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Abstract. It is helpful in preventing colorectal cancer to detect and treat polyps 

in the gastrointestinal tract early. However, there have been few studies to date 

on designing polyp image classification networks that balance efficiency and ac-

curacy. This challenge is mainly attributed to the fact that polyps are similar to 

other pathologies and have complex features influenced by texture, color, and 

morphology. In this paper, we propose a novel network DFE-IANet based on 

both spectral transformation and feature interaction. Firstly, to extract detailed 

features and multi-scale features, the features are transformed by the multi-scale 

frequency domain feature extraction (MSFD) block to extract texture details at 

the fine-grained level in the frequency domain. Secondly, the multi-scale inter-

action attention (MSIA) block is designed to enhance the network’s capability of 

extracting critical features. This block introduces multi-scale features into self-

attention, aiming to adaptively guide the network to concentrate on vital regions. 

Finally, with a compact parameter of only 4M, DFE-IANet outperforms the latest 

and classical networks in terms of efficiency. Furthermore, DFE-IANet achieves 

state-of-the-art (SOTA) results on the challenging Kvasir dataset, demonstrating 

a remarkable Top-1 accuracy of 93.94%. This outstanding accuracy surpasses 

ViT by 8.94%, ResNet50 by 1.69%, and VMamba by 1.88%. Our code is publicly 

available at https://github.com/PURSUETHESUN/DFE-IANet. 

Keywords: Polyp image classification, spectral transformation, feature 

interaction, multi-scale. 

1 Introduction 

Colorectal cancer (CRC) is the third most prevalent cancer worldwide [1]. It is primar-

ily caused by the malignant transformation of normal cells in the colon or rectum, and 

this malignant transformation frequently presents as precancerous polyps. Early detec-

tion and removal of polyps are beneficial in preventing CRC. In clinical diagnosis, cli-

nicians frequently have to manually identify images from colonoscopy images. How-

ever, this process requires a significant amount of medical resources. Furthermore, the 

classification's accuracy and efficiency may vary greatly due to differences in the diag-

nostic abilities of different clinicians. Hence, there is an immediate requirement for a 

precise and efficient method to automatically classify polyp images. It is critical for 
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clinicians to make further diagnoses and assessments of lesions based on the classifica-

tion results. 

Cecum Pylorus

Polyp Ulcerative colitis

(b) Inter-class similarities (a) Intra-class differences

(1) (2)
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Fig. 1. There are some samples from the Kvasir dataset [2]. 

Gastrointestinal diseases and tissues exhibit extremely complex characteristics. As 

shown in Fig. 1(a), the size and morphology of polyps show significant variations at 

different periods and locations. In the early stages, polyps are relatively small and do 

not show significant boundaries, which may lead to missed detection of polyps. In the 

later stages, polyps again present different sizes and textures, which may be incorrectly 

identified as other tissues. In Fig. 1(b), polyps share similar structures and characteris-

tics with the other three common pathologies and tissues, such as elevated and textural 

features. Furthermore, colonoscopy images can be affected by various factors like 

blood, mucus, and brightness, resulting in blurred images, noise, and interfering ob-

jects. These factors can impact the accuracy of polyp image classification. 

Currently, Convolutional Neural Network (CNN) and Transformer-based [3] classi-

fication models have gained significant popularity. Patel et al. [4] evaluated the accu-

racy of polyp classification by using general networks, demonstrating a noteworthy im-

provement obtained by CNN-based research. Wu et al. [5] employed pre-trained ViT 

[6] in the CT image classification of emphysema to overcome insufficient data, attain-

ing greater accuracy than CNN. The utilization of ViT by Komorowski et al. [7] aimed 

at enhancing the classification accuracy of chest X-ray images. Liu et al. [8] proposed 

a new feature pyramid visual Transformer that combines the local features with the 

global features, leading to a breakthrough in accuracy. However, there are still certain 

limitations that need to be acknowledged. On the one hand, a simple combination of 

CNN and Transformer may not be able to achieve a high accuracy to meet practical 

needs. On the other hand, using pre-trained high-performance networks still consumes 

expensive hardware resources. Therefore, one of the major challenges at present is how 

to effectively balance accuracy and efficiency to design a specific network that is tar-

geted to solve the difficult problems in polyp image classification. 

