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Abstract. With the development of the Industrial Internet of Things (IIoT), its 

security issues have become prominent, and network attacks have continued to 

increase, including malicious traffic threats. There are already many effective 

methods for detecting malicious traffic in the Industrial Internet of Things, but 

how to handle detected malicious traffic lightly and effectively? Based on this 

problem, we propose a method to dynamically adjust malicious traffic in the In-

dustrial Internet of Things using Software-Defined Networking (SDN). With the 

help of SDN's programmability of the network and the characteristics of decou-

pling the control plane and the data plane, through the SDN controller OpenFlow 

rule entries corresponding to malicious traffic are generated, and then the SDN 

switch updates the flow table to achieve the purpose of blocking malicious traffic. 

At the same time, we consider two types of known types of malicious traffic and 

unknown types of malicious traffic. Different strategies of traffic blocking, in-

cluding traffic dropping and traffic redirection, conduct a static Bayesian game 

between two types of malicious traffic and two traffic blocking strategies, taking 

into account factors such as current and future benefits, response costs, and risk 

levels, through the Harsanyi transformation reasoning proves that the Nash equi-

librium point and equilibrium strategy are found, and then the strategy is numer-

ically analyzed and experimentally verified. The final result is that when the 

known type of malicious traffic is discarded and the unknown type of malicious 

traffic is redirected, comprehensive maximum utility. 

Keywords: IIoT, blocking malicious traffic, static Bayesian game, SDN. 

1 Introduction 

After the global announcement about the fourth industrial revolution, China proposed 

the 2025 industrial manufacturing strategy [1]. Although the IIoT has flourished in re-

cent years, it has also been subject to an increasing number of cyberattacks and mali-

cious behaviors, leading to the leakage of sensitive information, damage to industrial 

infrastructure, and economic losses [2]. For the ever-evolving and dynamic Industrial 

IoT systems, the use of popular static defense measures (such as passwords, encryption 

or firewalls) may not be effective [3]. Therefore, active defense is more suitable for 

Industrial IoT security defense [4]. Existing active defense Strategies include honey-

pots, redirection, containment and other methods [5], which can indirectly improve the 

security of the system by keeping attackers away from the real system [6]. This article 

mainly focuses on proactive defense against malicious traffic in security issues. Since 
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the previous research on malicious traffic detection has been relatively complete, we 

adopt the method of blocking known types and unknown types of malicious traffic to 

improve industrial physical security. The security factor of networked systems. 

The characteristics of network offensive and defensive games in the Industrial Inter-

net of Things are mainly manifested in six aspects: goal opposition, strategic depend-

ence, non-cooperative relationships, incomplete information, dynamic evolution, and 

interest-driven [7]. Game theory mainly studies the strategic choices of participants 

with interdependent behaviors, which strategy to choose depends on the benefit value 

of the strategy. [8]The utility of the strategy is one of the important basis for each par-

ticipant in game theory to make rational decisions. [9]Game theory can screen out the 

strategies for the participants through theoretical analysis and research. [10,11]The de-

cision with the highest return. Considering that in the industrial Internet of Things en-

vironment, the information mastered by both the attacker and defender is incomplete 

and the decision-making behaviors of the attackers and defenders occur logically at the 

same time, we model the malicious traffic defense process as a static Bayesian game 

model. The two sides of the game are malicious traffic and traffic blocking strategies 

respectively. Malicious traffic includes known types and unknown types. Traffic block-

ing strategies include traffic dropping and traffic redirection. The utility considers three 

factors, namely response cost and risk level and impact on current and future earnings. 

The premise of traffic dropping and traffic redirection is the programmability of the 

network, which is exactly in line with the characteristics of SDN. [12]SDN provides 

the ability to program the network through centralized network control and decouples 

the control plane and data plane [13], based on Programming can enhance network se-

curity through rapid traffic drainage [14]. The key to SDN's programmability lies in the 

OpenFlow network communication protocol. OpenFlow is a southbound application 

programming interface (API). The OpenFlow switch consists of one or more flow ta-

bles composed of various rules called flows, and performs packet lookups. Consisting 

of forwarding group tables and OpenFlow channels to external controllers, each flow 

matches a specific set of packets and performs operations on them [8]. Therefore, we 

use the SDN controller to generate corresponding OpenFlow rule entries from the ma-

licious traffic information, and then publish them to the SDN switch to update the flow 

table to achieve the purpose of traffic discarding and traffic redirection. 

