, which is not conducive to 

finding suitable adversarial examples. 

Sliding Windows Size W. We introduce a sliding window mechanism in the MAB 

algorithm to effectively solve the dynamic adaptation problem in non-stationary envi-

ronments. Retaining only the most recent 𝑤 historical data and ignoring historical old 

data that exceeds the sliding window size, which can avoid outdated reward information 

misleading current decisions. 

Table 5. Ablation Study of Different Sliding Windows Size. 

Window Size 

W 
ASR AQ average ℓ0 

𝜌 with 50 

queries 

10 0.769 171 0.942 1.936 

20 0.755 176 0.949 1.981 

30 0.818 168 0.913 1.892 

50 0.733 184 0.953 1.955 

100 0.797 189 0.968 1.978 

 

From Table 5, it can be seen that setting different sliding window sizes 𝑤 will affect 

the performance of the attack. We sets the sliding window size to 𝑤 = 30, which can 

achieve high attack success rate with fewer queries and ensure that the generated ad-

versarial examples have high quality. 

In addition, we evaluated the effectiveness of using UCB (Upper Confidence Bound) 

and sliding window mechanism in the AS-ES method. As shown in Figure 2, AS-

ES/UCB represents the attack result where the UCB mechanism is not introduced for 

sampling, but only random sampling is performed. AS-ES/W does not introduce a slid-

ing window mechanism, but instead retain all historical data. From the experimental 

results, it can be seen that as the number of queries increases, compared to the AS-ES 

method, the AS-ES/UCB method and the AS-ES/W method have slightly lower ASR, 

but the generated perturbation norm is greater than AS-ES, this means that the quality 

of adversarial examples generated is lower. Therefore, the upper limit of the sampling 

confidence interval UCB and the sliding window mechanism have achieved better at-

tack performance in terms of attack success rate and adversarial example quality. 

5 Conclusion 

In this paper, we propose an adversarial example generation method based on AS-ES, 

which guides black-box attacks to conduct perturbation search in an active subspace. 

In addition, we formulate a subspace sampling evaluation mechanism and use the 
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CMA-ES algorithm for perturbation search, which dynamically learns sensitive active 

subspaces in the input image while evaluating the objective function for the perturba-

tion. The experimental results show that under black-box attacks and query restrictions, 

the attack performance of AS-ES method is significantly better than the existing SOTA 

attack methods. It can reduce the number of queries in perturbed search while ensuring 

the success of the attack, and generate sparse and imperceptible high-quality adversarial 

examples. This method has greater utility in real-world application scenarios while bal-

ancing the goals of query efficiency and imperceptibility. 

In future research, we will attempt to find more effective active subspace localization 

methods that better balance the query efficiency, attack success rate, and impercepti-

bility of black-box attacks. In addition, we can apply the method to defense systems 

and test different types of defense models, thus improving the robustness of the models 

and verifying their effectiveness. 
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Abstract. Time series anomaly detection is crucial in various real-world scenar-

ios, including fault diagnosis, financial fraud detection, and early warning sys-

tems. While diffusion models have recently emerged as powerful generative tools 

for anomaly detection, two key challenges persist: (1) conventional Gaussian 

noise used during the forward process fails to suppress anomaly-specific frequen-

cies due to spectral mismatches; and (2) most existing methods adopt a unified 

model to detect all types of anomalies, overlooking the distinct characteristics of 

trend, seasonal, and mixture anomalies. To address these issues, we propose 

GNDC-DM, a gradient noise-based dynamic conditional diffusion model for 

time series anomaly detection. GNDC-DM employs three dedicated channels to 

detect different types of anomalies individually. In the trend and seasonal chan-

nels, we introduce a novel gradient noise that fuses gradient-aligned noise with 

stochastic Gaussian components, effectively preserving normal patterns while 

corrupting anomaly distortion. In the mixture channel, we dynamically incorpo-

rate trend and seasonal components as conditions to guide the denoising process, 

making mixed anomalies more distinguishable. Extensive experiments on four 

benchmark datasets demonstrate the superior performance of our approach, high-

lighting its ability to improve detection accuracy across various anomaly catego-

ries. 

Keywords: Time series, anomaly detection, diffusion models. 

1 Introduction 

Time series anomaly detection refers to the identification of data points that significantly deviate 

from established normal patterns within temporal sequences. This technique holds critical im-

portance in real-world applications, such as fault detection in industrial systems, financial fraud 

detection, automotive fault diagnosis, and early anomaly warning for machinery [2, 8, 35]. Ac-

curately detecting anomalies in time series data is essential for ensuring operational safety, re-

ducing risks, and preventing significant economic losses [19, 50]. Due to the high cost of obtain-

ing ground-truth anomaly labels, one of the primary challenges in time series anomaly detection 

is identifying anomalies in an unsupervised manner.  To address this, a variety of unsupervised 

techniques have been proposed, including Autoencoders (AE) [3], Normalizing Flows [9], Graph 

Neural Networks (GNN) [10], and Transformer-based models [18, 46]. These methods typically 
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