To settle the challenges above, we propose a novel network DFE-IANet for polyp 

image classification that leverages spectral transformation and interaction attention. 

First, to capture texture details of polyps, the spatial features undergo the discrete wave-

let transform (DWT). Then, these texture details are extracted using asymmetric depth-
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wise (ADW) convolution on different detail components. To the best of our knowledge, 

this is the first time that ADW is used to extract fine-grained features based on different 

features in the frequency domain. Second, to enhance the network's capability to per-

ceive critical features, a new multi-scale interaction attention is proposed. This ap-

proach enhances the network's capability to capture relevant and discriminative infor-

mation. Finally, considering the distribution of texture details and semantic features in 

the network, a multi-branch multi-scale feature extraction layer is introduced in the 

shallow layers, while a cascade multi-scale feature extraction layer is incorporated in 

the deep layers. Our work makes the following key contributions: 

1. To extract texture details, the features undergo a spatial-to-frequency domain trans-

formation, which extracts detailed features of polyps on different detail components. 

Moreover, the multi-branch multi-scale feature extraction layer is designed to cap-

ture features at various scales. As a result, the multi-scale frequency domain feature 

extraction (MSFD) block is designed to efficiently capture detailed features in the 

shallow layer. 

2. An adaptive feature guidance layer based on multi-scale interaction attention is pro-

posed. By modeling the dependencies among multi-scale features, it aims to guide 

the network to extract critical features adaptively. Furthermore, a cascade multi-

scale feature extraction layer is devised to extract rich semantic information. Thus, 

the multi-scale interaction attention (MSIA) block is constructed to extract features 

in the deeper layers. 

3. A novel neural network DFE-IANet based on MSFD and MSIA blocks is proposed 

for polyp image classification. Through comparative experiments with both classical 

and newest networks, the proposed DFE-IANet achieves state-of-the-art accuracy 

while also prioritizing efficiency.  

2 Related work 

2.1 CNN and Transformer for medical image classification 

Recently, there has been a notable surge in the popularity of CNN and Transformer-

based image classification methods. To tackle the challenge of colon lesion classifica-

tion, DLGNet [9] proposed a dual-branch lesion-aware method that achieved 91.50% 

accuracy on the colon lesion dataset. Wei et al. [10] verified that networks based on 

deep learning outperform clinicians in accuracy by conducting massive experiments on 

multiple datasets. O-Net [11] is a two-branch network that combines Transformer and 

CNN to achieve high accuracy. Huo et al. [12] designed a feature fusion network by 

fusing global and local features, which achieved high accuracies in polyp image classi-

fication. However, traditional networks still have high computational complexity 

simply combining local and global feature extraction, which limits their application. 
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2.2 Feature extraction methods in the frequency domain 

Images can undergo spectral transformation into various frequency components within 

the frequency domain. Rippel et al. [13] demonstrated that converting images into dif-

ferent frequency components offers both powerful feature representations. Ding et al. 

[14] combined convolution and wavelet transform to enhance feature representation for 

improving performance in the classification of ultrasound images. To tackle the loss of 

information in the spatial domain, Xu et al. [15] employed the discrete cosine transform 

to convert features. Besides, Huang et al. [16] proposed an adaptive frequency filter, 

which achieves the effect of large convolution kernels through elemental multiplication 

in the frequency domain. Different from the above methods, we employ ADW convo-

lution to extract texture details in the frequency domain. 

2.3 Effective feature interactions 

Spatial feature interactions are efficient for networks to perceive contextual infor-

mation. ViT [6] employed self-attention mechanisms to facilitate global feature inter-

actions. This approach has proven to be highly effective and has demonstrated superior 

performance in various vision tasks. Building upon the concept of self-attention, Yang 

et al. [17] proposed a focal modulation module to enhance feature interactions. This 

module demonstrated superior performance compared to ViT. Additionally, Rao et al. 

[18] introduced a recursive gated convolution that leveraged high-order feature inter-

actions, improving performance in respective tasks. Li et al. [19] introduced the concept 

of multi-order gated aggregation networks, which demonstrated strong performance 

across various tasks, including image classification. The above studies show that multi-

scale feature interactions during extracting features will help to raise the capability of 

feature extraction. In contrast to the mentioned studies, we propose a feature guidance 

layer based on multi-scale feature interactions to adaptively guide the network's atten-

tion towards important region features. 