To solve the threat of malicious traffic in the Industrial Internet of Things, rather than 

just detecting malicious traffic, we proposed a method for blocking malicious traffic 

with static Bayesian game in IIoT, which plays a static Bayesian game between mali-

cious traffic and traffic blocking strategies, malicious traffic includes known types and 

unknown types, traffic blocking strategies include traffic dropping, traffic redirection. 

The utility considers the three factors of response cost, risk level, and impact on current 

and future revenue, and finds a balanced strategy through inference proof, that is, traffic 

is dropped for known types of malicious traffic, and traffic is redirected for unknown 

types of malicious traffic. For the implementation of these two traffic blocking strate-

gies, we use the programmability of SDN to dynamically adjust the malicious traffic. 

The SDN controller generates OpenFlow rule entries corresponding to malicious traf-

fic, and then the SDN switch updates the flow table to achieve the purpose of blocking 
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malicious traffic. In summary, we proposed a SDN method to dynamically adjust in-

dustrial IoT malicious traffic based on static Bayesian game. The main contributions of 

this paper are as follows: 

1) We propose methods for blocking malicious traffic with static Bayesian game in 

IIoT, which finds the best defense strategy by letting malicious traffic attack and de-

fense strategies perform a static Bayesian game. 

2) We adopt different traffic blocking strategies for known types and unknown types 

of malicious traffic respectively, and consider the three influencing factors of current 

and future revenue, response cost, and risk level in selecting defense strategies. 

3) We use the programmability of SDN and the characteristics of decoupling the 

control plane and the data plane to block malicious traffic in the IIoT. 

The remainder of this article is organized as follows: 

Section 2 summarizes IIoT active defense methods, the use of game theory in IIoT 

attack and defense issues, and related work on using SDN to solve IIoT security issues. 

Section 3 describes the proposed methods for blocking malicious traffic with static 

Bayesian game in IIoT and SDN-based traffic blocking strategy. Section 4 is the exper-

imental environment, results, analysis, and comparative experiments. Finally, Section 

5 gives conclusions. 

2 Related Work 

In IIoT security issues, traditional static security-based environments such as passwords 

or firewalls may be low-cost solutions to mitigate simple attacks, but they do not pro-

vide sufficient evidence against more complex attacks [3], but, Active defense can ef-

fectively deal with security issues. There have been few previous studies on active de-

fense against IIoT malicious traffic, but there are a lot of studies using honeypots for 

active defense. Honeypot technology is an important means of active defense, by set-

ting simulation targets, decoy malicious attacks, realize the capture of malicious behav-

iors and data, and provide effective data for security analysis. Literature [3] proposes a 

cloud-based active defense method for IoT network attacks, "CICADA", which uses 

three simulated deception environments (Honeynet, Pseudocomb and Honeyclone) to 

deceive attackers. Literature [15] proposed a dynamic bounded rational honeypot APT 

game model (DBHM) method, which collects advanced persistent threats (APTs) attack 

information by deploying honeypots in IIoT and then regains control of the attacked 

IIoT server to reduce IIoT security risks. Literature [16] combines honeypots with ma-

chine learning to detect botnets, and ensures the security of IoT devices by closely 

monitoring and acquiring the attack behaviors of botnets. 

At the same time, due to the rise of game theory in network attack and defense, it has 

also been used to deal with IIoT security issues, whether it is complete information 

games, incomplete information games, or new types of games, such as differential 

games, evolutionary games, random games, etc., are all used into industrial IoT secu-

rity. Holmgren et al. [17] modeled the offensive and defensive confrontation process in 

the power grid as an offensive and defensive game model based on game theory, and 

studied the performance of different defense strategies under different target situations. 



4  Maoli Wang and Bowen Zhang 

Ziad et al. [18] studied the security protection strategy of the smart grid. They con-

structed a smart grid attack and defense game model based on static game theory and 

discussed how to select the most cost-effective security protection strategy. Yang et al. 

[19] aimed at the optimal defense strategy selection problem in the Internet of Things 

environment, combined with the characteristics of the Internet of Things, proposed a 

multi-stage network attack and defense game model, and designed a defense strategy 

selection algorithm. Chen et al. [20] proposed a multi-stage attack and defense signal 

game model to solve the problem of optimal strategy selection for industrial control 

systems to defend against phishing attacks. They used symbolic variables to quantify 

attack and defense benefits, gave the optimal strategy selection method, and analyzed 

Key factors affecting the outcome of the game. Literature [21] uses the Bayesian game 

method to defend against link flooding attack (LFA) in the Internet of Things, using a 

single-round defensive decision game to find the defender's optimal strategy. 

