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Abstract. The Transformer model, initially achieving significant success in the 

field of natural language processing, has recently shown great potential in the 

application of tactile perception. This review aims to comprehensively outline 

the application and development of Transformers in tactile technology. We first 

introduce the two fundamental concepts behind the success of the Transformer: 

the self-attention mechanism and large-scale pre-training. Then, we delve into 

the application of Transformers in various tactile tasks, including but not limited 

to object recognition, cross-modal generation, and object manipulation, offering 

a concise summary of the core methodologies, performance benchmarks, and de-

sign highlights. Finally, we suggest potential areas for further research and future 

work, aiming to generate more interest within the community, tackle existing 

challenges, and encourage the use of Transformer models in the tactile field. 
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1 Introduction 

In recent years, the Transformer model [1] has caused a sensation in the world of deep 

learning. In particular, the Transformer model has revolutionized diverse fields with its 

attention mechanism. This mechanism allows the model to focus on different parts of 

the input sequence, capturing long-range dependencies and improving performance on 

various tasks. The Transformer's ability to handle sequential data has paved the way for 

significant advancements, especially in the fields of natural language processing (NLP) 

and computer vision (CV) [2].  

In the field of NLP, Transformer continues to be a major driving force for technological 

advancement [3, 4]. Apart from the well-known BERT [5] and GPT-3 [6], newer Trans-

former-based models have shown even stronger performance. For instance, GPT-4 [7] 

offers more refined language understanding and generation capabilities, applied to 

more complex language understanding, text generation, fine-grained sentiment analysis, 

and other tasks; other models such as ELECTRA [8] and DeBERTa [9] have also shown 
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outstanding performance, achieving unprecedented results in multiple NLP bench-

marks. These models optimize the training process and parameter efficiency, achieving 

better performance with fewer parameters, demonstrating the ongoing innovation and 

potential of Transformer models in the NLP field. Additionally, cross-language models, 

like mT5 [10] and XLM-R [11], utilizing Transformer technology, have greatly ad-

vanced research in machine translation and cross-cultural communication. All the 

aforementioned examples demonstrate the enormous potential of Transformer models 

in handling complex, large-scale datasets, and their key role in the future development 

of NLP. 

Similar to NLP, in the field of CV, Transformer models have demonstrated their unique 

ability, particularly in processing spatial and temporal continuity in image data. This 

technology has been widely applied to various tasks such as image recognition [12], 

object detection [13], image segmentation [14], image super-resolution [15], video un-

derstanding [16], image generation [17], text-image synthesis [18], and visual question 

answering [19]. For example, models using Transformer technology can create unprec-

edentedly realistic and innovative images in image generation tasks [20], and in video 

understanding, they can identify and interpret dynamic images more accurately [21]. 

However, in the field of tactile technology, the application of Transformer models is 

still in its early stages. Tactile technology plays a crucial role in understanding the state 

and characteristics of objects, such as their shape, posture, texture, and material [22, 23, 

24, 25, 26, 27]. Optical tactile sensors like GelSight [28], GelTip [29], TacTip [30], and 

DIGIT [31] offer higher-resolution tactile images compared to traditional single-point 

touch sensors and tactile arrays. These sensors are extensively used in various robot 

tasks, including sliding detection [32], texture recognition [33], surface tracking [34], 

object pushing [35], cable manipulation [36], insertion and tightening [37], and more. 

Through these sensors, previous studies, such as [34, 35], often used tactile textures to 

extract handcrafted features, but these features were less effective when dealing with 

diversified and complex textured objects. 

Recent research has taken a different approach by exploring end-to-end methods for 

learning tactile-motor strategies [32, 36, 37].  These methods directly extract features 

from tactile images using convolutional neural networks (CNNs), recurrent neural net-

works (RNNs), or Transformers, which then guide robot manipulation strategies. By 

enhancing the gradient consistency of the neural network, these methods improve the 

ability of tactile-motor strategies to generalize across different objects. Among them, 

approaches based on Transformer architectures have demonstrated significant promise. 

They excel in achieving robust and efficient tactile perception and manipulation within 

the field of robotics [38, 39]. 

In light of the advantages of Transformers in the tactile field, this review aims to com-

prehensively introduce the research progress in the tactile field adopting Transformer 

architecture, especially in applications with two types of inputs: Visuo-Tactile (a.k.a., 

vision-touch) and Only-Tactile (i.e., touch only). We will delve into various tasks in 
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the tactile field, such as object recognition, cross-modal generation, object manipula-

tion, etc. (Sec. 4), and the effects of using Transformer-based models. Through this 

article, complemented by the structured overview provided in the mind map (Fig. 1), 

we aim to offer a detailed reference resource for researchers in the tactile field to un-

derstand and utilize Transformer architecture and to provide guidance for future re-

search directions. Additionally, the article will discuss the challenges faced by Trans-

former architecture in the tactile field and the direction of future developments, as out-

lined in the thematic areas of our mind map. 

Fig. 1. Typology of Transformer in Tactile Technology 

2 Foundations 

In the context of developing Transformer models, two fundamental ideas significantly 

contribute to their evolution and progress [40]. First, the self-attention mechanism al-

lows for capturing long-term dependencies between sequence elements, which is diffi-

cult for traditional recurrent models to achieve. Compared to recurrent models, the self-

attention mechanism can encode these relationships more effectively. Second, pretrain-

ing is another core idea, referring to training on a large-scale labeled or unlabeled cor-

pus in a self-supervised or supervised manner, followed by fine-tuning on relatively 
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small labeled datasets for target tasks [5, 41, 42]. These two ideas have played a vital 

role in the development of the Transformer model and have been widely applied in 

various Transformer networks. 

Next, we will provide a brief introduction to these two key ideas (Sec. 2.1 and Sec. 2.2, 

respectively), and summarize Transformer networks that apply these ideas (Sec. 2.3). 

This prior knowledge will assist us in gaining a better understanding of the Trans-

former-based models utilized in the tactile field (Sec. 4). 

2.1 Self-Attention in Transformers 

For an item in a sequence, self-attention estimates the relevance of the item with other 

items (for example, which words in a sentence are likely to occur together). Self-atten-

tion is a core component of the Transformer, which is pivotal for modeling the interac-

tions between all elements in a sequence. Essentially, a self-attention layer updates each 

item of the sequence by aggregating global information from the entire input sequence. 