3 Methodology 

3.1 Macro architecture of DFE-IANet 

The macro architecture of DFE-IANet is depicted in Fig. 2, showcasing its detailed 

components. In the deep neural network, the shallow layers contain more texture de-

tails, whereas the deep layers have richer semantic features. Since texture details in-

volve crucial features of polyps, it is critical to capture texture details in the shallow 

layers. Therefore, fine-grained features are extracted in shallow layers using the MSFD 

block. As the network becomes progressively deeper, the semantic information it con-

tains is richer. The MSIA block is employed to model the dependencies among multi-

scale features. It serves the purpose of adaptively guiding the network to focus on the 

crucial features of polyps. Finally, the specific number of blocks is [2, 3, 5, 2] in each 

stage [20]. 



 DFE-IANet: A Method for Polyp Image Classification 5 

Stem
MSFD

Block
Classifier

D
o

w
n

sa
m

p
le

 

MSFD

Block

D
o

w
n

sa
m

p
le

 

MSIA

Block

D
o

w
n

sa
m

p
le

 

MSIA

Block

D
o

w
n

sa
m

p
le

 

H/4×W/4×64 H/8×W/8×128 H/16×W/16×160 H/32×W/32×192

Stage 1 Stage 2 Stage 3 Stage 4

Polyp

×2 ×3 ×5 ×2

DWT

3×3 DW

1×9 ADW

9×1 ADW

3×3 DW

 

IDWT

LL

LH

HL

HH

(a) Frequency domain feature 

extraction layer

Conv

DW 

d=1

DW 

d=2

DW 

d=1

DW 

d=2

GRN
3×3 

DW 
Conv

B1

B2

B3

(b)
Multi-branch multi-scale feature 

extraction layer

3×3 DW GRN

B
atc

h
N

o
rm

Adaptive feature 

guidance layer

B
atc

h
N

o
rm

Cascade multi-scale 

feature extraction layer

(c) (d) (e)

 

Fig. 2. Macro architecture of DFE-IANet: modules (a) ∼ (b) make up the MSFD block, and 

modules (c) ∼ (e) make up the MSIA block. 

3.2 Multi-scale frequency domain feature extraction (MSFD) 

Frequency domain feature extraction layer. The texture details contain numerous 

key features of polyps, and these detailed features are essential for accurately identify-

ing polyps. Therefore, the frequency domain feature extraction layer (Fig. 2(a)) is de-

signed, which utilizes DWT to transform the features into the frequency domain [21]. 

To be more specific, DWT is applied to the input feature x ∈  ℝC×H×W to obtain four 

different detail components: the approximate component 𝑋𝐿𝐿 ∈  ℝ𝐶×𝐻/2×𝑊/2, the hori-

zontal detail component 𝑋𝐿𝐻 ∈  ℝ𝐶×𝐻/2×𝑊/2 , the vertical detail component 𝑋𝐻𝐿 ∈
 ℝ𝐶×𝐻/2×𝑊/2 and the diagonal detail component 𝑋𝐻𝐻 ∈  ℝ𝐶×𝐻/2×𝑊/2. Then, common 

3×3 DW convolutions are used to extract detailed features on the  𝑋𝐿𝐿 and 𝑋𝐻𝐻. The 

detailed features on the 𝑋𝐿𝐻 and 𝑋𝐻𝐿 are extracted by applying 1×9 and 9×1 ADW con-

volutions, respectively. The output features are reconstructed using the inverse discrete 

wavelet transform (IDWT). 

 [𝑋𝐿𝐿 , 𝑋𝐿𝐻 , 𝑋𝐻𝐿 , 𝑋𝐻𝐻] = 𝐷𝑊𝑇(𝑥) (1) 

 �̂� = 𝑐𝑜𝑛𝑐𝑎𝑡(𝐷𝑊𝐿𝐿(𝑋𝐿𝐿), 𝐴𝐷𝑊𝐿𝐻(𝑋𝐿𝐻), 𝐴𝐷𝑊𝐻𝐿(𝑋𝐻𝐿), 𝐷𝑊𝐻𝐻(𝑋𝐻𝐻)) (2) 

 𝑍 = 𝐼𝐷𝑊𝑇(�̂�) + 𝑥 (3) 
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where 𝐷𝑊𝐿𝐿  and 𝐷𝑊𝐻𝐻  are 3×3 depth-wise convolution operations. 𝐴𝐷𝑊𝐿𝐻  and 

𝐴𝐷𝑊𝐻𝐿 are 1×9 and 9×1 asymmetric depth-wise convolution operations, respectively. 

concat is the concatenation operation along the channel dimension. 