SDN's programmability of the network and its characteristics of decoupling the con-

trol plane and data plane enable SDN to effectively solve network security problems, 

and is also applicable to the IIoT [22]. Literature [23] proposed a new secure IoT frame-

work based on SDN, which can use session IP counters and IP payload analysis to 

detect vulnerabilities in IoT devices or malicious traffic generated by IoT devices. Lit-

erature [24] proposed an AMLSDM framework. With the support of an adaptive ma-

chine learning classification model, an SDN-supported security mechanism was devel-

oped for IoT devices, using remote SDN controllers to mitigate detected open flows 

(OF) DDoS attacks on the switch and reconfigure network resources for legitimate net-

work hosts. Literature [25] proposed a method of using SDN to protect IoT devices and 

HTTP to mitigate and prevent security attacks without modifying IoT devices. 

3 Methodology 

Generally speaking, our method is the SDN dynamic adjustment method for IIoT ma-

licious traffic based on the static Bayesian game. The overall structure is divided into 

two parts. The first part is the static Bayesian game model. We build the IIoT malicious 

traffic defense process. The model is a static Bayesian game model. The two sides of 

the game are industrial Internet of Things malicious traffic and traffic blocking strate-

gies. After establishing the game model, Harsanian transformation is performed, and 

finally, the Bayesian Nash equilibrium point is proved by reasoning. The second part is 

the traffic blocking strategy based on SDN. We use the SDN controller to generate 

OpenFlow rule entries corresponding to malicious traffic, and then the SDN switch 

updates the flow table, ultimately achieving the purpose of blocking malicious traffic. 

Figure 1 shows the overall framework of our method. 
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Fig. 1. Framework of IIoT malicious traffic blocking methods 

3.1 Static Bayesian Game Model 

Model building. The key factor in static Bayesian games is that each player knows its 

own utility function, but cannot exactly know the utility functions of other players. 

[26]During the game, in order to transform the lack of understanding of the benefits 

into the lack of understanding of the types, we perform the following conversion [27]. 

[28]If 𝑡𝑖 is used to represent the type of game party 𝑖, 𝑇𝑖  is used to represent the type 

space of game party 𝑖, 𝑡𝑖 ∈ 𝑇𝑖, and 𝑢𝑖 = 𝑢𝑖(𝑎1, … , 𝑎𝑛, 𝑡𝑖) is used to represent the utility 

of game party 𝑖 under the strategy combination (𝑎1, … , 𝑎𝑛), each type 𝑡𝑖 corresponds 

to possible situations of different utility functions for player 𝑖, whose values are known 

to player 𝑖 but not to other players, reflecting the characteristics of incomplete infor-

mation in static Bayesian games. [29]Therefore, the general expression of the static 

Bayesian game is[30]: 

 𝐺 = {𝐴1, … , 𝐴𝑛; 𝑇1, … , 𝑇𝑛; 𝑢1, … , 𝑢𝑛} (1) 

Among them, 𝐴𝑖 is the strategy space of player i, 𝑇𝑖  is the type space of player i, 𝑢𝑖 =
 𝑢𝑖(𝑎1, … , 𝑎𝑛 , 𝑡𝑖) is the utility of player i, which is the strategy combination (𝑎1, … , 𝑎𝑛) 
and functions of type 𝑡𝑖. 

The type of player 𝑖, as the private information of player 𝑖, determines the utility 

function 𝑢𝑖(𝑎1, … , 𝑎𝑛 , 𝑡𝑖) of player 𝑖 . The inference of player 𝑖  is expressed as 

𝑝1, … , 𝑝𝑛, and the inference of player 𝑖 is 𝑝𝑖 = 𝑝𝑖{𝑡−𝑖|𝑡𝑖} describes its uncertainty about 

the possible types 𝑡−𝑖 of the other n-1 players given its own type 𝑡𝑖. Therefore, the ex-

pression of the static Bayes game is updated to: 

 𝐺 = {𝐴1, … , 𝐴𝑛; 𝑇1, … , 𝑇𝑛; 𝑝1, … , 𝑝𝑛𝑢1, … , 𝑢𝑛} (2) 
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Harsanyi transformation. To further transform the static game with incomplete infor-

mation into a dynamic game with complete but imperfect information, we introduce the 

Harsanyi transformation. The specific steps are: 

1) Introduce a virtual game party "Nature", which can be called gamer 0. It randomly 

extracts its own type for each actual game party, that is, randomly assigns types to the 

game parties. These types constitute the type vector 𝑡 = (𝑡1, … , 𝑡𝑛). 
2) "Nature" only lets each player know his own type, but not other players. 

