Juby 20-28, Ningho, China
https- v de-iee. en' 2025 index php

] 2025 Imternanional Conference on Inrellizens Compuiting
A

ME-GCN: Motif-Enhanced Graph Convolutional
Network for Recommendation Systems

Jianmin Xu! and Ping Lu!

School of Cyber Security and Computer, Hebei University, Baoding 071002, Hebei,
China.
Xujianmin2025@gmail.com

Abstract. Recommendation systems play a key role in helping users
cope with the vast amount of online information, and graph convolu-
tional network (GCN)-based methods have attracted much attention
due to their ability to model complex relationships in user-item inter-
action graphs. However, existing GCN models mainly focus on direct
connections between nodes, ignoring the potential value of higher-order
structural patterns such as triangles. In this paper, we propose a motif-
enhanced graph convolutional network (ME-GCN) to improve recom-
mendation performance by explicitly leveraging the triangle patterns in
the user-item interaction graph. Specifically, we design an efficient sparse
matrix algorithm to compute the triangle participation of nodes and
integrate it into the node embedding via a learnable projection mech-
anism, which enhances the motif capability of higher-order structural
patterns while retaining the simple architecture of GCN. Experiments
on three public datasets (MovieLens-1M, Amazon-Books, and Yelp2018)
show that ME-GCN significantly outperforms existing benchmark mod-
els, especially in sparse data scenarios (up to 7.47%). Ablation experi-
ments further verify the importance of the triangular model, whose con-
tribution far exceeds simple structural features such as the first-order
node degree.

Keywords: Graph Convolutional networks; Recommendation systems;
Motif-enhanced; Triangular structures; Sparse matrix computation.

1 Introduction

Recommendation systems have become an integral part of our digital experience,
helping users navigate the vast amount of online information [14,30]. These sys-
tems analyze user preferences and behaviors to suggest items that users might
find interesting or relevant. With the exponential growth of online platforms and
digital content, the need for accurate and efficient recommendation systems has
never been more critical. Graph-based recommendation approaches have gained
significant attention in recent years due to their ability to model complex re-
lationships between users and items [13,26]. Among these approaches, Graph
Convolutional Networks (GCNs) have emerged as a powerful paradigm by lever-
aging the structural information inherent in user-item interaction graphs [2,33].



GCNs operate by propagating information through the graph structure, allowing
nodes (users and items) to aggregate information from their neighbors, thereby
capturing collaborative signals effectively.

Despite their success, traditional GCN-based recommendation models pri-
marily focus on direct connections between nodes, often overlooking higher-order
structural patterns that exist in the interaction graphs [28,9]. These higher-order
structures, known as network motifs, represent recurring patterns of intercon-
nections that appear significantly more frequently than in random networks [16].
In particular, triangular structures in graphs have been shown to carry impor-
tant semantic information about the underlying relationships, potentially offer-
ing valuable insights for recommendation tasks.

In this paper, we propose a novel approach that enhances GCN-based recom-
mendation models with triangle motif information. Our method efficiently com-
putes the triangle participation of each node in the user-item interaction graph
and incorporates this information into the initial node embeddings through a
learnable projection mechanism. This approach preserves the elegant simplic-
ity of existing GCN architectures while enriching the node representations with
valuable structural information.

Our contributions can be summarized as follows:

1. We propose a motif-enhanced GCN framework for recommendation sys-
tems that effectively captures higher-order structural patterns in user-item in-
teraction graphs.

2. We develop an efficient sparse matrix-based algorithm for triangle counting
that scales well to large graphs, making our approach practical for real-world
recommendation scenarios.

3. We design a learnable projection mechanism that seamlessly integrates tri-
angle motif information into the node embedding process, enhancing the model’s
ability to capture complex user-item relationships.