Suppose a sequence contains 𝑛 entities, represented as (𝑥1, 𝑥2, … , 𝑥𝑛), where 𝑑 is the 

embedding dimension used to represent each entity. The goal of self-attention is to cap-

ture the interactions between all 𝑛 entities by encoding global contextual information 

for each entity. This is achieved by defining three learnable weight matrices for trans-

forming Queries (𝑊𝑄 ∈ ℝ𝑑×𝑑𝑞), Keys (𝑊𝐾 ∈ ℝ𝑑×𝑑𝑘) and Values (𝑊𝑉 ∈ ℝ𝑑×𝑑𝑣). The 

input sequence 𝑋 is first projected onto these weight matrices, obtaining  𝑄 = 𝑋𝑊𝑄, 

𝐾 = 𝑋𝑊𝐾 , and 𝑉 = 𝑋𝑊𝑣. The output 𝑍 ∈ ℝ𝑛×𝑑𝑣  of the self-attention layer is 

𝐙 = softmax (
𝐐𝐊𝐓

√𝑑𝑞

) 𝐕. 
(1) 

For a given entity in the sequence, self-attention first calculates the dot product of the 

query with all keys, followed by normalization with the softmax operator to obtain at-

tention scores. Then, each entity becomes the weighted sum of all entities in the se-

quence, where weights are given by the attention scores. 

Masked Self-Attention. The standard self-attention layer focuses on all entities. For 

the Transformer model [1], which is trained to predict the next entity in the sequence, 

the self-attention block used in the decoder is masked to prevent attention to subsequent 

future entities. This is simply accomplished by an element-wise multiplication opera-

tion with a mask 𝐌 ∈ 𝑅𝑛×𝑛, where 𝑀 is an upper triangular matrix. Masked self-at-

tention is defined as                          

softmax (
𝐐𝐊T

√dq

∘ 𝐌) 
(2) 

where ∘ represents the Hadamard product. Essentially, when predicting an entity in the 

sequence, masked self-attention sets the attention scores for future entities to zero. 
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Multi-Head Attention.  To encapsulate the multiple complex relationships between 

different items in a sequence, multi-head attention contains multiple self-attention 

blocks (in the original Transformer model [1], the number of self-attention blocks ℎ =
 8). Each block has its own set of learnable weight matrices {𝐖𝑄𝑖 , 𝐖𝐾𝑖 , 𝐖𝑉𝑖}, where 

𝑖 = 0 ⋯ (ℎ − 1). For the input 𝑋, the outputs of the ℎ self-attention blocks in multi-

head attention are then concatenated into a single matrix [𝐙𝟎, 𝐙𝟏, ⋯ 𝐙𝐡−𝟏] ∈ ℝ𝑛×ℎ⋅𝑑𝑣  

and projected onto a weight matrix 𝐖 ∈ ℝℎ⋅𝑑𝑣×𝑑. 

The main difference between self-attention and convolution operations is that the filters 

are dynamically computed, rather than static filters in convolutions (which remain un-

changed for any input). Additionally, self-attention is invariant to permutations and 

changes in the number of input points. Therefore, it can easily handle irregular inputs, 

while standard convolutions require a grid structure. 

2.2 (Self) Supervised Pre-training 

Transformer models based on self-attention typically employ a two-stage training 

mechanism. First, they undergo pre-training on large-scale datasets, which can be su-

pervised or self-supervised. Subsequently, the pre-trained weights are adapted to small 

or medium-sized downstream task datasets.  

Examples of downstream tasks in natural language processing include question answer-

ing, while in computer vision, tasks like image classification and object detection are 

common. In the fields of NLP and CV, the effectiveness of large-scale Transformer 

pre-training has been demonstrated. For instance, the Vision Transformer model (ViT-

L) [12] saw a 13% absolute drop in accuracy on the ImageNet test set when trained 

only on the ImageNet training set (which has 50,000 images), compared to pre-training 

on the JFT dataset (which has 300 million images). 

Since obtaining manual labels on a large scale is cumbersome, self-supervised learning 

has been very effectively used in the pre-training phase. Self-supervised pre-training 

plays a key role in enhancing the scalability and generalization abilities of Transformer 

networks, enabling them to train networks with over a trillion parameters (e.g., Google's 

Switch Transformer [43]). 

Self-supervised learning offers a promising learning paradigm as it enables learning 

from large amounts of readily available unlabeled data. In the self-supervised pre-train-

ing phase, the model is trained to learn meaningful representations of underlying data 

by solving a pre-task [5]. The pseudo-labels of the pre-task are automatically generated 

based on data attributes and task definition (without any expensive manual annotation). 

Therefore, defining a pre-task in self-supervision is a key choice. Existing self-super-

vised methods can be broadly classified based on their pre-tasks into (a) generative 

methods, (b) context-based methods, and (c) cross-modal methods. 
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Fig. 2. The architecture of the Transformer model [1]. This model was originally developed for 

language translation tasks, where an input sequence in one language needs to be transformed into 

an output sequence in another language. The Transformer encoder (middle row) processes the 

input language sequence and converts it into embeddings before passing it on to the encoder 

modules. The Transformer decoder (bottom row) processes the previously generated outputs in 

the translation language and the encoded input sequences from the middle branch, to output the 

next word in the output sequence. The previously outputted sequence (used as the input to the 

decoder) is obtained by shifting the output sentence to the right by one position and adding a 

sentence-start token at the beginning. This shift prevents the model from simply learning to copy 

the decoder input to the output. The real data used to train the model is the output language 

sequence (without the right shift), with a sentence-end token appended. Blocks composed of 

multi-head attention (top row) and feed-forward layers are repeated N times in both the encoder 

and the decoder. 

2.3 Transformer Model 

The architecture of the Transformer model proposed in [1] is shown in Fig. 2. It has an 

encoder-decoder structure. The encoder (first row) consists of six identical modules 

(denoted as 𝑁 = 6 in Fig. 2), each containing two sub-layers: a multi-head self-atten-

tion network, and a simple position-wise fully connected feed-forward network. After 

each module, residual connections [44] and layer normalization [45] are used. 