3) All gamers select actions at the same time, that is, each actual gamer selects action 

plans (𝑎1, … , 𝑎𝑛) from their respective behavior spaces at the same time. 

4) Except for gamer 0, which is "Nature", the other gamers each obtain utilities 

𝑢𝑖(𝑎1, … , 𝑎𝑛, 𝑡𝑖). 
The above-mentioned converted game is a dynamic game, because this game has an 

obvious time sequence, that is, there are two stages of choices. [31]First, the choice of 

the "Nature"; then, the simultaneous choices of gamers 1,… , 𝑛. At least some of the 

players do not fully understand the consequences of the type that "Nature" chooses for 

the other players in the first stage. Therefore, this is a dynamic game with imperfect 

information. When the "Nature" selection direction is used to represent the type of ac-

tual gamers, then under each game strategy combination (𝑎1, … , 𝑎𝑛, 𝑡𝑖), the gains of 

each gamer are 𝑢𝑖(𝑎1, … , 𝑎𝑛, 𝑡𝑖)  is determined and known to each gamer. 

[32]Obviously, this is a complete information game. At this time, the original incom-

plete information game becomes a complete information game. 

The above symbols and their meanings are shown in Table 1. 

Table 1. Symbols and meanings 

Symbol Meaning 

𝑡𝑖 Type of gamer 𝑖 

𝑇𝑖  Type space of gamer 𝑖 

𝑎𝑖 Strategy combination of gamer 𝑖 

𝐴𝑖 Strategy space of gamer 𝑖 

𝑢𝑖 Utility of gamer 𝑖 under 𝑎𝑖 

Bayesian Nash Equilibrium. Since the static Bayesian game can be regarded as a dy-

namic game in which the type of each player is first "Nature" selected, and then each 

gamer selects a strategy at the same time, a strategy for each gamer in the static Bayes-

ian game is, It is their complete plan on how to choose among their various possible 

types, that is, for static Bayesian games 𝐺 =
{𝐴1, … , 𝐴𝑛; 𝑇1, … , 𝑇𝑛; 𝑝1, … , 𝑝𝑛; 𝑢1, … , 𝑢𝑛}, a strategy of gamer 𝑖 is a function 𝑆𝑖(𝑡𝑖) of 

its various possible types 𝑡𝑖(𝑡𝑖 ∈ 𝑇𝑖). That is to say, for various types 𝑡𝑖, "Nature" ex-

tracted for gamer 𝑖 in 𝑇𝑖 , 𝑆𝑖(𝑡𝑖)contains the corresponding action 𝑎𝑖 selected by gamer 

𝑖 from its own behavior space 𝐴𝑖. 
It can be seen that the strategy of the gamer in the static Bayesian game is a function 

of the type space and the behavior space. All such functions constitute the strategy 

space of the gamer, that is, the feasible strategy set 𝑆𝑖(𝑡𝑖) of the gamer i is the definition 
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domain. is 𝑇𝑖 , the set of all possible functions whose value range is 𝐴𝑖. Since there are 

many functional relationships between sets, if no restrictions are imposed, the strategy 

space of the gamers in static Bayesian games is often very large, with many or even 

infinite elements. Depending on the different situations of the strategy function 𝑆𝑖(𝑡𝑖), 
the actions 𝑎𝑖 determined by them for different types can be different or the same. 

Therefore, in the static Bayesian game 𝐺 =
{𝐴1, … , 𝐴𝑛; 𝑇1, … , 𝑇𝑛; 𝑝1, … , 𝑝𝑛; 𝑢1, … , 𝑢𝑛}, if for any game party 𝑖 and each of its pos-

sible types 𝑡𝑖 ∈ 𝑇𝑖, the action 𝑎𝑖 selected by 𝑆𝑖
∗(𝑡𝑖) can all satisfy: 

 
𝑚𝑎𝑥
𝑎𝑖 ∈ 𝐴𝑖

∑ {𝑢𝑖[𝑆1
∗(𝑡1), … , 𝑆𝑖−1

∗ , 𝑎𝑖 , 𝑆𝑖+1
∗ (𝑡𝑖+1), … , 𝑆𝑛

∗(𝑡𝑛), 𝑡𝑖]𝑝(𝑡−𝑖|𝑡𝑖)}𝑡−𝑖
 (3) 

Then the strategy combination 𝑆∗ = (𝑆1
∗, … , 𝑆𝑛

∗) of the game is called a pure strategy 

Bayesian Nash equilibrium of 𝐺. [33]This definition shows that when a strategy com-

bination of players in a static Bayesian game is a Bayesian Nash equilibrium, no player 

wants to change their strategy, which is completely consistent with the connotation of 

Nash equilibrium [34]. 