2 Related Work

2.1 Graph Convolutional Networks for Recommendation

Graph Convolutional Networks (GCNs) have emerged as powerful tools for rec-
ommendation systems due to their ability to effectively model user-item inter-
actions as a bipartite graph. The application of GCNs to recommendation tasks
was pioneered by Berg et al. [4], who proposed a graph auto-encoder framework
for matrix completion. Building upon this foundation, Wang et al. [24] intro-
duced Neural Graph Collaborative Filtering (NGCF), which explicitly encodes
the collaborative signal in the form of high-order connectivity in user-item bipar-
tite graphs. This approach significantly improved recommendation performance
compared to traditional matrix factorization methods.

He et al. [11] further refined GCN-based recommendation with Light GCN,
which simplifies the design of GCNs by removing feature transformation and non-
linear activation components. Light GCN focuses solely on the essential neighbor-
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hood aggregation operation, resulting in a more efficient and effective model. Re-
cent advancements in GCN-based recommendation include disentangled graph
networks [25], which separate different types of user preferences, and interest-
aware message-passing GCNs [6], which adaptively aggregate information based
on user interests. Chen et al. [6] also investigated the impact of sampling strate-
gies on GCN performance and proposed improved neighbor sampling methods.

Despite these advancements, most existing GCN-based recommendation mod-
els primarily focus on direct connections and message passing between nodes,
without explicitly considering higher-order structural patterns in the graph [15].
Our work addresses this limitation by incorporating triangle motif information
into GCN-based recommendation models.

2.2 Network Motifs in Graph Analysis

Network motifs, first introduced by Milo et al. [19], are defined as recurring, sta-
tistically significant subgraphs or patterns within a larger network. These motifs
are considered the basic building blocks of complex networks and have been
shown to carry important functional information in various domains, including
biological networks, social networks, and technological networks.

Among various network motifs, triangular structures (three-node complete
subgraphs) are particularly important in social and information networks. Tri-
angles reflect the "friend of a friend is a friend" phenomenon in social networks
and can indicate strong community structures. Eckmann and Moses [7] pro-
posed using triangles as a measure of local network curvature, demonstrating
their importance in understanding network topology.

The integration of motif information with graph neural networks has gained
attention in recent years. Ahmed et al. [1] studied the role of different motifs in
graph representation learning and proposed a motif-based attention mechanism.
Sankar et al. [21] applied motifs to dynamic graph representation learning, cap-
turing structural evolution patterns in temporal graphs. However, these works
primarily focus on homogeneous graphs like social networks and citation net-
works, with limited application to bipartite user-item graphs in recommendation
systems.

2.3 Structural Information in Recommendation Systems

Structural information in recommendation systems refers to the patterns and
relationships that exist in the user-item interaction graph beyond simple direct
connections. Early work in this direction includes ItemRank [8], which applies
PageRank-like algorithms to the item-item correlation graph to generate recom-
mendations. Similarly, Zhou et al. [32] proposed a graph-based recommendation
algorithm that exploits the bipartite graph structure to address the cold-start
problem.

More recent approaches have explored various ways to incorporate structural
information into recommendation models. Wu et al. [27] proposed a session-
based recommendation method that captures complex transitions between items



using graph neural networks. Yu et al. [29] introduced a self-supervised learn-
ing framework that leverages the graph structure to generate auxiliary tasks
for recommendation. Several studies have specifically investigated the impor-
tance of higher-order connectivity patterns in recommendation. Zhao et al. [31]
demonstrated that incorporating higher-order connectivity information can sig-
nificantly improve recommendation accuracy, especially in sparse data scenarios.
Wang et al. [22] proposed a global-local neighborhood method that captures both
local structures and global connectivity patterns.

Despite these advances, the explicit modeling of network motifs, particularly
triangular structures, in recommendation systems remains relatively unexplored.
Most existing methods either focus on direct connections or use general higher-
order connectivity without specifically targeting meaningful structural patterns
like triangles [5,23]. Our work bridges this gap by explicitly incorporating triangle
motif information into GCN-based recommendation models, providing a new
perspective on leveraging structural information for improved recommendation
performance.