Multi-branch multi-scale feature extraction layer. The specific structure of the 

multi-branch multi-scale feature extraction layer can be seen in Fig. 2(b). In response 

to the classification of images from colonoscopy, small-scale pathological features ac-

count for the majority, such as polyps, ulcerative colitis, esophagitis, etc. As a result, 

more input features will be assigned to the branch that extracts small-scale features. 

Specifically, the features are split along the channel in the 2:1:1 ratio to produce three 

distinct groups of features: 𝑧1 ∈  ℝ2𝐶×𝐻×𝑊 , 𝑧2 ∈  ℝ𝐶×𝐻×𝑊 , 𝑧3 ∈  ℝ𝐶×𝐻×𝑊 . The ob-

tained features are then fed into separate branches to capture multi-scale information. 

Subsequently, a global response normalization (GRN) [22] operation is applied to nor-

malize the features. Subsequently, these features are processed using 3×3 DW convo-

lution, which avoids the gridding effect [23]. Lastly, the features are fused by a convo-

lution layer. 

 [𝑧1, 𝑧2, 𝑧3] = 𝑆𝑝𝑙𝑖𝑡(𝐶𝑜𝑛𝑣1×1(𝑍)) (4) 

 𝑧 = 𝐷𝑊𝑑=1(𝐺𝑅𝑁(𝐺𝐸𝐿𝑈(𝑐𝑜𝑛𝑐𝑎𝑡(𝐵1(𝑧1), 𝐵2(𝑧2), 𝐵3(𝑧3))))) (5) 

 𝑍′ = 𝐶𝑜𝑛𝑣1×1(𝑧) + 𝑍 (6) 

where 𝐵1, 𝐵2, and 𝐵3 are three different branches shown in Fig. 2(b). Split is a splitting 

operation along the channel dimension. concat refers to the concatenation along the 

channel. 

3.3 Multi-scale interaction attention (MSIA)  

Conditional positional encoding layer. The position information is crucial in classi-

fication methods based on Transformer, which directly affects the overall performance 

of the network. In previous research, mostly absolute positional encoding or relative 

positional encoding was used. Recently, Chu et al. [24] pointed out that conditional 

positional encoding (CPE) achieves better performance through simple operations such 

as convolution. To embed conditional position information, the 3×3 DW convolution 

is employed within the MSIA block. The structure of the CPE can be visualized in Fig. 

2(c). The process is represented mathematically by the following equation: 

 𝑥′ = 𝐺𝑅𝑁(𝐷𝑊(𝑥)) + 𝑥 (7) 

where 𝑥′ ∈  ℝ𝐶×𝐻×𝑊 is the output feature embedded CPE, and DW is the CPE opera-

tion through using 3×3 depth-wise convolution. 
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Fig. 3. Adaptive feature guidance layer in Fig. 2(d). 
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Fig. 4. Cascade multi-scale feature extraction layer in Fig. 2(e). 

Adaptive feature guidance layer. Capturing key discriminative features is crucial. 

However, traditional self-attention models lack the incorporation of multi-scale feature 

interactions. To address this issue, integrating multi-scale features into self-attention 

enables the network to dynamically guide its focus towards important regions (Fig. 3). 

Specifically, before 𝑄 interacts with 𝐾, the features of neighboring tokens in 𝐾 and 𝑉 

are firstly aggregated using 3×3 DW convolution to obtain 𝐾′ and 𝑉′ ∈ ℝ𝐻𝑊×𝐶 , re-

spectively. Thus, each token in 𝐾′ and 𝑉′ ∈ ℝ𝐻𝑊×𝐶 aggregates the features of neigh-

boring tokens, which differ in terms of scale from the tokens in 𝑄. Next, 𝑄and 𝐾′ are 

used to compute the attention score, which implements the muti-scale feature interac-

tions between the token and local features. The attention score is then multiplied with 

𝑉′ after 𝑆𝑜𝑓𝑡𝑚𝑎𝑥. The final output features are obtained by applying a 1×1 convolu-

tion layer. 

