
State Quantize for Pursuit Approximate Optimal Control
using Reinforcement Learning

Huanhuan YU1,2 and Haohao MAI1 and Shuling GAO1 and Xiwen HUANG1

and Qiuling YANG*，1,3

1 Hainan University
2 22210812000009@hainanu.edu.cn

3 qlyang@hainanu.edu.cn

Abstract. In high-speed vehicle motion scenarios, solving optimal control
problems faces significant challenges in terms of time and space complexity.
Ensuring real-time performance of the controller requires efficient solving
algorithms and support from high-performance computing platforms. To reduce
the computational cost and approach the performance of optimal control,
approximate optimal control has emerged as a feasible solution. In this paper,
we propose an approximate optimal vehicle control method that outperforms
Model Predictive Control (MPC) in terms of performance. The method
combines the pure pursuit algorithm for vehicle path tracking with the Twin
Delayed DDPG (TD3) algorithm to generate approximate lookahead distance
and velocity control values for the vehicle. Additionally, the vehicle state is
quantized and discretized. In our experiments with a vehicle simulator, we
compare the MPC control with our proposed method. The results show that
while the MPC control remains stable at a vehicle speed of up to 70MPH, our
method effectively controls the vehicle even at a speed of 100MPH, with higher
control rate and robustness.

Keywords: approximate optimal control, pure pursuit, TD3, quantize

1 Introduction

With the development of science and technology, artificial intelligence technology is
more and more widely used in our daily life. The optimal control of vehicles is widely
used in the field of autonomous driving and has attracted more and more attention
from industry and academia.Ensuring the dynamic stability of the vehicle is a
fundamental requirement for achieving optimal control. Dynamic stability, in this
context, refers to the ability to avoid lateral drift, tipping, and stopping [1].Pure
pursuit control[2] is a widely used front-wheel steering algorithm for path tracking
that offers efficient performance at low computational costs and demonstrates good
tracking capabilities at low vehicle speeds. However, it operates as a proportional
controller and may result in lateral oscillations if the lookahead distance is too short,

mailto:22210812000009@hainanu.edu.cn

Contribution Title (shortened if too long) 2

while an excessively long distance can lead to inadequate fitting at curved path points.
In practical applications, the lookahead distance is often adjusted according to the
vehicle speed. Despite its advantages, pure pursuit's control performance becomes
significantly limited at relatively low speeds.On the other hand, Model Predictive
Control (MPC) exhibits strong robustness and optimal control characteristics that
enable effective management of vehicles even in high-speed scenarios[3],[4]. MPC
involves predicting future dynamics, solving optimization problems, and controlling
the vehicle in a continuous computational loop at each time step. It utilizes a
considerably larger model than the original state space model and only obtains the
optimal control value for the current step. Consequently,MPC requires high
computational hardware performance. Clearly,this approach is not suitable for
vehicles equipped with low-performance processors.

For vehicle systems with complex dynamics and nonlinear characteristics, the
control performance of traditional controllers is influenced by the accuracy of the
modeling. Moreover, in complex and dynamic road environments, vehicle control is
challenging to abstract into formulas or simple logic.Reinforcement Learning (RL)
learns the mapping from states to actions through interactions with the environment,
providing strong nonlinear approximation capabilities and greatly simplifying the
design of control systems.Some researchers have used RL for local obstacle
avoidance[5], end-to-end autonomous driving[6],and autonomous parking
[7].However, RL-based vehicle control often focuses more on longitudinal velocity or
lateral control, with less emphasis on the overall optimal control of the vehicle[8].
Additionally, using RL alone for vehicle control often leads to suboptimal
performance and usually requires integration with traditional methods for better
control outcomes [9].The uncertainty of vehicle control is closely related to sensor
noise. Although the sensor data is processed by Kalman filtering algorithm[10],the
small amplitude noise may lead to the degradation of RL control performance.