3 Preliminaries

3.1 Problem Formulation

In this section, we formally define the recommendation problem addressed in this
paper. Let U = {u1, ua, ..., ups } denote the set of M users and Z = {iy,i9,...,in}
denote the set of IV items. The user-item interactions are represented as a matrix
Y € RM*XN where y,; = 1 if user u has interacted with item 4 (e.g., purchased,
clicked, or rated), and y,,; = 0 otherwise.

The user-item interactions can be naturally modeled as a bipartite graph
G =(V,&), where V = UUZ is the set of nodes (users and items), and £ CU xZ
is the set of edges representing observed interactions. The adjacency matrix of
this graph, denoted as A € RIM+AN)X(M+N) “can be represented as:

Onmxn Y
a= (oY) 1)

where O represents a matrix of zeros, indicating that there are no direct
connections between users or between items in the bipartite graph.

Given the interaction graph G, the goal of the recommendation system is
to predict the likelihood of unobserved interactions between users and items.
Specifically, for each user u € U, we aim to generate a ranked list of items that
the user has not interacted with, ordered by the predicted preference scores.

3.2 Basic Concepts of GCN

Graph Convolutional Networks (GCNs) extend the concept of convolution from
regular grid data (like images) to irregular graph-structured data. In the context
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of recommendation systems, GCNs operate on the user-item interaction graph
to learn node embeddings that capture collaborative signals.

The core operation in GCNs is neighborhood aggregation, where each node
aggregates information from its neighbors to update its representation. A general
form of this operation can be expressed as:

1
h{*Y =& wWOn® (2)
ugf:(v) VIN@)] - IN ()]

where h{" is the representation of node v at layer I, M(v) is the set of
neighbors of node v, W is a learnable weight matrix, and ¢ is a non-linear
activation function.

In Light GCN [11], a simplified version of GCN tailored for recommendation,
the feature transformation and non-linear activation are removed, resulting in
the following propagation rule:

1
o+t = o) ®)
ue%:(v) VIN@)] - VIN (w)]

O]

where e’ is the embedding of node v at layer [. The final embedding of a
node is obtained by combining embeddings from all layers:

L
e, = Z el 4)
1=0

where «; is the weight for layer [ (often set to L%rl for simplicity), and L is
the total number of layers.

The prediction score for a user-item pair (u, ) is then computed as the inner
product of their final embeddings:

Jui = eLe; (5)

3.3 Triangle Motifs in Graphs

Network motifs are recurring, statistically significant subgraphs or patterns within
a larger network. Among various motifs, triangles (three-node complete sub-

graphs) are particularly important in social and information networks. A triangle

in a graph consists of three nodes that are all connected to each other, forming

a cycle of length three.

In the context of a user-item bipartite graph, triangles cannot exist directly
since there are no connections between nodes of the same type. However, we can
consider triangles in the projected graphs or in the graph after adding virtual
connections. For instance, if we add virtual connections between users who have
interacted with the same item, triangles in this augmented graph can indicate
users with similar preferences.
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Fig. 1. Overview of the proposed Motif-Enhanced Graph Convolutional Network (ME-
GOCN) framework. The framework first computes triangle participation for each node,
projects these features into the embedding space, and integrates them with the initial
node embeddings before performing GCN-based message passing.

Formally, for a graph with adjacency matrix A, the number of triangles that
a node v participates in can be computed using the diagonal elements of the
cube of the adjacency matrix:

triangles(v) = (6)
The division by 2 is necessary because each triangle is counted twice in the
matrix multiplication (once in each direction). This formula provides an effi-
cient way to compute the triangle participation of each node in the graph, which
serves as a measure of the node’s involvement in tightly-knit communities. In our
approach, we compute the triangle participation for each node in the user-item
interaction graph and use this information to enhance the node’s initial embed-
ding. This allows the model to capture higher-order structural patterns that are
not explicitly modeled by traditional GCN-based recommendation methods.