Scene substitution. For our usage scenario, the two gamers in the game are attacker 1, 

which is 𝑇1, and defender 2, which is 𝑇2. We choose the IIoT malicious traffic attack 

𝑡1 in 𝑇1  and the IIoT traffic blocking strategy 𝑡2 in 𝑇2  to play the game. The policy 

space 𝐴1 of 𝑡1 includes the known type of malicious traffic attack 𝑎(1,1) and the un-

known type of malicious traffic attack 𝑎(1,2), and the policy space 𝐴2 of 𝑡2 includes the 

traffic drop policy 𝑎(2,1) and traffic redirection strategy 𝑎(2,2), 𝑢(𝑖,𝑗) is 𝑡𝑖’s utility under 

𝑎(𝑖,𝑗) . Among them, 𝑢(1,𝑗)  includes attack cost 𝑐(1,𝑗) , damage effect 𝑒(1,𝑗)  and attack 

persistence 𝑑𝑗, 𝑢(2,𝑗) includes response cost 𝑐(2,𝑗), current and future returns 𝑒(2,𝑗), risk 

level 𝑟𝑗. The definition of 𝑢(𝑖,𝑗) is as follows: 

 𝑢(1,𝑗) = 𝑒(1,𝑗) + 𝑑𝑗 − 𝑐(1,𝑗) (4) 

 𝑢(2,𝑗) = 𝑒(2,𝑗) − 𝑐(2,𝑗) − 𝑟𝑗 (5) 

The above symbols and their meanings are shown in Table 2. 
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Table 2. Symbols and meanings 

Symbol Meaning 

𝑇1 Attacker 

𝑡1 IIoT malicious traffic attack 

𝑇2 Defender 

𝑡2 IIoT traffic blocking strategy 

𝐴1 The strategy space of 𝑡1 

𝑎(1,1) The first strategy in 𝐴1, known types of malicious traffic attacks 

𝑎(1,2) The second strategy in 𝐴1, unknown type of malicious traffic attack 

𝐴2 The strategy space of 𝑡2 

𝑎(2,1) The first strategy in 𝐴2, the traffic dropped strategy 

𝑎(2,2) The second strategy in 𝐴2, the traffic redirection strategy 

𝑢(𝑖,𝑗) The utility of the i-th gamer in the j-th strategy 

𝑒(𝑖,𝑗) The current and future benefits of the i-th gamer in the j-th strategy 

𝑐(𝑖,𝑗) The response cost of the i-th gamer in the j-th strategy 

𝑟𝑗 The risk level of strategy 𝑗 

After introducing the virtual gamer "Nature" through Harsanyi transformation, the 

Bayesian game tree formed is shown in Figure 2, and the corresponding utility matrix 

is shown in Figure 3, where 𝑈𝑖 ( 𝑖 = 1,2… 6 )is represented by 𝑢(1,𝑗)  and 𝑢(2,𝑗) , 

reresents the overall return under the i-th strategy. 

Fig. 2. Bayesian game tree 
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Fig. 3. Utility matrix 

Since we mainly consider the overall utilities of gamer 2 when performing traffic dis-

carding and traffic redirection for known types and unknown types of IIoT malicious 

traffic attacks respectively, we evaluate the overall utilities of gamer 2 in four scenarios 

(𝑈2, 𝑈5)，(𝑈2，𝑈6)，(𝑈3，𝑈5)，(𝑈3，𝑈6). The income 𝑏𝑖 is analyzed: 

 

{
 
 

 
 
𝑏1 = 𝑈2(𝑢(2,1)) · 𝑝 + 𝑈5(𝑢(2,1)) · (1 − 𝑝)

𝑏2 = 𝑈2(𝑢(2,1)) · 𝑝 + 𝑈6(𝑢(2,2)) · (1 − 𝑝)

𝑏3 = 𝑈3(𝑢(2,2)) · 𝑝 + 𝑈5(𝑢(2,1)) · (1 − 𝑝)

𝑏4 = 𝑈3(𝑢(2,2)) · 𝑝 + 𝑈6(𝑢(2,2)) · (1 − 𝑝)

 (6) 

Substitute into formula (5): 

 

{
 
 

 
 
𝑏1 = 𝑈2(𝑒(2,1) − 𝑐(2,1) − 𝑟1) · 𝑝 + 𝑈5(𝑒(2,1) − 𝑐(2,1) − 𝑟1) · (1 − 𝑝)