In this paper, we focus on addressing a specific sub-problem in motion planning,
which involves controlling the vehicle to closely follow a planned trajectory at an
approximately optimal velocity while ensuring dynamic stability. The primary
objective is to minimize the time required for the vehicle to reach its destination. In
order to develop a controller that is easy to design, computationally efficient, and
exhibits high control rates and strong robustness, we propose a RL-based optimal
control method called State Quantize for Pursuit Approximate Optimal control
(SQ-PAO), which combines the advantages of pure pursuit and RL. The objective of
this method is to drive a vehicle along any given path with optimal speed while
closely following the path. To facilitate rapid learning, we design a reward function
based on prior linear knowledge, which guides the agent's learning process. The input
sequence of states for the agent is quantized and discretized, thereby confining the
infinite state space within a finite space. By operating within this limited space, the
agent can output actions that approximate the behavior for similar states, reducing the
behavioral discontinuity caused by minor state variations and improving the model's
robustness. Instead of selecting the optimal action for the current state, the agent
chooses the action that is most similar to the current state at each time step. Hence, we
refer to this approach as approximate optimal control.

Contribution Title (shortened if too long) 3

2 Problem Statement

The vehicle will drive along the planned path while simultaneously optimizing the
velocity and minimizing the tracking error of the path. Pure pursuit controls the
steering of the vehicle according to the geometric relationship of the lookahead
distance, and the learned Agent determines the lookahead distance and speed.

Fig. 1. Driving diagram

In Fig. 1, path consists of a series of waypoints, the waypoints is defined as a
sequence of points represented by � = {�1, �2, �3, ��} . In this context, ��
denotes a specific point in the path �. The variables v represent the current velocity
of the vehicle, α represents the angle between the velocity vector and the direction
towards the lookahead point. The term ������ represents the error or deviation
between the vehicle's position and the target waypoint, ld represents the distance
between the lookahead point and the center of the rear axle. Pure pursuit uses �� as a
lookahead point to control steering, The Agent's goal is to drive the vehicle at the
optimal speed while keeping the path within a certain error range while ensuring
stability. At moment �, the wheel angle � can be expressed as:

�(�) = ������(
2���(�)

��2)(1)

where L is the distance from the front axle to the vehicle rear axle, and ��(�) is the
lateral error between the lookahead point and the forward direction of the vehicle at
time �.

Contribution Title (shortened if too long) 4

Equation (1) is suitable for fitting the path at low speeds. However, as the speed
increases, the corresponding lookahead distance needs to be longer.The growth rate of
the denominator ��2 is much larger than that of the numerator
2���(�) .Consequently, the value of �(�) becomes smaller.This indicates that the
steering ability of the vehicle weakens at higher speeds. As a result, the lateral error
��(�) of the vehicle increases, and it becomes more prone to deviating from the
desired path. To address this issue, we adjusted the order of the denominator to 1.8 in
our experiments.

3 Background

3.1 Agent Learning

Fig. 2 illustrates the process of the RL Agent interacting with the environment, with
the aim of maximizing the total reward obtained from the environment.At each
discrete time step �, given a state � ∈ �, the Agent selects an action � ∈ � based on
its policy �: � → �.The Agent then receives a reward ��+1 and transitions to a new
state ��+1 in the environment. The reward at each time step is calculated as the sum
of the future rewards discounted by a factor �: �� = �=�

� ��−�� �(��, ��) , where �
represents the discount factor.

Fig. 2. Agent interacts with the environment

3.2 Twin Delay DDPG

Deep Deterministic Policy Gradients (DDPG,[12]) is an algorithm based on the
Actor-Critic framework, which incorporates the deterministic strategy of
Deterministic Policy Gradient (DPG, [13]) in the Actor component. In the DDPG
algorithm, the Actor is responsible for generating actions directly from the current
state using a parametric equation approximation, typically implemented as a neural
network. The neural network takes the state as input and produces the corresponding
action as output. By learning this mapping from states to actions, the Actor can make

Contribution Title (shortened if too long) 5

decisions without relying on explicit policy rules or heuristics. On the other hand, the
Critic uses the action-state value function Q to evaluate the quality or value of an
action in a given state. The Critic takes both the current state and the action as inputs
and estimates the expected cumulative rewards associated with taking that action in
the given state. By evaluating the Q-value, the Critic provides feedback to the
learning process and guides the Actor in selecting actions that are more likely to lead
to higher rewards. The goal of the Actor is to maximize the expected sum of current
and future discounted rewards, represented as:

��
∗ = ��� max

�� �

�[�(��, ��(��)) + ���(��+1, ��,(��+1))]� (2)

DDPG can achieve good performance, but in many cases, it is extremely sensitive
to the adjustment of hyperparameters and some other parameters. Because the actual
� value ������� may be overestimated like DQN[14], which will lead to the failure
of policy learning. TD3[15] solves this problem by learning two � functions and
using the smaller � value among them to compute the target term in the Bellman
error loss function, this approach helps mitigate the overestimation bias and improves
the stability of the learning process.