 [𝑄, 𝐾, 𝑉] = 𝑆𝑝𝑙𝑖𝑡(𝐶𝑜𝑛𝑣1×1(𝑥′)) (8) 

 𝐾′ = 𝐷𝑊3×3(𝐾) (9) 

 𝑉′ = 𝐷𝑊3×3(𝑉) (10) 
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 𝐴𝑡𝑡𝑒𝑛𝑀𝑎𝑡(𝑄, 𝐾′, 𝑉′) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄𝐾′𝑇

√𝑑
)𝑉′ (11) 

 𝑍 = 𝐶𝑜𝑛𝑣1×1(𝐴𝑡𝑡𝑒𝑛𝑀𝑎𝑡(𝑄, 𝐾′, 𝑉′)) + 𝑥′ (12) 

where 𝐾′ and 𝑉′ are the features after aggregating neighboring tokens. Split is the slic-

ing operation along the channel dimension, and 𝐷𝑊3×3 is aggregation operation using 

3×3 DW convolution. 

Cascade multi-scale feature extraction layer.  Since the deeper layers of deep neural 

networks contain more semantic features, extracting rich semantic features is crucial 

for improving classification accuracy.  In addition, input features in the feed-forward 

neural network (FFN) layer of ViT are only fused among channels, while there is a lack 

of spatial feature fusion. Therefore, the cascade multi-scale feature extraction layer 

(Fig. 4) is designed. Specifically, the input features are split along the channel dimen-

sion by a 1:1:1:1 rate. The different features are sequentially extracted by cascade DW 

convolution to obtain four groups of semantic features. These features are concatenated 

along the channel. To enhance local features, 3×3 DW convolutions are utilized for 

feature extraction. Subsequently, using a 1×1 convolution layer fuses different features. 

 [𝑧1, 𝑧2, 𝑧3, 𝑧4] = 𝑆𝑝𝑙𝑖𝑡(𝐶𝑜𝑛𝑣1×1(𝑍)) (13) 

 𝑧1
′ = 𝐷𝑊3×3(𝑧1) (14) 

 𝑧2
′ = 𝐷𝑊3×3(𝑧2 + 𝑧1

′ ) (15) 

 𝑧3
′ = 𝐷𝑊3×3(𝑧3 + 𝑧2

′ ) (16) 

 𝑧4
′ = 𝐷𝑊3×3(𝑧4 + 𝑧3

′ ) (17) 

 𝑍′ = 𝐶𝑜𝑛𝑣1×1(𝐷𝑊3×3(𝐺𝑅𝑁(𝐺𝐸𝐿𝑈(𝑐𝑜𝑛𝑐𝑎𝑡(𝑧1
′ , 𝑧2

′ , 𝑧3
′ , 𝑧4

′ )))))  + 𝑍 (18) 

where 𝑧1, 𝑧2, 𝑧3, 𝑧4 ∈  ℝ𝐶×𝐻×𝑊 are the different features after splitting along channel. 

Split is the channel slicing operation, and concat is the operation of concatenating along 

the channel. 

4 Experiments 

4.1 Datasets 

To assess the performance of the proposed network, we conducted experiments on two 

datasets: the Kvasir dataset [2] and the colonic polyp (CP) dataset [25], and the Kvasir 

dataset is used for ablation experiments. Both datasets exhibit significant intra-class 

variance and high similarity between different pathologies.  

The Kvasir dataset is a public dataset with eight classes. These classes contain 

polyps, ulcerative colitis, esophagitis, etc. Each class contains 1000 images, with a total 

of 8000 images. The images in the Kvasir dataset have resolutions ranging from 
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720×576 to 1920×1072 pixels. In the experiments, the images from each class are di-

vided into a training set and a test set in a 4:1 ratio to ensure a fair evaluation. Specifi-

cally, 6400 images are allocated to the training set, while 1600 images are assigned to 

the test set. 