(A%)uo
2

4 Methodology

4.1 Overview of the Proposed Framework

In this section, we present our Motif-Enhanced Graph Convolutional Network
(ME-GCN) framework for recommendation systems. Figure 1 illustrates the
overall architecture of our proposed framework. We first compute the triangle
participation count for each node in the user-item interaction graph using an
efficient sparse matrix-based algorithm. This step quantifies the involvement of
each node in triangular structures, providing valuable information about local
community patterns. The triangle counts are then projected into the embedding
space through a learnable projection layer. This transforms the scalar triangle
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counts into high-dimensional feature vectors that can be effectively combined
with node embeddings. The projected motif features are integrated with the
initial node embeddings, enriching them with structural information before the
message passing process begins. The enhanced node embeddings are then pro-
cessed through multiple GCN layers, where nodes aggregate information from
their neighbors to capture collaborative signals. Finally, the learned user and
item embeddings are used to compute prediction scores, and the model is opti-
mized using a ranking-based loss function.

Our framework is designed to be flexible and can be integrated with various
GCN-based recommendation models. In this paper, we demonstrate its effective-
ness by enhancing two representative models: Light GCN [11] and IMP-GCN,
resulting in ME-Light GCN and ME-IMP-GCN, respectively.

The key advantage of our approach is that it captures valuable structural
information that is not explicitly modeled by traditional GCN-based methods,
while maintaining computational efficiency. The triangle counting is performed
only once as a preprocessing step, and the motif feature projection adds minimal
computational overhead to the model.

4.2 Triangle Counting Algorithm

Efficient triangle counting is crucial for the practical application of our frame-
work, especially when dealing with large-scale recommendation datasets. While
various triangle counting algorithms exist in the literature, many of them are
designed for dense graphs and do not scale well to the sparse, large-scale graphs
commonly encountered in recommendation systems.

We propose an efficient sparse matrix-based algorithm for triangle counting
that leverages the power of modern matrix libraries and hardware acceleration.
The algorithm is based on the observation that for a graph with adjacency matrix
A, the number of triangles that a node v participates in can be computed using
the diagonal elements of A3:

(Ag)vv

5 7

A naive implementation of this formula would involve computing the full cube
of the adjacency matrix, which is computationally expensive for large graphs.
Instead, we leverage sparse matrix operations to efficiently compute only the
diagonal elements of A3.

Algorithm 1 outlines our approach for efficient triangle counting in sparse
graphs.

The key to the efficiency of our algorithm lies in the use of sparse matrix
operations. Modern deep learning frameworks like PyTorch and TensorFlow pro-
vide highly optimized implementations of sparse matrix multiplication that can
leverage GPU acceleration. By using these operations, we can compute triangle
counts for large graphs with millions of nodes and edges in a matter of seconds.

For the user-item bipartite graph, we need to make a slight modification
to the standard triangle counting approach. Since triangles cannot exist in a

triangles(v) =



Algorithm 1 Efficient Triangle Counting in Sparse Graphs

Require: Sparse adjacency matrix A € R™*"

Ensure: Triangle count vector t € R™

Convert A to COO format and normalize

Compute A% = A x A using sparse matrix multiplication
Compute A% = A% x A using sparse matrix multiplication
Extract diagonal elements of A3 to get vector d

Compute triangle counts t = d/2

return t

bipartite graph (as there are no connections between nodes of the same type),
we first transform the bipartite graph into a unified graph by adding virtual
connections.

Specifically, we construct a unified adjacency matrix A as follows:

_ (Ouxm Y
a= (g, X)) )

where Y € RM*N s the user-item interaction matrix, M is the number of
users, and NV is the number of items.

When we compute A3, the diagonal elements correspond to the number of
paths of length 3 that start and end at the same node. In a bipartite graph, these
paths must traverse nodes of different types, effectively capturing higher-order
connectivity patterns between users and items.

For users, the triangle count represents the number of paths u — i — v’ —
1" — u, where u and v’ are users, and ¢ and i’ are items. These paths indicate
situations where users have interacted with common items, suggesting potential
similarity in preferences. Similarly, for items, the triangle count captures paths
that indicate potential relationships between items based on user interaction
patterns.