������� = � + � min
�=1,2

���
, (��+1, ��,(��+1)) (3)

3.3 Vector Quantization

For the continuous state space learned by the RL agent, the state � is infinite, which
will cause the agent to learn slowly. State sparse discretization can effectively reduce
state space features. In two-dimensional continuous space, state discretization can
simply be done using one-hot encoding. The high-dimensional state can be sparsely
encoded in low-dimension through Tile coding [16],[17]. The limitation of tile
encoding is that the generalization ability is limited by the number of layers of tiles.
Here, we introduce vector quantization (VQ), a method for discretizing sequences that
are related in time and space.

In VQ-VAE [18],[19], VQ technique is utilized to quantize and discretize the latent
variables x obtained from the encoder. In the quantization process described by (4), a
codebook or embedding table is created. This codebook contains a set of embeddings
or codewords. The goal is to find the embedding in the codebook that is closest to the
input x based on the Euclidean distance metric. This closest embedding is then used as
a replacement for the original x, resulting in the discretization of the latent space. By
applying the VQ technique, the continuous-valued latent variables are replaced with
discrete embeddings, enabling a more structured and compressed representation of the
data.

��������(�) = �� �ℎ��� � = ��� ��� � − �� (4)

Contribution Title (shortened if too long) 6

The codebook embeddings are updated to ensure that they are close to the input
vectors. In the experiment, the update of the embeddings in the codebook is
performed using exponential moving average, as described by (5). This update
process aims to gradually adjust the codebook embeddings towards the input vectors,
enabling them to better represent the data distribution.

��
(�) = ��

(�−1) ∗ � + ��
(�)(1 − �)(5)

where ��
(�) is the vector �� that is closest to the input vector x in the codebook,

and � is an update coefficient with a value between 0 and 1.In this experiment, we
take � = 0.99.

4 Background

This section will introduce the research methodology employed in this paper, which
includes vehicle state analysis, the design of the reward fucnction, and the model
utilized.

4.1 Vehicle State Space

The state � of the vehicle in this research consists of three main components.

 Angles between waypoints and the vehicle: Denoted as
� = {�1, �2, �3, �16} , represents the collection of the angle between the
waypoints in front of the vehicle and the vehicle direction, convert the
coordinates of the waypoints � to the relative Angle � with ������(�

�
).

 Actual turning angle and vehicle speed: Turning angle θ, represents the angle at
which the vehicle is currently turning. Vehicle speed � , indicates the current
velocity of the vehicle. These parameters provide information about the vehicle's
motion and dynamics, which are essential for controlling the vehicle's trajectory.

 Deviation between vehicle driving path and planned path: ������ , represents the
deviation between the vehicle's actual driving path and the planned path. It
quantifies the difference between the vehicle's trajectory and the desired path,
indicating how closely the vehicle is following the intended route. This measure
of deviation serves as feedback for the control algorithm to make adjustments
and minimize the path tracking error.

At each time step � , the three components described above, namely angles between
waypoints and the vehicle �, the actual turning angle and vehicle speed [�, �], and the
deviation ������ between the vehicle driving path and planned path, are concatenated
into a state vector. This state vector represents the current environmental state of the
vehicle and serves as the input to the RL model.

Contribution Title (shortened if too long) 7

4.2 Prior Reward

In order to speed up the learning process of the Agent, we roughly set the wide range
of the lookahead distance and speed according to the prior experience, and design the
reward function. The Agent learns in the linear prior area.

In Fig.3(a), � = 1
� �=1

� ��� ,�� ∈ � is used to indicate the degree of curvature of the
path ahead, and � represents the corresponding empirical speed. The top line
represents the linear empirical relationship � = �1(�) between the average curvature
� of the route and the empirical speed �. The function �1(�) serves as the threshold
separating high and low speed penalties, and �� = �1(�, �) represents the reward
surface associated with high and low speeds.