The CP dataset is a colonoscopy dataset obtained from a grade A tertiary hospital, 

which has been utilized in prior studies to investigate colonic polyp classification. The 

dataset comprises a collection of medical images acquired from actual patients at the 

hospital, ensuring its authenticity and relevance to real-world scenarios. The dataset has 

undergone meticulous curation and annotation processes, providing accurate and relia-

ble labels for each image. In this dataset, the specific number of images in each class is 

2199 for polyps, 743 for ulcerative colitis, 5500 for normal, and 2167 for other lesions, 

respectively. The CP dataset consists of a total of 10609 images. Each image is cropped 

to a fixed resolution of 256×256 pixels. To conduct the experiments, the dataset is di-

vided into training and test sets in a 4:1 ratio. This results in 8,489 images allocated to 

the training set and 2120 images assigned to the test set. 

4.2 Implementation details 

All experiments are conducted using Python 3.9.12 with PyTorch 1.10.0 framework, 

and the training is performed on an A10 GPU with CUDA 11.2 support. Data enhance-

ment strategies are used to get sufficient data samples. The image preprocessing begins 

by cropping the images to a fixed 256×256. Subsequently, a center cropping operation 

is performed to further resize them to 224×224. Additionally, random horizontal flip-

ping and normalization techniques are used to augment the data during training. The 

initial learning rate is set to 0.0005, weight decay is set to 0.05, and the Adamw opti-

mizer [26] is utilized. A batch size of 16 is used, and the training is performed for 400 

epochs. The cross-entropy loss is used to train the models. We utilize commonly used 

evaluation metrics in image classification, including Top-1 Accuracy (Acc), Precision 

(Pre), Recall (Rec), Specificity (Spe), and F1-score (F1). The formula for each evalua-

tion criterion is shown below: 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (19) 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (20) 

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (21) 

 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
 (22) 

 𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2×𝑇𝑃

2×𝑇𝑃+𝐹𝑃+𝐹𝑁
 (23) 

where 𝑇𝑃  represents True Positive, 𝐹𝑁 represents False Negative, 𝐹𝑃 represents False 

Positive, and 𝑇𝑁 represents True Negative. 
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(a) (b)

 

Fig. 5. Training metrics curves of the proposed DFE-IANet on the Kvasir dataset (a) and CP 

dataset (b), respectively. 

Table 1. Experimental results of different networks on the Kvasir dataset (%). 

Model 
Params 

(M) 

Flops 

(G) 
Acc Pre Rec Spe F1 

ResNet50 [27] 23.52 4.13 92.25   92.34 92.25 98.89 92.25 

FocalNet [17] 27.66 4.42 90.69 90.79 90.69 98.67 90.70 

ViT [6] 85.65 16.8 85.00 85.17 85.00 97.86 84.96 

Swin [28] 27.50 4.37 90.62 90.64 90.62 98.66 90.63 

CMT [29] 13.82 2.07 91.94 91.95 91.94 98.85 91.93 

Wave-Vit [21] 21.80 4.37 91.44 91.46 91.44 98.78 91.45 

InternImage [30] 29.16 4.82 90.62 90.67 90.62 98.66 90.62 

CoCs [31] 14.13 2.77 91.56 91.63 91.56 98.79 91.56 

InceptionNeXt [32] 25.76 4.20 91.63 91.66 91.63 98.80 91.61 

BiFormer [33] 12.63 2.09 91.37 91.43 91.37 98.77 91.38 

HiFuse [12] 118.05 17.44 90.94 91.05 90.94 98.71 90.95 

VMamba [34] 38.13 6.32 92.06 92.10 92.06 98.87 92.07 

DFE-IANet (ours) 4.00 1.21 93.94 93.96 93.94 99.13 93.94 

4.3 Comparison with the state-of-the-art networks 

In this section, 12 representative networks are chosen for comparison experiments. All 

experiments are conducted from scratch in a consistent environment, and the evaluation 

metric is the Top-1 accuracy. As depicted in Table 1, the proposed DFE-IANet is less 

than some other networks in terms of parameter count and computational cost. This 

demonstrates the superiority of DFE-IANet in achieving high performance with 
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relatively efficient resource utilization. Fig. 5 displays the validation accuracy and 

training loss curves during the training of DFE-IANet on both the Kvasir and CP da-

tasets. The proposed DFE-IANet ultimately shows high accuracy and excellent conver-

gence on both datasets. 

Table 2. Experimental results of different networks on the CP dataset (%). 