The time complexity of our triangle counting algorithm is dominated by the
sparse matrix multiplication operations. For a graph with n nodes and m edges,
the complexity is approximately O(m!-?), which is significantly better than the
O(n3) complexity of dense matrix multiplication. This makes our approach scal-
able to large recommendation datasets with millions of users and items.

4.3 Motif Feature Projection

After computing the triangle participation counts for each node, we need to
transform this scalar information into a form that can be effectively integrated
with the node embeddings used in GCN models. Simply using the raw triangle
counts as features may not be optimal due to several reasons: (1) the scale of
triangle counts can vary significantly across different nodes and datasets, (2) the
relationship between triangle counts and node preferences may be complex and
non-linear, and (3) we need to map the one-dimensional triangle counts to the
high-dimensional embedding space.
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To address these challenges, we propose a learnable projection mechanism
that transforms the triangle counts into the embedding space. Specifically, for
each node v with triangle count t,, we compute a motif feature vector m, € R¢
as follows:

my, = f@(tv) 9)

where fy is a projection function parameterized by 6, and d is the embedding
dimension.

We implement fy as a simple yet effective linear transformation followed by
a non-linear activation:

f@(tv) = U(Wm “ty + bm) (10)

where W,,, € R¥*! and b,, € R? are learnable parameters, and ¢ is a non-
linear activation function such as ReLU or Leaky ReLU.

To handle potential numerical issues with extremely large triangle counts,
we apply a logarithmic transformation to the raw counts before projection:

gv = log(l + tv) (11)

This transformation helps compress the range of triangle counts and makes
the learning process more stable, especially for graphs with highly skewed trian-
gle count distributions.

4.4 Integration with GCN Models

With the projected motif features in hand, we now describe how to integrate
them with GCN-based recommendation models. Our approach is designed to be
model-agnostic and can be applied to various GCN architectures. In this paper,
we demonstrate its effectiveness with two representative models: Light GCN and
IMP-GCN.

Integration with Light GCN LightGCN [11] is a state-of-the-art GCN-based
recommendation model that simplifies the design of GCNs by removing feature
transformation and non-linear activation components. The core of Light GCN is
the light graph convolution operation:

eF ) — Ae(®) (12)

where e(®) is the embedding matrix at layer k, and A is the normalized
adjacency matrix with self-loops.

To enhance Light GCN with motif information, we integrate the projected
motif features with the initial embeddings before the message passing process
begins:

e =e 4 o.m, (13)



where eSJO) is the initial embedding of node v, m, is the projected motif fea-

ture, and « is a hyperparameter that controls the influence of motif information.
The enhanced initial embeddings are then processed through the standard
Light GCN layers:

et — Re® k=01, K —1 (14)

The final embeddings are obtained by combining embeddings from all layers:

K
e, = Zakeg“) (15)
k=0

where «y, is the weight for layer k (often set to ﬁ for simplicity).

Integration with IMP-GCN IMP-GCN (Interest-aware Message Passing
GCN) extends Light GCN by introducing a group-specific message passing mech-
anism. It first assigns users to different interest groups and then performs mes-
sage passing within each group separately. To enhance IMP-GCN with motif
information, we integrate the projected motif features with the initial embed-
dings before the group assignment and message passing:

e =e® +o-m, (16)

The enhanced initial embeddings are then used for group assignment and
subsequent message-passing operations, following the standard IMP-GCN pro-
cedure.

This integration approach is simple yet effective, as it enhances the initial
node representations with structural information while preserving the original
model architecture. The motif information influences both the initial node rep-
resentations and the subsequent message-passing process, allowing the model to
better capture complex user-item relationships.

4.5 Model Training

We train our motif-enhanced GCN models using the Bayesian Personalized
Ranking (BPR) loss [20], which is widely used for implicit feedback recommen-
dation. The BPR loss aims to maximize the margin between the predicted scores
of observed interactions and unobserved ones:

Lopr= Y —Wo(fui—u)+ A6 (17)

(u,i,j)€D

where (u, 4, j) denotes that user u has interacted with item ¢ but not with item
Js Gui and §,; are the predicted scores, o is the sigmoid function, © represents
the model parameters, and A is the regularization coefficient.