(a) Velocity reward space (b)�� reward space
Fig. 3 Velocity and �� prior reward diagram

Similarly, in Fig.3(b), the top line represents the linear relationship �� = �2(�)
between the vehicle speed � and the empirical lookahead distance ��. The function
�2(�) acts as the threshold distinguishing between excessively long and excessively
short lookahead distances, and ��� = �1(�, ��) represents the reward surface
associated with such lookahead distance deviations.

The reward for the vehicle includes four components: road reward, speed reward,
lookahead distance reward, and deviation reward.

 Beyond the road reward: If the vehicle deviates too far from the planned path, it
will receive a reward of ����� =− 500 and the episode will end.

 Speed reward: If the absolute difference between the actual speed �� and the
expected speed �1(�1��) exceeds a threshold ∆� , the vehicle will receive a
reward based on the function �1(��, ��). To incentivize higher speeds, a reward
�������� is introduced. This reward is effective at low speeds.

 Lookahead distance reward: If the absolute difference between the actual
lookahead distance ��� and the expected lookahead distance �2(��) exceeds a
threshold ∆� , the vehicle will receive a reward based on the function

Contribution Title (shortened if too long) 8

�2(��, ���) . To encourage longer lookahead distances to adapt to high-speed
scenarios, a reward ������ℎ�� for increasing the lookahead distance is
introduced. This reward becomes active when the lookahead distance is too
short.

 Deviation reward: The reward ���������� is based on the degree of path fitting.

4.3 Structure of Actor-Critic

Fig.4 shows the network structure of Actor and Critic in this paper, the Actor in our
approach adopts a simple network structure. We utilize vector quantization to
discretize the angle � related to the path in the input model. The discretized
representation, denoted as �� , is then processed by a Temporal Convolutional
Network (TCN) [20], followed by a fully connected layer for behavior output. The
TCN consists of multiple layers with hidden channels [32, 32, 32, 1] and dilation rates
[1, 2, 4, 8] respectively. To address the gradient disappearance issue of the Rectified
Linear Unit (ReLU) in the original TCN, we replace it with LeakyReLU activation in
each block and center the input of each layer. The output of the last layer of the TCN
is concatenated with [�, �, ������] along the channel dimension and then fed into a
fully connected network for action output. The vehicle steering angle is derived from
the lookahead distance of the output behavior using (1). Finally, the computed
steering and speed actions are applied to the vehicle controller.

Fig. 4 Actor and Critic network structure

On the contrary, Critic does not require TCN to calculate the Q-value of an
state-action pair. Instead, the quantized vector �� is concatenated with
[�, �, ������, ��, �����] and passed through a fully connected network to obtain the
approximate state-action value �(�, �).
During the forward propagation process, the codebook used for vector quantization

is updated according to (5). It's important to note that during the backward gradient
propagation of the model, the gradients are not propagated to the codebook. This
means that the codebook remains unchanged during the training of the Critic and its
update is decoupled from the model's parameter updates. The training process of
Actor and Critic is shown in Algorithm 1.

Contribution Title (shortened if too long) 9

Algorithm 1

5 Experiment

The experimental part of this study focuses on the training, testing, robustness, and
learning curve analysis of the SQ-PAO Agent.

5.1 Train

The environment used the self-driving car simulator developed by Udacity.The Agent
interacted with the environment for 400 rounds, and the maximum interaction step
was 8k steps each epoch.

Contribution Title (shortened if too long) 10

Fig.6 and Fig.7 record the average reward of each step at the end of each round and
the Mean Squared Error (MSE) of input and quantization. There is no significant
difference in training convergence speed between SQ-PAO Agent and TD3, during
the training convergence phase, the average per-step reward obtained by the SQ-PAO
Agent is higher than TD3. The MSE between the input and output vectors of the

Fig. 5 Robustness comparison, add 25\%, 50\%, 75\% noise respectively, of which the 0
curve is the original curve without noise.

Fig. 6Training average reward per step Fig. 7 The vector MSE before and after
quantization

codebook starts to converge at epoch 50. The codebook error of the Critic can
converge to a range of [0,1� − 4] , indicating a good approximation of the
embeddings. On the other hand, the codebook error of the Actor fluctuates within a
small range. This difference in codebook error behavior can be attributed to the

Contribution Title (shortened if too long) 11

update strategy of the Actor and Critic. The Actor updates the codebook during the
interaction with the environment and selection of actions, where it inputs one state
and updates the codebook. In contrast, the Critic updates the codebook at the end of
each round, and the batch size of the input state is 512. The use of larger batch sizes
tends to provide more stable trends compared to smaller batch sizes. Therefore, the
Critic exhibits more stability than the Actor when updating the codebook.