𝑏2 = 𝑈2(𝑒(2,1) − 𝑐(2,1) − 𝑟1) · 𝑝 + 𝑈6(𝑒(2,2) − 𝑐(2,2) − 𝑟2) · (1 − 𝑝)

𝑏3 = 𝑈3(𝑒(2,2) − 𝑐(2,2) − 𝑟2) · 𝑝 + 𝑈5(𝑒(2,1) − 𝑐(2,1) − 𝑟1) · (1 − 𝑝)

𝑏4 = 𝑈3(𝑒(2,2) − 𝑐(2,2) − 𝑟2) · 𝑝 + 𝑈6(𝑒(2,2) − 𝑐(2,2) − 𝑟2) · (1 − 𝑝)

 (7) 

Expand further:  

{
 
 

 
 𝑏1 = [𝑈2(𝑒(2,1)) − 𝑈2(𝑐(2,1)) − 𝑈2(𝑟1)] · 𝑝 + [𝑈5(𝑒(2,1)) − 𝑈5(𝑐(2,1)) − 𝑈5(𝑟1)] · (1 − 𝑝)

𝑏2 = [𝑈2(𝑒(2,1)) − 𝑈2(𝑐(2,1)) − 𝑈2(𝑟1)] · 𝑝 + [𝑈6(𝑒(2,2)) − 𝑈6(𝑐(2,2)) − 𝑈6(𝑟2)] · (1 − 𝑝)

𝑏3 = [𝑈3(𝑒(2,2)) − 𝑈3(𝑐(2,2)) − 𝑈3(𝑟2)] · 𝑝 + [𝑈5(𝑒(2,1)) − 𝑈5(𝑐(2,1)) − 𝑈5(𝑟1)] · (1 − 𝑝)

𝑏4 = [𝑈3(𝑒(2,2)) − 𝑈3(𝑐(2,2)) − 𝑈3(𝑟2)] · 𝑝 + [𝑈6(𝑒(2,2)) − 𝑈6(𝑐(2,2)) − 𝑈6(𝑟2)] · (1 − 𝑝)

 (8) 

3.2 SDN-based traffic blocking strategy 

OpenFlow switch. The function of the OpenFlow switch is to parse and match the 

received data packets and then process them accordingly. The structure diagram is 

shown in Figure 4. The OpenFlow switch mainly includes flow tables, group tables, 

meters, and secure channels [35].  
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Fig. 4. OpenFlow structure diagram 

The flow table generally contains several flow table items, which are used to match, 

process and forward data packets. The structure of the flow table items consists of 

matching fields, priorities, counters, instruction sets, timeouts and cookies [36]. 

Group table types are divided into required types and optional types. Required types 

are: ALL, Indirect. ALL means that no selection is required to perform the operation, 

and only all operations in the action bucket need to be executed. Indirect means that 

only one action in the action bucket is executed. Optional types are: Select, Fast failover 

[37]. 

The structure of metering table items includes metering ID, metering bandwidth and 

counter. [38]Among them, metered bandwidth specifies the bandwidth rate and pro-

cessing behavior of data packets. The meter is directly connected to the flow meter item 

and is used as an optional instruction in the instruction set of the flow meter to provide 

quality-of-service operations for each flow measurement [39]. 

As can be seen from Figure 4, the secure channel is the channel for bidirectional 

communication between the OpenFlow switch and the external controller. The match-

ing process of data packets by the OpenFlow switch is shown in Figure 5. It will be 

explained in detail below: the flow table must contain a set of flow table items to match 

the message fields or instructions entering or leaving the device. After the OpenFlow 

switch receives the data packet. For parsing and matching, the comparison will start 

from the first flow entry, and the flow entries will be checked according to the priority. 

If there is no matching option for the data packet in the first flow entry, the table pipe-

line will continue in sequence. Matching check, matching flow table N (flow table N is 

the last flow entry), if a matching entry is found, an action (forwarding, discarding, 

filtering, etc.) is performed. If the matching is not successful, the operation executes 

the configuration on the table-miss stream entry. 
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Fig. 5. The matching process of data packets by OpenFlow switches 

OpenFlow Switch Specification. The development of OpenFlow provides conven-

ience for the controller to monitor network traffic. [40]The controller manages the data 

forwarding of the switch, and the switch also submits status information to the control-

ler through this protocol. OpenFlow has strict definition standards. OpenFlow messages 

can be mainly divided into three categories, namely Controller-to-Switch messages, 

Asynchronous messages and Symmetric messages [41]. 

The Controller-to-Switch message is a message type initiated by the controller to 

communicate with the switch. In this message type, the status of the switch can be 

viewed and the switch can be monitored. Asynchronous messages are the type of mes-

sages the switch sends to the controller. Symmetric messages are the type of messages 

that the controller and switch send to each other. 