The predicted score for a user-item pair is computed as the inner product of
their final embeddings:
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Table 1. Statistics of the datasets used in our experiments.

Dataset Users Items Interactions Density Avg. Degree

MovieLens-1M 6,040 3,706 1,000,209 4.47%  165.6
Amazon-Books 52,643 91,599 2,984,108 0.06% 56.7
Yelp2018 31,668 38,048 1,561,406 0.13% 49.3

Jui = ele; (18)

where e, and e; are the final embeddings of user u and item i, respectively.

5 Experiments

5.1 Experimental Setup

Datasets We conduct experiments on three widely-used public recommenda-
tion datasets with varying scales and domains: MovieLens-1M [10]: A movie
rating dataset containing 1 million ratings from 6,040 users on 3,706 movies. Fol-
lowing common practice, we convert the explicit ratings to implicit feedback by
treating ratings of 4 or higher as positive interactions. Amazon-Books [18]: A
subset of the Amazon product review dataset focusing on books. After filtering
out users and items with fewer than 5 interactions, the dataset contains 52,643
users, 91,599 books, and 2,984,108 interactions. Yelp2018 [3]: A business re-
view dataset from the Yelp Challenge 2018. After preprocessing to remove users
and businesses with fewer than 10 interactions, it contains 31,668 users, 38,048
businesses, and 1,561,406 reviews.

Table 1 summarizes the statistics of the three datasets after preprocessing.

For each dataset, we randomly split the user-item interactions into training,
validation, and test sets with a ratio of 8:1:1. The validation set is used for
hyperparameter tuning and early stopping, while the test set is used for the
final performance evaluation.

Baselines We compare our proposed methods with BPR [20], NeuMF [12],
NGCEF [24], Light GCN [11], DGCF [25], UltraGCN |[17] and IMP-GCN.
In addition to these baselines, we implement two variants of our approach, ME-
Light GCN, our motif-enhanced version of Light GCN and ME-IMP-GCN,
Our motif-enhanced version of IMP-GCN.

Evaluation Metrics We adopt two widely used metrics for evaluating top-N
recommendation performance:

RecallQK is the proportion of relevant items that are successfully retrieved
in the top-K recommendations:



relevant items N recommended items at K
Recallak — 17 |

19
[relevant items| (19)

NDCG@K is normalized Discounted Cumulative Gain at K, which takes
into account the position of relevant items in the recommendation list:

DCG@K

where DCGQXK is the discounted cumulative gain at K, and IDCG@QK is the
ideal DCG@K. For both metrics, higher values indicate better performance. We
report results for K = 10 and K = 20.

Following common practice in recommendation research, we adopt the all-
ranking protocol for evaluation. For each user in the test set, we rank all items
that the user has not interacted with in the training set and compute the metrics
based on the ground truth interactions in the test set.

Implementation Details All experiments are implemented in PyTorch on
NVIDIA V100 GPUs. Hyperparameters are validation-tuned with unified cfg:
64-dim embeddings, Adam (Ir=0.001), batch size=2048, L2=1e-4, and 10-epoch
early stopping. GCN-based models use 3 layers (Light GCN/ME-LightGCN)
or 6 layers (IMP-GCN/ME-IMP-GCN), with 4 interest groups for IMP vari-
ants. Motif-enhanced models employ a € 0.1,0.3,0.5,0.7,1.0 and LeakyReLU
(slope=0.2) for feature projection. Training continues until convergence (200
epochs max), with the best validation performers selected for testing.

5.2 Performance Comparison

Table 2 presents the overall performance comparison of our proposed methods
and baseline methods on the three datasets. The best results are highlighted in
bold, and the second-best results are underlined.