Model Year Acc Pre Rec Spe F1 

ResNet50 [27] 2016 97.55 95.64 94.91 99.18 95.26 

FocalNet [17] 2022 97.08 94.84 93.62 99.04 94.18 

ViT [6] 2020 95.14 93.09 90.99 98.10 91.98 

Swin [28] 2021 96.93 95.54 94.46 98.80 94.98 

CMT [29] 2022 97.88 96.03 94.92 99.30 95.44 

Wave-Vit [21] 2022 97.64 95.01 95.22 99.26 95.11 

InternImage [30] 2023 96.56 93.51 93.47 98.84 93.49 

CoCs [31] 2023 97.08 94.76 93.81 99.05 94.24 

InceptionNeXt [32] 2023 97.74 95.98 94.26 99.27 95.03 

BiFormer [33] 2023 97.64 95.50 94.92 99.23 95.20 

HiFuse [12] 2024 97.36 95.51 94.01 99.13 94.69 

VMamba [34] 2024 97.74 96.36 94.56 99.23 95.38 

DFE-IANet (ours) 2024 98.16 96.72 95.41 99.42 96.01 

In Table 1, DFE-IANet attains an accuracy of 93.94% on the Kvasir dataset. Com-

pared to ResNet50, DFE-IANet is 1.69% higher, outperforming representative CNN-

based networks. Due to its inability to extract global features, the networks represented 

by CNN show disadvantages. The accuracy of DFE-IANet is higher than ViT and Swin-

Transformer by 8.94% and 3.32%, respectively, which confirms that ViT and Swin-

Transformer are suitable for cases with sufficient data samples. Although the latest net-

works (e.g., InternImage, BiFormer, and InceptionNext) all have higher classification 

accuracies than the traditional ones, DFE-IANet achieves more than a 2% improve-

ment. This suggests that state-of-the-art classification networks cannot be targeted to 

address the challenges in polyp image classification. Table 2 displays the results of 

experiments on the CP dataset.  HiFuse, the latest network for medical image classifi-

cation, fails to perform superiorly on both of the datasets. In particular, DFE-IANet has 

less computational cost and fewer parameter numbers than HiFuse. In addition, the ac-

curacy of VMamba on both datasets is still lower than that of DFE-IANet, which may 

be due to the fact that its scanning mechanism still has some limitations in extracting 

the local features. Overall, the proposed DFE-IANet achieves excellent performance 

on these evaluation metrics. 
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4.4 Ablation experiments 

Ablation experiments of asymmetric depth-wise convolution. At the frequency do-

main feature extraction layer of Fig. 2(a), two additional groups of ADW convolutions 

are chosen to conduct ablation experiments. Table 3 shows that DFE-IANet has the 

least loss of performance using 1×7 and 7×1 ADW convolutions. However, the perfor-

mance loss is relatively large when 1×11 and 11×1 ADW convolutions are used. This 

may be because 1×9 and 9×1 convolution kernels are more easily to capture fine-

grained features. 

Table 3. Ablation experiment results of asymmetric depth-wise convolution. 

Model Params(M) Flops(M) Accuracy(%) Kernel size 

DFE-IANet (7) 3.99 1210.02 93.87 1×7, 7×1 

DFE-IANe (11) 4.00 1211.42 92.94 1×11,11×1 

DFE-IANet (baseline) 4.00 1210.72 93.94 1×9, 9×1 

Experiments of multi-branch multi-scale feature extraction layer.  To compare 

with larger convolutional kernels, ablation experiments are performed at the multi-

branch multi-scale feature extraction layer in Fig. 2(b). To be more specific, the second 

branch is substituted with 5×5 DW convolution. The third branch is replaced with 7×7 

DW convolution. Table 4 shows that large convolutional kernels lead to a reduction in 

the accuracy by 0.69%. It may be related to the fact that large convolutional kernels are 

to be trained with more difficulty.  

Table 4. Ablation experiment results of multi-branch multi-scale feature extraction. 

Model Params(M) Flops(M) Accuracy(%) Convolutions 

DFE-IANet (large) 4.02 1243.73 93.25 5×5, 7×7 DW 

DFE-IANet 4.00 1210.72 93.94 ours 

Experiments of adaptive feature guidance layer. The adaptive feature guidance layer 

(Fig. 3) exhibits better performance during feature extraction. Compared with using 

traditional self-attention (TS), ablation experiments are conducted to further validate 

the effectiveness of multi-scale feature interactions. The results of experiments in Table 

5 display that incorporating TS into DFE-IANet leads to a decrease in accuracy by 

0.75%. This indicates that the capability of extracting features can be enhanced through 

multi-scale feature interactions.  