It is noteworthy that, unlike conventional convolutional networks which perform fea-

ture aggregation and transformation simultaneously in the same step (e.g., through a 

convolutional layer followed by a non-linear operation), in the Transformer model, 

these two steps are decoupled, i.e., the self-attention layer only performs aggregation, 

while the feed-forward layer performs transformation. Similar to the encoder, the de-

coder in the Transformer model (bottom row) also contains six identical modules. Each 

decoder module has three sub-layers, the first two (multi-head self-attention and feed-

forward) are similar to those in the encoder, while the third sub-layer performs multi-

head attention on the output of the encoder modules. 

The original Transformer model [1] was trained for machine translation tasks. The input 

to the encoder is a sequence of words (i.e., a sentence) in one language. Positional en-

coding is added to the input sequence to capture the relative positions of each word in 
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the sequence. The dimension of the positional encoding is the same as the input, 𝑑 =
 512, and can be learned or predefined, e.g., through sine or cosine functions. As an 

autoregressive model, the Transformer model 's [1] decoder uses previous predictions 

to output the next word in the sequence. Therefore, the decoder takes input from both 

the encoder and the previous outputs to predict the next word in the translated language 

sentence. To facilitate residual connections, the output dimension of all layers remains 

the same, i.e., 𝑑 =  512. The dimensions of the query, key, and value weight matrices 

in multi-head attention are set to 𝑑𝑞 = 64, 𝑑𝑘 = 64, 𝑑𝑣 = 64. 

3 Datasets 

Tactile datasets generally originate from various sensing technologies and can be cate-

gorized based on their characteristics. These datasets can typically be characterized by 

sensing modes, sensing resolution, tactile representation, and application scenarios. 

Sensing modes refer to the types of tactile information captured by the dataset, such as 

force, temperature, or texture. Sensing resolution describes the dataset's ability to dis-

tinguish tactile details. Tactile representation involves how the dataset expresses tactile 

information, for example, through pressure maps, deformation maps, or other sensor 

data. Application scenarios are specific tactile applications for which the dataset can be 

used, such as robotic haptics, virtual reality, etc. Here are some common tactile datasets: 

Multimodal Grasp Dataset [46]. This dataset is designed for robotic manipulation 

research, featuring a combination of visual and tactile data. It encompasses 2,550 sets 

of valid data, derived from nearly 3,000 test trials using 10 different objects. The dataset 

provides a detailed account of both successful and failed grasping attempts, with a total 

success rate of 66.27%. It includes tactile data from 16-channel sensors across 400 steps 

in 24 seconds, along with visual data consisting of four images per grasp from two 

different camera viewpoints. Additionally, it captures the position sequence of eight 

motor joints and contains video data comprising two RGB and one depth video for each 

grasp. This rich dataset serves as a comprehensive tool for understanding the nuances 

of robotic grasping and manipulation, offering valuable insights into slip detection, and 

object classification. 

ObjectFolder series datasets 

• ObjectFolder 1.0 [47]: Introduced in 2021, this dataset includes 100 virtualized ob-

jects, each encoded with visual, auditory, and tactile sensory data. It's primarily fo-

cused on multisensory object recognition tasks and uses a uniform, object-centric, 

and implicit representation for each object’s visual textures, acoustic simulations, 

and tactile readings. This makes the dataset flexible for use in various applications 

like instance recognition, cross-sensory retrieval, 3D reconstruction, and robotic 

grasping. However, it is noted for its limited scale and the quality of multisensory 

data, which might affect its generalization to real-world scenarios. 
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Table 1. Comparative Summary of Different Datasets Used in Tactile Domain Tasks. Each da-

taset is evaluated based on several parameters such as the number of object instances, total 

touches, data source, application in real-world scenarios, the environment in which data was col-

lected, and the types of sensors used. 

Dataset 
Object 

inst. 
Touches Source 

Real-

world 
Environment Sensor 

Multimodal 
Grasp [46] 

3971 2550 Robot ✓ Tabletop 
Eagle Shoal 

Hand 

ObjectFolder 1 

[47]  
100 N/A Synthetic ✗ N/A DIGIT [31] 

ObjectFolder 2 

[48] 
1000 N/A Synthetic ✗ N/A 

GelSight 

[28] 

ObjectFolder-
Real [49] 

100 N/A Synthetic ✓ Indoor 
GelSight 

[28] 

Touch and Go 

[50]  
3971 13.9k Human ✓ Indoor 

GelSight 

[28] 

 

• ObjectFolder 2.0 [48]: Launched in 2022, this dataset expands significantly on its 

predecessor. It features 1,000 multisensory neural objects, offering a tenfold increase 

in the number of objects and substantial improvements in rendering time and multi-

sensory data quality. These enhancements aim to address the limitations of 

OBJECTFOLDER 1.0, particularly regarding scale and data quality. ObjectFolder 

2.0 is used to facilitate research in multisensory learning, particularly in computer 

vision and robotics, and supports tasks like object scale estimation, contact localiza-

tion, and shape reconstruction. 

• ObjectFolder-Real [49]: This dataset contains multisensory measurements for 100 

real-world household objects. It builds upon a newly designed pipeline for collecting 

3D meshes, videos, impact sounds, and tactile readings of these objects. The focus 

here is on providing a realistic and practical representation of objects, incorporating 

data collection processes tailored for each sensory modality. This dataset plays a 

crucial role in multisensory object-centric learning, particularly in tasks like object 

recognition, reconstruction, and manipulation. 

 

Touch and Go Dataset [50]. This dataset is a rich collection of natural vision-and-

touch signals, featuring approximately 13.9k detected touches and around 3971 indi-

vidual object instances. Gathered by human collectors in diverse environments, it en-

compasses a broad spectrum of objects, both rigid and deformable, located in diverse 

settings that include indoor spaces like university buildings and apartments, as well as 

outdoor environments such as hiking trails and playgrounds.  A significant feature of 

this dataset is its use of the GelSight tactile sensor, which records detailed tactile and 

visual information. The dataset's diversity, covering a broad range of real-world scenes 

and object types, makes it particularly valuable for research in multimodal learning. It's 

further enhanced by annotations for material categories and specific frame tagging, 

which are crucial for in-depth studies of visuo-tactile interactions in natural environ-

ments.错误!未找到引用源。 



 Transformer in Touch: A Survey 9 

The section effectively summarizes various tactile datasets, each tailored for specific 

research applications in robotic manipulation and multimodal learning. These datasets, 

detailed in Table 1, range from the Multimodal Grasp Dataset with its focus on robotic 

manipulation, to the ObjectFolder series that progresses from virtualized objects to real-

world scenarios, and the Touch and Go Dataset that captures natural vision-and-touch 

signals in diverse environments. Each dataset contributes unique insights and data, en-

riching the field of tactile sensing and offering valuable resources for research and de-

velopment in this area. 