The interaction process between the controller and the OpenFlow switch: 

1) The switch establishes a TCP connection with the controller. 

2) The Hello message is sent from Open vSwitch (OVS) to the controller, and the 

data path between the controller and the OpenFlow switch is initialized. 

3) The next message is Feature-request. The controller obtains the basic information 

characteristics of the switch to find the OVS Data Path ID (DPID) and locate the SDN 

Switch. The switch sends a Feature-reply message to indicate that the information has 

been received, and its response is called Feature-reply. The DPID is the MAC address 

of the switch plus a 16-bit address determined by the vendor. The controller will then 

send a message to obtain information from the switch. 

4) Packet-in and Packet-out messages are used when the controller does not know 

the host MAC address. The ARP request is transmitted in a Packet-in message. In the 

IPv4 scenario, the ARP Reply is encapsulated in the Packet-out message. The IPv6 

scenario works similarly to using the Neighbor Discovery Protocol (NDP). 
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5) Send Echo request and Echo response OpenFlow messages to maintain and verify 

the activity of the Controller-OVS connection. 

4 Experiments 

4.1 Experimental environment 

Our experiments used the Mininet simulation platform. Mininet is a free and open- 

source network simulation framework based on Python [42]. It is also a simulation tool 

for building and testing software-defined networks (SDN) and network function virtu-

alization (NFV). We use Iperf to generate three types of traffic in a random pattern, 

namely normal traffic, known types of malicious traffic, and unknown types of mali-

cious traffic. The generated traffic conforms to the IIoT traffic characteristics. Other 

network configurations in the experiment are shown in Table 3. 

Table 3. Experimental configuration 

Equipment Virtual machine 

CPU Intel(R) Core(TM) i5-9400F CPU @ 2.90GHz 

Operating System CentOS-7.6 

Network simulation platform Mininet 

SDN switch Open vSwitch 2.5.0 

SDN controller Ryu 4.34 

Southbound interface protocol OpenFlow 1.3.0 

 

4.2 Experimental results and analysis 

We use the benefit 𝑏𝑗 in the four scenarios in formula (8) as the evaluation index of our 

method. 

Through experiments, we summarized the quantitative relationship between the 

three variables 𝑒(2,𝑗)、𝑐(2,𝑗)、𝑟𝑗 in formula (8) according to the scene change. Taking 

𝑈2(𝑒(2,1)), 𝑈2(𝑐(2,1)) 𝑎𝑛𝑑 𝑈2(𝑟1) in scenario 1 as the benchmark, represent the varia-

bles in the remaining scenarios, as shown in Figure 6. 
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Fig. 6. Values of 𝑒(2,𝑗), 𝑐(2,𝑗), 𝑟𝑗 in different scenarios. 

Regarding the distribution of 𝑒(2,𝑗) values in Figure 6, when redirecting unknown types 

of malicious traffic, the benefits for the present and the future will be the greatest. This 

is because when this unknown type of malicious traffic attacks next time, we can iden-

tify it as a known type of malicious traffic, reduce response costs, and therefore increase 

future profits. 

Regarding the distribution of 𝑐(2,𝑗) values in Figure 6, the response costs of the two 

defense strategies for known types of malicious traffic are the same, and the response 

costs of the two defense strategies for unknown types of malicious traffic are the same, 

but for unknown types of malicious traffic The response cost is higher than that of 

known types, because unknown types of malicious traffic require multiple features 

when locating it, which increases the difficulty of traffic blocking and increases the 

response cost. 

Regarding the distribution of 𝑟𝑗 values in Figure 6, the risk level of known types of 

malicious traffic is less than that of unknown types of malicious traffic, and the risk 

level of traffic discarding is less than that of traffic redirection, because we do not un-

derstand the intention of unknown types of malicious traffic and need to pass the traffic. 

This can only be known after analysis after redirection, which increases the risk of the 

Industrial Internet of Things being compromised. At the same time, after redirecting 

traffic, there is a certain probability that the attacker will see through it and be unable 

to discover its intentions, resulting in a risk that still exists in the event of a secondary 

attack. 
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In view of the quantitative relationship between e, c, and r, we further use numerical 

analysis methods to calculate the income value of the static Bayesian game model. Con-

sidering the actual situation of both offense and defense in IIoT, we assign specific 

values to the parameters, as shown in Table 4. Although these parameters set selected 

values, reasonable changes in these parameter values can also obtain similar trends in 

experimental results. 