Table 5. Ablation experiment results of adaptive feature guidance layer. 

Model Params(M) Flops(M) Accuracy(%) Description 

DFE-IANet (TS) 3.98 1208.60 93.19 Self-attention 

DFE-IANet 4.00 1210.72 93.94 
Feature interac-

tions 
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Ablation experiments of MSFD and MSIA blocks. In Table 6, the classification ac-

curacy is 92.94% when utilizing only the MSFD block, whereas using only the MSIA 

block is an accuracy of 93.25%. However, it is worth stating that the high computational 

complexity of self-attention, greatly increases the memory footprint during training 

when only MSIA blocks are used. This observation sheds light on why certain existing 

networks use CNN in the shallow layers and incorporating Transformer-based self-at-

tention in the deeper layers. This hybrid architecture aims to strike a balance between 

computational efficiency and capturing long-range dependencies in the feature extrac-

tion process. 

Table 6. The Ablation experiments separately using MSFD and MSIA blocks. 

MSFD MSIA Accuracy(%) Params(M) Flops(M) 

√ × 92.94 5.02 1113.92 

× √ 93.25 3.69 1931.92 

√ √ 93.94 4.00 1210.72 

a b

 

Fig. 6. The confusion matrix on the Kvasir dataset (a) and CP dataset (b), separately. 

4.5 Visualization and analysis 

Confusion matrix analysis. The confusion matrix can clearly show the results of the 

classification of each class. Fig. 6(a) displays the confusion matrix on the Kvasir da-

taset. Polyps are easily misidentified as ulcerative colitis, mainly because of the pres-

ence of disturbances such as blood stains on the surface of the polyps. In particular, 

distinguishing between esophagitis and normal z-line can be challenging due to that the 

esophagitis manifests as mucosal damage along the z-line. Besides, Fig. 6(b) illustrates 

the confusion matrix obtained on the CP dataset. The results indicate that DFE-IANet 

achieves higher sensitivity in classifying polyps, normal samples, and other classes. 

However, the accuracy of ulcerative colitis is relatively low, which may be related to 

insufficient samples. 
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Fig. 7. The heat map results on the Kvasir dataset are presented. The first row showcases the 

input images, while the subsequent rows display the heat maps generated by DFE-IANet and 

other networks. 

Grad-CAM visualization results. To have a clearer view of the attention region of 

networks, some images are visualized using the Grad-CAM [35]. The method provides 

a clear view of the area of interest of the networks, which demonstrates the capability 

of the networks to capture critical features. The results of visualization on the Kvasir 

dataset can be observed in Fig. 7. In contrast to the other three representative networks, 

the DFE-IANet can localize the critical location of the polyps with great precision. Be-

sides, DFE-IANet can accurately localize the relatively weak features of ulcerative co-

litis. However, some other networks fail to identify them. Meanwhile, DFE-IANet can 

capture global features of z-lines, which shows the capability of global feature extrac-

tion. In contrast, although Swin-Transformer and CMT achieve global attention, these 

two networks are not sensitive to some critical features. These results show that the 

proposed DFE-IANet not only has the excellent capability of critical feature extraction 

but also has the advantages of local and global feature extraction. 

5 Conclusion 

In this study, a novel neural network based on dual-domain feature extraction and in-

teraction attention, DFE-IANet, is proposed for polyp image classification. An innova-

tive combination of spectral transformation and attention guidance aims to address the 

challenges of polyp image classification. The accuracies of DFE-IANet on the Kvasir 

dataset and CP dataset are 93.94% and 98.16%, respectively. DFE-IANet strikes the 

perfect balance between efficiency and accuracy, outperforming some classical and 
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latest networks while reducing parameter numbers and computational costs. It is a bet-

ter choice for precise polyp image classification in clinical applications. In the future, 

DFE-IANet will be extended to address other tasks in medical image analysis. This 

includes medical image segmentation, target detection, and localization, enabling the 

network to be utilized in a broader range of applications. 
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