4 Tasks and Transformers 

4.1 Touch-Centric Tasks and Tactile-Only Transformers 

Firstly, we review tasks and the corresponding Transformer-based methods that only 

use tactile data. 

4.1.1 Object Recognition 

For the task of object surface recognition, Awan et al. [51] proposed a novel tactile 

texture classification method based on the Transformer architecture. In their study, the 

authors collected acceleration signals from 9 samples, which, after preprocessing and 

normalization, were segmented into 500 sample windows in the time domain as inputs 

to the model. After positional encoding, these were fed into three encoder layers, each 

with three attention heads. Notably, the model built by the authors only deployed the 

encoder module of the transformer, without using the decoder module. Each encoder 

layer is identical, containing two sub-layers: a self-attention sub-layer and a feedfor-

ward sub-layer. The feedforward sub-layer uses 1D-CNN and ReLU as the activation 

function, followed by a fully connected layer. Additionally, a normalization layer fol-

lows each sub-layer. For predictions, the output of the encoder module is fed into a 

Dense layer, followed by a softmax layer. Ultimately, the model proposed by the au-

thors achieved an average accuracy of 98.87% and an F1 score of 96.89%, reaching 

state-of-the-art classification accuracy in texture classification tasks. 

4.1.2 Object Manipulation 

For the object manipulation task in grasping, non-destructive grasping of deformable 

objects has always been a challenge in the field of robotics. Humans can perceive the 

physical properties of objects and apply precise forces while grasping fragile targets to 

accomplish dexterous and non-destructive operations. To transfer this capability from 

humans to robots, an improved Transformer model for processing complete tactile time 

series during the grasping process was proposed in [52]. Also, considering the scarcity 

of grasping tactile datasets available in the tactile domain compared to computer vision, 

the authors also established a tactile dataset of 9375 grasps of 15 types of fruits. The 

p ro p o se d  mo d e l  a ch i ev e d  a  f ru i t  r ec o g n i t io n  a c cu ra cy  o f  9 7 .3 3 %   
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Fig. 3. Structural Display of the FruitGrip Transformer and CTF-CycleGAN Models for Object 

Manipulation Tasks. 

this dataset, surpassing traditional recurrent neural network (RNN) models. The results 

suggest that this work could facilitate tactile perception and non-destructive grasping 

in robots in agricultural fields, aiding in fruit picking, processing, sorting, and other 

related areas. This method also provides a technical reference for other studies on grasp-

ing tactile data. 

For the task of manipulating tubular objects like test tubes, developing robots capable 

of handling them has the potential to accelerate experimental processes. However, for 

robots, learning to process tubular objects with a single perception and bridging the gap 

between simulation and reality remains a challenge. For this purpose, Zhao et al. [53] 

proposed a Sim2Real transferable hand posture estimation method based on tactile im-

ages, specifically for manipulating tubular objects. The core of this method is the CTF-

CycleGAN model, a novel pixel-level unsupervised domain adaptation network that 

cascades CNNs and Transformers, aimed at narrowing the pixel-level domain differ-

ences in tactile tasks by introducing attention mechanisms and task-related constraints. 

Eventually, this method was implemented in a reinforcement learning-based policy 

learning framework for learning Sim2Real transferable robot insertion and removal ac-

tions, further applied in human-robot collaborative test tube placement scenarios and 

robotic pipetting scenes. Experimental results showed that the learned tactile-motor 

strategy has generalization capabilities for tubular object manipulation. 
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To better illustrate the FruitGrip Transformer and CTF-CycleGAN models, Fig. 3 de-

picts their structural designs. As shown, the FruitGrip Transformer model uses a frame-

work similar to the Visual Transformer (ViT) but with specific adaptations for tactile 

data. The model directly projects one-dimensional tactile sequences of 216-dimen-

sional vectors to a specified dimension and then processes them using a Transformer 

encoder. Uniquely, it segments the input sequence regionally, simulating tactile per-

ception in different parts of a human hand, and then processes it through Transformer 

blocks of various scales. This structure helps the model effectively learn and predict the 

type and grasping force of fruits, facilitating dexterous manipulation of deformable ob-

jects. 

In contrast, the CTF-CycleGAN model combines Convolutional Neural Networks 

(CNNs) and Transformers in an encoder-decoder structure. In the encoding phase, it 

first uses multiple convolutional layers to extract high-level features from tactile images, 

then enhances feature extraction capabilities with a self-attention Transformer encoder. 

Its distinguishing feature is the ability to capture global information in tactile images, 

focusing on regions with significant features. The decoding phase uses a U-shaped 

structure to combine features from the Transformer encoder and CNNs for image gen-

eration. 

In summary, the FruitGrip Transformer is primarily focused on precise object recogni-

tion and force prediction through the analysis of tactile time series data, while the CTF-

CycleGAN is dedicated to the generation of high-quality images and advanced feature 

extraction, with a specific emphasis on tactile imagery processing. Although both mod-

els incorporate Transformer technology, they are distinct in their application objectives 

and structural designs, showcasing the versatility and adaptability of deep learning in 

diverse robotic applications. 

4.1.3 Others 

Compared to other multimedia applications like videos, sounds, and images, the trans-

mission of tactile signals requires higher reliability and lower latency. Vibrational tac-

tile signals can represent key elements of rich tactile information, such as textured sur-

faces. To transmit these signals to remote locations, and create immersive and realistic 

user experiences, the development of an efficient tactile compression method is needed. 

In [54], a Transformer-based vibrational tactile signal codec TVSC was proposed, com-

bining Transformer structure, quantization, and entropy coding. It is trained end-to-end 

for the encoder and decoder to achieve efficient compression of tactile signals. After 

inverse quantization, the decoder is fine-tuned to overcome the impact of signal loss 

caused by quantization. When the compression ratio is small, the signals reconstructed 

by TVSC closely match the original signals. As the compression ratio increases, the 

quality of the reconstructed signals slightly decreases and stabilizes. Experimental re-

sults show that TVSC outperforms PVC-SLP [55]. 
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4.2 Visuo-Tactile Tasks and Visuo-Tactile Transformers 

Tasks that combine sight and touch involve the combination of visual and tactile sen-

sory inputs to carry out different functions or accomplish specific goals. These tasks 

led to the development of Visuo-Tactile Transformers. 