Table 1
Action MAE between noise with origin

nosie 0.25 0.5 0.75
�� TD3 0.068 0.079 0.083

SQ-PAO 0.020 0.017 0.017
� TD3 0.720 0.718 0.696

SQ-PAO 0.661 0.669 0.666

5.2 Robustness

The addition of Vector Quantization enhances the Agent's robustness to
small-amplitude noise in the state sequence set A. To assess its robustness, we
introduced random noise to the input state A before the Actor selects an action.
Specifically, we applied the following noise perturbation: �� = �� + � ⋅ ����(−
1,1) ⋅ �� , where � = 1,2. . . , 16 . This noise perturbation was compared to the
performance of the TD3 algorithm. In the noise perturbation equation, �� represents
the individual elements of A, which have been normalized. ����(− 1,1) is a random
number generated from a uniform distribution ranging from -1 to 1, and � is the
noise size coefficient. By applying this random noise to the input state A, we aimed to
evaluate the Agent's ability to handle and mitigate the effects of small-amplitude
noise in the state sequence.

From Fig.5 and Table 1, we observed interesting results regarding the robustness of
the algorithms to noise. When the noise coefficient was set to 0.25, the action output
of TD3 exhibited significant and erratic fluctuations, while the action output of
SQ-PAO fluctuated around the original action curve. As the noise coefficient
increased, the action output of TD3 started to exhibit abrupt jumps at the maximum
and minimum output boundaries, while SQ-PAO managed to maintain a smoother
trajectory close to the original action curve. These results highlight the advantage of
SQ-PAO in handling small-amplitude noise in the state sequence. While TD3's action
output was more susceptible to noise and experienced larger deviations, SQ-PAO
demonstrated greater resilience and maintained a closer approximation to the original
action curve. This robustness can be attributed to the integration of vector
quantization, which enables SQ-PAO to effectively quantize and preserve important
features of the input state despite the presence of noise.

Contribution Title (shortened if too long) 12

5.3 Comparison with MPC

In the experiment, SQ-PAO and MPC were autonomously driven for ten rounds, and
we recorded the average speed and path fit. The optimization objective of the MPC
objective function � in the experiment is as follows:

min � = �1
�=1

�

(|������|2 + |�����|2 + |��−����|2)�

+ �2
�=1

�

(|��−��+1|2 + |��−��+1|2)�

+ �3
�=1

�

(|��|2 + |��|2)�

where ���� represents the heading error, which quantifies the angular deviation of
the vehicle's heading from the desired direction. � represents the current vehicle
speed, while ���� represents the target speed or desired velocity. The term
|��−����|2 in the objective function penalizes deviations between the current speed
and the desired speed. Furthermore, the objective function includes terms that
penalize the rate of change in the wheel steering angle � and the vehicle acceleration
� The terms |��−��+1|2 encourage smooth and gradual changes in the steering
angle and acceleration. The weights �1 , �2 , �3 determine the relative importance
of each component in the objective function. By adjusting these weights, one can
prioritize certain aspects of the control performance over others. The overall goal of
minimizing this objective function is to achieve accurate tracking of the desired path,
heading, and speed, while also ensuring smooth and stable control actions for steering
and acceleration.

Fig. 8 MPC, SQ-PAO driving path and planning path in curve

According to Fig.8,9,10, it can be observed that SQ-PAO achieves higher speed
and smaller path deviation compared to MPC, demonstrating the superior
performance of SQ-PAO in terms of speed and path tracking accuracy. SQ-PAO is

Contribution Title (shortened if too long) 13

capable of driving at higher speeds with smaller path deviation, while MPC performs
relatively poorly in comparison. In the Python implementation of the controllers, the
control rate of MPC is approximately 30Hz, while SQ-PAO operates at around
250Hz. In the C++ implementation, the control rate of MPC exceeds 1000Hz, while
SQ-PAO reaches approximately 1600Hz. This indicates that SQ-PAO can control the
vehicle at higher frequencies, further emphasizing its advantages in control
performance. In Fig.11, our method effectively controls the vehicle even at a speed of
100MPH.