Table 4. Numerical analysis results 

Parameter Value 

𝑈2(𝑒(2,1)) 90 

𝑈2(𝑐(2,1)) 20 

𝑈2(𝑟1) 30 

𝑈3(𝑒(2,2)) 83 

𝑈3(𝑐(2,2)) 20 

𝑈3(𝑟2) 50 

𝑈5(𝑒(2,1)) 105 

𝑈5(𝑐(2,1)) 30 

𝑈5(𝑟1) 60 

𝑈6(𝑒(2,2)) 130 

𝑈6(𝑐(2,2)) 35 

𝑈6(𝑟2) 80 

Put the parameters in Table 4 into the utility matrix in Figure 3 and Formula 8 to get 

the utility matrix with Figure 7 and Formula 9 with specific utility. 

Fig. 7. Utility matrix 
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 {

𝑏1 = 40 · 𝑝 + 10 · (1 − 𝑝)

𝑏2 = 40 · 𝑝 + 15 · (1 − 𝑝)
𝑏3 = 13 · 𝑝 + 10 · (1 − 𝑝)

𝑏4 = 13 · 𝑝 + 15 · (1 − 𝑝)

 (9) 

Among them, 𝑝 ∈ [0,1], then according to the change of 𝑝, the change trend of 𝑏𝑖(𝑖 =
1,2,3,4) is shown in Figure 8. 

  

 

Fig. 8. The changing trend of 𝑏𝑖 with 𝑝 

As can be seen from Figure 8, when 𝑝 changes from 0 to 1, the overall benefit of the 

scenario corresponding to 𝑏2 is the largest, that is, traffic discarding of known types of 

malicious traffic and traffic redirection of unknown types of malicious traffic. 

4.3 Experimental results and analysis 

At the same time, we compare our method with four other recent IIoT active defense 

methods, which are CICDA[3], DBHM[15], and Honeypot-ML[16]. These methods 

are introduced in related work. We also measure the defense benefits of the above de-

fense system using Formula 5, which includes current and future benefits(e), response 

cost (c), and risk level (r). 

For CICDA [3], this method uses three simulated deception environments to deceive 

attackers. Honeynet is used to induce low-level attacks, which requires less computing, 

network and storage resources, so the response cost is lower and the risk level is also 

lower. However, the current and future benefits are also lower; Pseudocomb induces 

intermediate attacks, which requires more resources than Honeynet, so the response 

cost and risk level increase, while the current and future benefits also increase; Honey-

clone induces advanced attacks, which is different from the real environment Almost 
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the same, so the cost of maintenance is the highest, while the benefit is the highest now 

and in the future. We make an overall estimate of the benefits of the CICDA method 

through the placement process of three honeypots. 

For DBHM [15], this method uses honeypots to collect attacker information, con-

sume attackers' resources and time for APTs, and simultaneously models dynamic at-

tacks and defenses through prospect theory (PT). We use the modeling process and 

honeypots to the placement process provides an overall estimate of the benefits of the 

DBHM method. 

For Honeypot-ML [16], this method combines honeypots with machine learning to 

detect botnets, classifies botnets through machine learning, and then uses honeypot de-

tection. We use machine learning classification process and honeypot placement pro-

cess to an overall estimate of the benefits of the Honeypot-ML method. 

Through theoretical, numerical and experimental analysis, the income statement of the 

above method is shown in Table 5, and the overall income comparison is shown in 

Figure 9. 

Table 5. Numerical analysis results of three methods 

Method Parameter Value 

CICDA 

e 70 

c 19 

r 40 

DBHM 

e 85 

c 24 

r 40 

Honeypot-ML 

e 75 

c 35 

r 30 
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Fig. 9. Benefit comparison chart of different methods 

As can be seen from Table 5 and Figure 9, our method can achieve the greatest overall 

benefit in solving IIoT security problems. 

5 Conclusions 

We propose an active defense method for IIoT security issues, which is a method of 

dynamically adjusting malicious traffic in the industrial Internet of Things using SDN. 

This traffic blocking method is divided into two types: traffic discarding and traffic 

redirection. For these two methods and two types of IIoT malicious traffic, we conduct 

attack and defense game theory analysis, and analyze them through static Bayesian 

game theory, numerical analysis, and experimental analysis, Find the optimal strategy 

for handling IIoT malicious traffic, which involves discarding traffic of known types 

and redirecting traffic of unknown types. At this point, the defense strategy has the 

greatest benefit. After comparing with other recent active defense strategies for address-

ing IIoT security issues, it was found that our method can achieve the maximum bene-

fits while effectively defending. 
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