We review tasks and the corresponding Transformer-based methods that integrate vis-

ual and tactile sensory modes. 

4.2.1 Object Recognition 

In the field of computer vision, there has been extensive research and application of 

object recognition technology. Specifically, 2D and 3D images have been effectively 

used for classifying and recognizing objects and their surface properties. For instance, 

convolutional neural networks (CNNs) have been successfully applied to signal recog-

nition processes [56]. Moreover, the application of one-dimensional CNNs and bidirec-

tional long short-term memory networks (Bi-LSTMs) in-vehicle network anomaly de-

tection was demonstrated in [57]. 

Unlike touch-based methods, vision-based methods require the use of optical sensors, 

which may be limited by obstructions and lighting conditions [58]. Conversely, meth-

ods that combine both visual and tactile modalities have been proven to outperform 

methods using only the visual modality [59]. 

However, integrating visual and tactile features faces significant challenges. Since vis-

ual and tactile features exist in different feature spaces, it can be challenging for fusion 

modules to establish direct interactions between them. Current methods handle visual 

and tactile features during the fusion stage but struggle to bridge the significant gap 

between these two modalities. For instance, visual data and tactile data vary in terms of 

frequency, signal type, and perceptual domain.More specifically, visual sensors like 

cameras collect data through low-frequency instantaneous captures, while tactile sen-

sors acquire data through high-frequency continuous sliding or touching. The signal 

type of visual data consists of RGB images composed of pixels, while tactile data in-

cludes various signal types, such as vibration signals, force feedback, and tactile images. 

Regarding the perceptual domain, visual perception focuses on the perception of shape 

and local color, while tactile perception emphasizes pressure and roughness. All these 

differences make it challenging to directly fuse information from these two modalities. 

To address the aforementioned issues, Wei et al. [60] proposed a new visual-tactile 

Transformer-based method based on Alignment and Multi-Scale Fusion (AMSF). First, 

a visual-tactile contrastive learning module is used to match visual and tactile data, and 

then the matched features are fed into a multi-scale fusion module through a Trans-

former, achieving deep interaction between the two modalities. By leveraging these 

two modules, this method not only aligns visual and tactile modality but also  
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Fig. 4. Structural Display of the AMSF-Transformer and VITO-Transformer Models in Object 

Manipulation Tasks. 

achieves a fusion of multi-scale feature maps. Extensive experiments on three public 

datasets (GelFabric [28], LMT [61, 62], and Vitac [22]) demonstrated the superiority 

of the proposed method. Subsequently, Li et al. [63], to address the challenge of fusing 

visually and tactilely information, designed a visual and tactile information fusion 

mechanism based on the Transformer architecture, named VITO-Transformer. Thanks 

to this fusion mechanism, the accuracy of object recognition was significantly improved. 

In the end, comprehensive comparative experiments were conducted on the public vis-

ual-tactile dataset (ObjectFolder 2.0) and a custom visual-tactile dataset (700 object 

visual images and 7 object tactile images), confirming the advantages of VITO-

Transformer and validating the effectiveness of this fusion mechanism compared to 

current popular fusion algorithms, bringing innovative solutions to the field of visual-

tactile fusion. 

To delve deeper into and compare the AMSF-Transformer with the VITO-Transformer, 

Fig. 4 presents their structural details. AMSF utilizes a contrastive learning approach 

to align visual and tactile information, followed by multi-scale fusion using a Trans-

former. The crux of this model lies in using a visual Transformer as a dual-modal en-

coder to process input visual and tactile images. The alignment of these two represen-

tations is achieved through visual-tactile contrastive loss. Its multi-scale fusion module 

operates at every layer of the multi-modal encoder, ensuring effective feature fusion, 

and ultimately processes the fused features through an MLP for classification. 

In contrast, The VITO-Transformer model adopts an innovative decoding mechanism 

for the fusion of visual and tactile data. The model initially segments and transforms 
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the input visual image into token embedding sequences, which are then fed into the 

Transformer encoder. Additionally, tactile data is converted into tactile image data and 

similarly segmented and transformed into token embedding sequences. These se-

quences, processed by the Transformer encoder, are subsequently input into the decoder. 

The VITO-Transformer's decoder crucially integrates visual and tactile information by 

adding an extra layer of multi-head attention operations. This unique mechanism allows 

the decoder to combine and process these two different types of information effectively, 

generating fused feature information for precise identification of various objects. 

Although both models are dedicated to the fusion of visual and tactile information, they 

differ in their implementation methods and structures. AMSF focuses on information 

alignment and layered fusion, while VITO-Transformer emphasizes information fusion 

through its specialized decoder mechanism. This comparison reveals the diverse ap-

proaches to multi-modal perception in the field of machine learning, providing valuable 

insights for future research. 

In the field of autonomous driving, to achieve accurate road recognition (object recog-

nition task for identifying specific roads), a multimodal fusion recognition network 

based on the CNN-Transformer structure was proposed in [64]. Specifically, visual and 

tactile channels were input into specific channel SE-CNNs, which emphasized valuable 

input information to obtain weighted features. These features were then input into a 

``bottleneck'' fusion Transformer encoder and produced recognition results. Addition-

ally, the authors designed a fusion feature extractor to enhance fusion representation 

capabilities and improve fusion accuracy. To test the model's performance, the authors 

conducted vehicular field experiments and established a dataset composed of four types 

of road surfaces, demonstrating that the network achieved an accuracy of 99.48% in 

road recognition tasks, showing its strong application value. 

4.2.2 Cross-Modal Generation 

For cross-modal generation tasks, fully capturing the underlying correlations between 

multimodal data and generating more accurate tactile data for high-fidelity tactile ren-

dering remains a challenging issue. To address this, a vision-audio assisted tactile 

Transformer model for cross-modal generation of tactile friction coefficients was pro-

posed in [65]. The model first encodes the time-frequency graph of audio and the RGB 

image input of vision to extract joint encoding features. Then, these joint encoding fea-

tures are transformed into tactile decoding features by a Transformer module.After that, 

the tactile decoding features are used to reconstruct tactile amplitude and phase spectra. 