Fig. 9 Average speed

Fig. 10 Mean path deviation

Fig. 11 vehicle moves at high speed in the simulator

Contribution Title (shortened if too long) 14

Fig. 12 lookahead distance fitting curve

5.4 Learning Presentation

The Agent learns within a linear prior area, but due to the time it takes for the vehicle
to reach the desired speed from the Agent's output action, the output speed of the
Agent may be greater or less than the desired speed during this period. This
introduces some challenges in analyzing the speed behavior curve of the Agent. On
the other hand, the lookahead distance behavior in the Agent's output action is
transformed into the wheel angle through geometric transformation, and it is not
time-limited. This makes it easier to display the learning fit curve, and the learned
curve is expressed as �� = �(�) for lookahead distance behavior.
In Fig.12 , visualize the Agent learned lookahead distance behavior in the

experiment and ployfit the learning curve of the Agent, the lookahead distance
behavior learned by the Agent exhibits a polynomial relationship with the speed
behavior. In the experiment, we employ a 9th-order polynomial to fit the Agent's
learned lookahead distance behavior. It is worth noting that a significant portion of
the Agent's learning interval aligns with our linear empirical interval, indicating a
satisfactory alignment between the learned behavior and our established expectations.

6 CONCLUSION

In this paper, we introduce the SQ-PAO method, which combines pure pursuit and
reinforcement learning (RL) techniques for the approximate optimal control of
vehicles. The Agent learns to output the lookahead distance and speed to effectively
control the vehicle.
To expedite the learning process of the Agent, we devise various reward functions

based on linear experiences. Additionally, for the collection of angles, denoted as A,
we perform Vector Quantization on it. We then utilize TCN to serialize the

Contribution Title (shortened if too long) 15

quantized vector �� , which is subsequently fed into a fully connected network for
action output. In the experimental section, we conducted a comparative analysis
between SQ-PAO and MPC from three perspectives: speed, path deviation, and actual
driving route. The results demonstrate that SQ-PAO exhibits superior path fitting
ability, achieving a smaller path deviation and enabling the vehicle to drive at higher
speeds. Moreover, when implemented using the same programming language,
SQ-PAO showcases a higher control rate compared to MPC. Overall, the
experimental findings indicate that SQ-PAO outperforms MPC in terms of
comprehensive control ability. Furthermore, we introduced different levels of noise to
the input and compared the action outputs of TD3 (Twin Delayed Deep Deterministic
Policy Gradient) and SQ-PAO. The addition of noise leads to highly unstable action
outputs in TD3, resulting in erratic vehicle behavior. Conversely, SQ-PAO
maintains relatively stable action outputs, highlighting its superior robustness.
Additionally, we visualized the learning curve of the Agent concerning the lookahead
distance, revealing that a significant portion of the learning curve aligns with our
linear empirical interval.
Lightweight model SQ-PAO method can operate on low-performance processors

while delivering superior control performance compared to MPC, along with
robustness. However, it is essential to note that the experiments were conducted
solely on a simulator and are subject to various physical factors on real roads.
Achieving the ideal performance observed in the simulator in real-world scenarios
may require further adjustments and considerations.

7 ACKNOWLEDGMENTS

This work was partially supported by the National Natural Science Foundation of
China under Grant 62362026; in part by the specific research fund of The Innovation
Platform for Academicians of Hainan Province under Grant YSPTZX202314.in part
by the Scientific Research Project of Hainan Province under Grant Hnky2022-4.

References

1. Jeong hwan Jeon et al., "Optimal motion planning with the half-car dynamical model for
autonomous high-speed driving," 2013 American Control Conference, Washington, DC,
USA, 2013, pp. 188-193.

2. R.C 。 Coulter, "Implementation of the pure pursuit path tracking algorithm,"
Carnegie-Mellon UNIV Pittsburgh PA Robotics INST,Tech.Rep., 1992.

3. R. Verschueren, S. De Bruyne, M. Zanon, J. V. Frasch and M. Diehl, "Towards
time-optimal race car driving using nonlinear MPC in real-time," 53rd IEEE Conference
on Decision and Control, Los Angeles, CA, USA, 2014, pp. 2505-25101.

Contribution Title (shortened if too long) 16

4. J. V. Carrau, A. Liniger, X. Zhang and J. Lygeros, "Efficient implementation of
Randomized MPC for miniature race cars," 2016 European Control Conference (ECC),
Aalborg, Denmark, 2016, pp. 957-962.