Finally, they are converted into 1-D friction coefficients through Inverse Short Time 

Fourier Transform (ISTFT) [66]. This method combines self-attention mechanisms and 

convolution operations to more comprehensively capture the correlations between au-

dio-visual-tactile data. Ultimately, the model was evaluated on the LMT tactile materi-

als dataset [56]. Results showed that the proposed tactile Transformer model outper-

formed AVHR [67] and convolutional autoencoder (CAE) methods [68], improving 

Root Mean Square Error (RMSE) by 28.53% and 33.25%, respectively. Comparative 

experimental results also indicated that lighting conditions affect the accuracy of the 
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vision-tactile model, with RMSE for low-light images being 24.10% higher than for 

normal images, but the combination of audio and low-light images could compensate 

for errors caused by lighting conditions. Additionally, the tactile Transformer model 

proposed by the authors achieved a tactile rendering fidelity of 92.3% compared to 

AVHR and CAE methods, significantly enhancing rendering fidelity (p < 0.05). This 

result was obtained through a specific statistical significance test, namely the Analysis 

of Variance (ANOVA). However, the ability of the model to generate materials for new 

categories could not be fully verified due to the unbalanced distribution of different 

material categories in the existing datasets.  

For specific domain cross-modal generation, models combining visual and tactile mo-

dalities based on the Transformer architecture also play an important role. For example, 

in the VR/AR field, a method for generating tactile signals based on the Transformer 

network framework was proposed in [69]. This method uses the visual image of an 

object's surface as visual data and scanning parameters (scanning speed 𝑣, position 𝑝, 
and normal force 𝑓) generated by a pen sliding over the object's surface as acceleration 

signals. The acceleration signals are synthesized through a Transformer-based genera-

tion model and a multimodal feature embedding module as the tactile data for the ob-

ject's surface. Unlike traditional Transformer structures applied in NLP, this model re-

places the input/output embedding layers with linear layers to adapt to the size of the 

encoder/decoder inputs and uses a linear projection layer to reshape the final output of 

the decoder to the target size. Especially, this model also adds self-attention layers, 

multimodal embedding layers, and feedforward layers in the latent space to adapt to the 

multimodal fusion of visual-tactile data. To evaluate the model's performance, the au-

thors used the aluminum texture as a test sample and employed a sliding window-based 

data augmentation strategy to create a multimodal dataset. Finally, the Root Mean 

Square Error (RMSE) value for the selected samples was 0.0082 (SD = 0.0023). In the 

future, the authors will conduct user studies to assess the realism of the generated virtual 

tactile textures and further integrate the tactile texture modeling and rendering frame-

work with VR/AR devices to improve the user experience of texture simulation in vir-

tual environments. 

4.2.3 Object Manipulation  

The object manipulation task is subdivided into four sub-tasks: 1) slip detection, 2) 

object grasping, 3) object rotation, and 4) combined manipulation of objects. Each sub-

task's visuo-tactile Transformer architecture models will be introduced in detail. 

In object manipulation tasks, slip detection plays a crucial role in dexterous robot grip-

ping and manipulation and has always been a challenging problem in the field of robot-

ics. However, due to limitations in perception capabilities, the desired detection perfor-

mance may not be achievable through tactile perception alone. Adding visual percep-

tion is an intuitive solution. Li et al. [70] proposed a vision-tactile learning method 

based on deep neural networks to detect slip, highlighting the importance of vision-

tactile fusion perception in slip detection tasks. Compact and multimodal representa-

tions of sensory inputs learned through self-supervised learning can be used to improve 



16  Jing Gao and Ning Cheng 

the sample efficiency of policy learning [71]. However, these early fusion methods, 

which directly combine features of the visual and tactile modalities, have been shown 

to lack the ability to capture modality-specific and cross-modal features [72]. Further-

more, most of the methods mentioned above are explicitly designed for tactile sensors 

with different data formats and sampling rates, leading to significant limitations in plat-

form generalizability. 

To address the inconsistency of vision-tactile sequence learning in slip detection tasks, 

Cui et al. [73] proposed a generalized vision-tactile Transformer (GVT-Transformer) 

model. Specifically, the GVT-Transformer mainly consists of modality-specific and 

cross-modality Transformers, capturing features of specific modalities and cross-mo-

dality, respectively. Experimental results showed that this method not only outper-

formed traditional early fusion methods in detection performance but also was more 

suitable for non-aligned situations. Slip detection experiments conducted on real robots 

also confirmed the Sim2Real generalization capability of the proposed method. 

In the object grasping task, safe grasping of deformable objects remains a challenging 

task. Loose grasps with small grasping forces can lead to object slip, while large grasp-

ing forces can cause object damage. Additionally, the contact geometry shape and fric-

tion characteristics of an object might affect the optimal grasping force for safe grasping. 

To address this issue, a generalizable vision-tactile robotic grasping method based on 

the Transformer architecture was proposed in [37]. In this method, the Transformer 

model performs two predefined exploration actions (pinching and sliding), not only 

predicts the outcome of various grasping intensities using a multilayer perceptron (MLP) 

but also enhances its grasp prediction capabilities by learning physical feature embed-

dings derived from sensor feedback. Using these predictions, the gripper can infer safe 

grasping intensities. To evaluate the model's performance, the authors first conducted 

benchmark tests for slip detection tasks on a public dataset containing 84 everyday ob-

jects. The results showed that the model far surpassed the CNN+LSTM model in terms 

of grasping accuracy and computational efficiency. Besides, the authors collected a new 

dataset containing six types of fruits (i.e., plums, oranges, lemons, tomatoes, apples, 

and kiwifruits) for grasping, and used the model for online grasping experiments on 

both seen and unseen fruits. Finally, the authors extended the model to different-shaped 

objects and demonstrated the effectiveness of the pre-trained model trained on a large-

scale fruit dataset. 

In the object rotation task, accurate control of robot finger movements is required, and 

tactile feedback must be received and processed in real time to adjust rotation strategies. 

For this purpose, a vision-tactile Transformer-based model RotateIt was proposed in 

[74]. This model effectively processes multimodal perceptual information by integrat-

ing visual information provided by depth cameras and tactile data from tactile sensors. 

The authors first built a dataset of objects with different physical properties and random 

initial postures from EGAD, Google Scanned Objects, YCB, and ContactDB, with a 

width/depth/height ratio of less than 2.0. Visual information is processed by a convo-

lutional neural network (ConvNet), while tactile information is transformed into a dis-

crete contact point position representation. The RotateIt model combines these visual 
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and tactile features to achieve multi-axial object rotation based on fingertip. Experi-

mental results showed that RotateIt could effectively understand the geometric shape 

and contact point characteristics of objects, enabling robots to manipulate objects more 

naturally and effectively. 

In the task of combined manipulation of objects, existing vision-tactile methods typi-

cally use latent representations that are vectors or clusters in 𝑅𝑛 and do not utilize the 

attention architecture [1]. These representations might flatten details and face difficul-

ties in the locality of the images. These problems are particularly tricky for manipula-

tion, as the difference between contact and non-contact might be small in pixel space, 

or the robot might need significant movement to make contact with an object. To ad-

dress this issue, Chen et al. [75] proposed a model for object manipulation, the Visuo-

Tactile Transformer, abbreviated as VTT. This model uses self-attention mechanisms 

and cross-modal attention mechanisms to fuse visual and tactile information and im-

proves feature learning through learned embedding vectors. The authors also proposed 

three types of learnable embeddings to enhance model performance. Finally, the model 

was combined with reinforcement learning to form a stable and robust manipulation 

method. The model was experimentally evaluated on four simulated robotic tasks 

(Pushing, Door-Open, Picking, Peg-Insertion) and a real-world pushing task. Compared 

to baseline methods such as concatenation and product of expert (PoE), VTT demon-

strated effectiveness in representation learning. 

4.2.4 Others 

In terms of multimodal representation, Noguchi et al. [76] proposed a model that learns 

visual, tactile, and proprioceptive perception to obtain multimodal plastic body and 

near-personal space representations. This approach includes three main stages: 1) en-

coding of visual, tactile, and proprioceptive perceptions, 2) integration of encoded per-

ceptions through Transformer architecture utilizing a self-attention mechanism, 3) re-

construction of visual and tactile perceptions from integrated sensory representations. 

The model, focused on a simulated robot arm, facilitates the development of multi-

modal and body-centered peripersonal space representation through tool use, surpas-

sing previous models that offered non-body-centered plastic body representations. By 

learning from camera vision, arm touch, and proprioception of camera and arm postures, 

it achieves a body representation that localizes tactile sensations on a concurrently de-

veloped peripersonal space representation. This learning process, especially during tool 

use, endows the body representation with  
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Fig. 5. Taxonomy of Transformer-based Approaches for Tactile Tasks: First divided into Vanilla 

Transformer and Transformer + CNN, then further subdivided into Transformer encoder and 

Transformer encoder-decoder. 

plasticity, allowing it to adapt to changes in interaction brought by tool use while main-

taining an internal spatial coordinate system. The research advances the understanding 

of multimodal representation development and the plasticity of self-body cognition, 

providing insights into cognitive neuroscience and developmental robotics. 

5 Open Challenges and Future Directions 

Despite the outstanding performance and intriguing features of Transformer models (as 

discussed in Table 2 and Fig. 5), applying them in practical settings still presents several 

challenges. The most significant bottlenecks include the need for large amounts of 

training data and the associated high computational costs. There are also challenges in 

visualizing and interpreting Transformer models. In this section, we outline these chal-

lenges, mention some recent efforts made to address these limitations and highlight 

open research questions. 

5.1 High Computational Cost 

As discussed in Sec.1, a key advantage of Transformer models is their flexibility to 

scale up to high parameter complexity. While this is a notable feature, allowing for  
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Table 2. Comprehensive Overview of Transformer-based Approaches for Tactile Tasks, Includ-

ing Method Names, Associated Tasks, Utilized Datasets, Evaluation Metrics, and Key Design 

Highlights. 

 

Method Task Datasets Metrics Design Highlights 

AMSF-

Transformer 

[38] 

Object 
Recognition 

GelFabric, LMT, Vitac 
Accuracy, 
Precision 

New alignment strategy, 

multimodal contrastive 

learning. 

VITO-

Transformer 

[6338] 

Object 

Recognition 

OBJECTFOLDER 

2.0, Self-made Dataset 

Accuracy, 

Precision, 

Recall and 
F1 

Visual-tactile fusion via 

Transformer network. 

CNN-

Transformer 

[6438] 

Object 
Recognition 

Four different kinds of 
roads Dataset 

Accuracy 

Multimodal fusion with 

CNN-Transformer, chan-
nel-specific feature 

weighting. 

Haptic-Trans-

former [5138] 

Object 

Recognition 

Fabric, steel, plastic 

and wood Dataset 

Accuracy, 

Precision, 

Recall and 
F1 

Transformer model for 
tactile texture classifica-

tion. 

Friction Coeffi-

cient Trans-
former [6538] 

Cross-Modal 

Generation 

LMT Haptic Material 

Dataset 

RMSE, 

Relative 
Error 

Self-attention for audio-

visual encoding, tactile 
friction generation. 

Tactile Signal 

Generation 
Model [6938] 

Cross-Modal 

Generation 

Enhanced HaTT Da-

taset 
RMSE 

Visual-tactile input to 

simulate tactile textures 
in AR/VR. 

Generalized Vis-

ual-Tactile 
(GVT) Trans-

former [7338] 

Object 
Manipulation 

Visual-Tactile Dataset 

Precision, 

Recall and 

F1 

Modality-specific and 

cross-modality Trans-
formers for non-aligned 

situations. 

TimeTrans-

former and 

ViViT [3738] 

Object 
Manipulation 

Slip Detection: 84 
daily objects. Safe 

Fruit Grasping: In-

volving six different 
types of fruits. 

Accuracy, 

Success 

Rate 

Self-attention for deform-

able object tasks, outper-

forms CNN+LSTM. 

RotateIt [7438] 
Object 

Manipulation 

EGAD, Google Ob-

jects, YCB, Con-

tactDB 

TTF, 

RotR, 
RotP and 

Rotations 

Vision-tactile integration, 

depth cameras and tactile 

sensors fusion. 

Visuo-Tactile 

Transformer 
(VTT) [7538] 

Object 

Manipulation 

RGB images, wrist 

sensor data 

Success 

Rate 

Self and cross-modal at-
tention, learnable embed-

dings for feature en-

hancement. 

FruitGrip Trans-
former [5238] 

Object 
Manipulation 

Fruit grasping dataset 

Accuracy, 

Speed and 

Parameters 

Processes tactile time se-

ries, tactile dataset estab-

lishment. 