5. A. Faust et al., "PRM-RL: Long-range Robotic Navigation Tasks by Combining
Reinforcement Learning and Sampling-Based Planning," 2018 IEEE International
Conference on Robotics and Automation (ICRA), Brisbane, QLD, Australia, 2018, pp.
5113-5120.

6. U. Patel, N. K. S. Kumar, A. J. Sathyamoorthy and D. Manocha, "DWA-RL: Dynamically
Feasible Deep Reinforcement Learning Policy for Robot Navigation among Mobile
Obstacles," 2021 IEEE International Conference on Robotics and Automation (ICRA),
Xi'an, China, 2021, pp. 6057-6063.

7. Minghong Hu, Hui Guo, and Xuyuan Ji. 2019. Automatic Driving of End-to-end
Convolutional Neural Network Based on MobileNet-V2 Migration Learning. In
Proceedings of the 12th International Symposium on Visual Information Communication
and Interaction (VINCI '19). Association for Computing Machinery, New York, NY, USA,
Article 36, 1–4.

8. Zhang, P.; Xiong, L.; Yu, Z.; Fang, P.; Yan, S.; Yao, J.; Zhou, Y. Reinforcement
Learning-Based End-to-End Parking for Automatic Parking System. Sensors 2019, 19,
3996.

9. S. Kuutti, R. Bowden, Y. Jin, P. Barber and S. Fallah, "A Survey of Deep Learning
Applications to Autonomous Vehicle Control," in IEEE Transactions on Intelligent
Transportation Systems, vol. 22, no. 2, pp. 712-733, Feb. 2021.

10. Lakhani, Ayub I., Myisha A. Chowdhury, Qiugang Lu. 2022. "Stability-preserving
automatic tuning of PID control with reinforcement learning" Complex Engineering
Systems. 2, no.1: 3. http://dx.doi.org/10.20517/ces.2021.15

11. Kim, Taeklim, and Tae-Hyoung Park. 2020. "Extended Kalman Filter (EKF) Design for
Vehicle Position Tracking Using Reliability Function of Radar and Lidar" Sensors 20, no.
15: 4126.

12. Lillicrap, Timothy P. et al."Continuous control with deep reinforcement
learning." CoRR abs/1509.02971 (2015): n. pag.

13. D. Silver, G.Lever,N.Heess, T.Degris,D.Wierstra,M. Riedmiller,"Deterministic policy
gradient algorithms". In: International conference on machine
learning.PMLR,2014,pp387-395.

14. Mnih, Volodymyr et al. "Playing Atari with Deep Reinforcement
Learning." ArXiv abs/1312.5602 (2013): n. pag.

15. "Addressing Function Approximation Error in Actor-Critic Methods : Supplementary
Material A . Proof of Convergence of Clipped Double Q-Learning." (2018).

16. Alexander A. Sherstov and Peter Stone. 2005. "Function approximation via tile coding:
automating parameter choice".In: Proceedings of the 6th international conference on
Abstraction, Reformulation and Approximation (SARA'05). Springer-Verlag, Berlin,
Heidelberg, 194–205.

17. Sutton, Richard S.. "Generalization in Reinforcement Learning: Successful Examples
Using Sparse Coarse Coding." Neural Information Processing Systems (1995).

18. Oord, Aäron van den et al. "Neural Discrete Representation
Learning." ArXiv abs/1711.00937 (2017): n. pag.

19. A.Razavi, A.van den Oord, O.Vinyals."Generating diverse high-fidelity images with
vq-vae-2" In: Advances in neural information processing systems,2019,pp.14866-14876

20. Lea, Colin S. et al. "Temporal Convolutional Networks: A Unified Approach to Action
Segmentation." ECCVWorkshops (2016).

	1Introduction
	2Problem Statement
	3Background
	3.1Agent Learning
	3.2Twin Delay DDPG
	3.3Vector Quantization

	4Background
	4.1Vehicle State Space
	4.2Prior Reward
	4.3Structure of Actor-Critic

	5Experiment
	5.1Train
	5.2Robustness
	5.3Comparison with MPC
	5.4Learning Presentation

	6CONCLUSION
	7ACKNOWLEDGMENTS
	References