CTF-CycleGAN 

[5338] 

Object 

Manipulation 

Real-world tactile im-

ages Dataset 

Success 

Rate 

Pixel-level domain adap-

tation, CNN-Transformer 

cascade, attention mecha-
nisms. 

Visuo-Tactile-

Proprioceptive 
Transformer 

[7638] 

Others 
Visuo-tactile-proprio-

ceptive Dataset 

PC space 

visualiza-

tion 

Body representation 

model with tool-use-in-

duced plasticity. 
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Transformer-

based Vibrotac-

tile Signal Co-
dec (TVSC) 

[5438] 

Others 

TUM Dataset and 

LMT tactile material 
Dataset 

PSNR, 

Compres-
sion Ratio 

Vibrotactile signal com-

pression using Trans-
former-based codec. 

the training of enormous models, it leads to higher training and inference costs. For 

instance, the training time for the base BERT model [5] (with 110 million parameters) 

is approximately 1.89 petaflop days, while the GPT-3 model [6] (with 175 billion pa-

rameters) requires an astonishing ~1925 times increase, approximately 3640 petaflop 

days. This comes with a hefty cost tag; for example, according to an estimate [77], 

GPT-3's training could have cost OpenAI 4.6 million. Furthermore, these large-scale 

models require significant compression (such as distillation) to be feasible in real-world 

settings. 

5.2 Large Data Requirement 

Because Transformer architectures do not inherently encode inductive biases (i.e., prior 

knowledge) for processing tactile data, they typically require extensive training to fig-

ure out the modality-specific underlying rules. For instance, CNNs have built-in trans-

lation invariance, weight sharing, and local scale invariance due to pooling operations 

or multi-scale processing blocks. However, Transformer networks need to figure out 

these tactile data-specific concepts from training examples on their own, leading to 

longer training times, a significant increase in computational demands, and the need for 

large datasets to process. 

5.3 Touch-Tailored Transformer Design 

It is observed that the majority of previous studies in the field of tactile tasks tend to 

directly utilize NLP Transformer models for addressing problems in the tactile domain. 

These include architectures designed for object recognition, object manipulation and 

especially multi-modal processing. While the preliminary results of these straightfor-

ward applications are quite encouraging and motivate further exploration of the ad-

vantages of self-attention and self-supervised learning, the current architectures may 

still be more suited to language problems (using sequential structures) and require fur-

ther intuition to make them more effectively applicable to tactile inputs. 

5.4 Hardware Efficient Design 

Large Transformer networks can have dense power and computational demands, hin-

dering their deployment on edge devices and in resource-constrained environments 

(such as internet-of-things platforms).  

This challenge becomes even more critical in the tactile field, where the need for real-

time haptic feedback imposes stringent requirements on latency and processing speed. 

The Tactile Transformer, which facilitates the transmission of touch and manipulation 
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in real-time over digital networks, demands not only low latency but also high reliabil-

ity and rapid processing to simulate real-world physical interactions accurately. 

Recent reports suggest efforts in compressing and accelerating NLP models on embed-

ded systems like Field-Programmable Gate Arrays (FPGAs) [78]. Li et al. [78] used an 

enhanced block circulant matrix-based representation to compress NLP models and 

proposed a new FPGA architecture design to efficiently manage resources for high 

throughput and low latency. They were able to achieve 27-, 3-, and 81-times perfor-

mance improvement (measured in FPS throughput) over the RoBERTa model [41] on 

CPU, reducing power consumption and energy efficiency.  

To achieve this goal, Wang et al. [79] proposed using a neural architecture search strat-

egy to design Hardware Aware Transformers (HAT) [80, 81, 82] Specifically, a Super-

Transformer model [79] is first trained as a performance surrogate, capable of estimat-

ing model performance without full training. This model contains the largest possible 

model in the search space and shares weights across common parts. Ultimately, an evo-

lutionary search is performed, considering hardware latency constraints, to find suitable 

SubTransformer models [79] for the target hardware platform (e.g., internet-of-things 

(IoT) devices, GPU, CPU). However, such hardware-efficient designs are currently 

lacking, to enable seamless deployment of Tactile Transformers on resource-limited 

devices. Moreover, the search cost of evolutionary algorithms remains substantial due 

to the associated environmental impact of CO2 emissions. 

5.5 Towards Integrating All Modalities 

Given that transformers provide a unified design to process different modalities, recent 

efforts have also focused on proposing more general-purpose, transformer-based uni-

versal reasoning systems. Inspired by biological systems capable of processing differ-

ent forms of information, the Perceiver model [83] aims to learn a unified model that 

can handle any given input modality without making specific domain structural as-

sumptions. The perceiver employs an asymmetric cross-attention approach to distill 

input information into low-dimensional latent bottleneck features to scale to high-di-

mensional inputs. Once features are refined into a compact and fixed-dimensional form, 

regular Transformer blocks are applied in the latent space. The initial Perceiver model 

demonstrated performance competitive with ResNets [84] and ViTs [12] in image clas-

sification and could handle 3D data, audio, images, videos, or their combinations. How-

ever, the model could only generate fixed outputs like class probabilities.  

A recent improvement, termed Perceiver IO [85], aims to learn models with flexible 

inputs and arbitrary-sized outputs. This allows applications to problems requiring struc-

tured outputs, like natural language tasks and visual understanding. While these models 

avoid reliance on modality-specific architectural choices, the learning itself still in-

volves modality-dependent choices, such as specific augmentations or positional en-

codings. An interesting and open direction for the future is to achieve complete modal-

ity agnosticism. 
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6 Conclusion 

This review begins with a detailed introduction to the two fundamental ideas of the 

Transformer model and its traditional architecture. It then delves into the application of 

the Transformer architecture in various tactile tasks, such as object recognition, cross-

modal generation, and object manipulation. The approaches discussed mainly fall into 

two categories: models that rely solely on tactile data and those that integrate tactile 

and visual data. 

Our exploration encompassed not only the architectural innovations and their applica-

tions but also the challenges and potential future developments. Key challenges such as 

the high computational cost, large data requirements, and the need for touch-tailored 

Transformer designs were discussed, providing a comprehensive overview of the cur-

rent state and prospects of Transformer models in the tactile domain. 

We hope that this effort will further stimulate interest in the tactile community to har-

ness the potential of Transformer models and to improve their current limitations. 
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