From the results, we can make observations that GCN-based methods (NGCF,
Light GCN, DGCF, UltraGCN, IMP-GCN) generally outperform traditional meth-
ods (BPR, NeuMF), confirming the effectiveness of graph-based approaches for
recommendation. Our motif-enhanced models (ME-LightGCN and ME-IMP-
GCN) consistently outperform their base models and all baseline methods across
all datasets and metrics. This confirms the effectiveness of incorporating trian-
gle motif information into GCN-based recommendation models. ME-IMP-GCN
achieves the best performance among all methods, with significant improvements
over the best baseline (IMP-GCN): 3.64% and 4.43% on MovieLens-1M, 6.78%
and 7.47% on Amazon-Books, and 5.89% and 5.85% on Yelp2018 for Recall@20
and NDCG@20, respectively.

The figure 2 shows the changes in the Recall@20 and NDCG@20 metrics of
ME-IMP-GCN, ME-Light GCN, UltraGCN and LightGCN at different layers.
The results show that the performance of ME-IMP-GCN and ME-LightGCN
steadily improves with the increase of the number of layers. UltraGCN shows
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Table 2. Overall performance comparison. The best results are in bold, and the second-
best results are underlined. Improvements over the best baseline are shown in the last
row.

Method MovieLens-1M Amazon-Books Yelp2018
Recall@20 NDCG@20 Recall@20 NDCG@20 Recall@20 NDCG@20

BPR 0.1982 0.1213 0.0389 0.0298 0.0543 0.0442
NeuMF 0.2104 0.1345 0.0412 0.0324 0.0561 0.0459
NGCF 0.2170 0.1404 0.0478 0.0368 0.0579 0.0477
Light GCN 0.2341 0.1561 0.0517 0.0402 0.0649 0.0530
DGCF 0.2356 0.1573 0.0525 0.0410 0.0657 0.0538
UltraGCN 0.2372 0.1589 0.0529 0.0413 0.0660 0.0542
IMP-GCN 0.2389 0.1602 0.0531 0.0415 0.0662 0.0547

ME-Light GCN  0.2425 0.1634 0.0548 0.0429 0.0683 0.0561
ME-IMP-GCN 0.2476 0.1673 0.0567  0.0446 0.0701 0.0579

Improvement 3.64% 4.43% 6.78% 7.47% 5.89% 5.85%

Table 3. Ablation study results on the MovieLens-1M dataset.

Method Recall@10 NDCG@10 Recall@20 NDCG@20

Light GCN 0.1723 0.1382 0.2341 0.1561
Light GCN + Degree  0.1742 0.1401 0.2365 0.1579
Light GCN + Triangle 0.1798 0.1452 0.2425 0.1634

IMP-GCN 0.1782 0.1423 0.2389 0.1602
IMP-GCN + Degree 0.1805 0.1446 0.2412 0.1625
IMP-GCN + Triangle 0.1863 0.1498 0.2476 0.1673

slight overfitting at deeper layers, while Light GCN performs the weakest and
has a limited improvement. This shows that motifs can improve the results of
the model at deeper levels.

In addition, the improvements are more substantial on the Amazon-Books
and Yelp2018 datasets compared to MovieLens-1M. This may be because these
datasets are sparser (as shown in Table 1), and the structural information pro-
vided by triangle motifs is particularly valuable in sparse scenarios where direct
user-item interactions are limited.

5.3 Ablation Studies

To understand the contribution of triangle motif information to the overall per-
formance , we conduct ablation studies by comparing different variants of our
approach. Table 3 presents the results on the MovieLens-1M dataset.

In this ablation study, we compare the following variants:

— Base models: Light GCN and IMP-GCN without any additional structural

information.
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Fig. 2. Comparison of the ME-GCN variant with the baseline model on the MovieLens-
1M and Amazon-Books datasets for different numbers of layers

— —+ Degree: Enhancing the base models with node degree information instead
of triangle motifs. Node degree is a simple first-order structural feature that
indicates the number of direct connections a node has.

— + Triangle: Our full models that enhance the base models with triangle
motif information.

From the results, we can observe that both degree and triangle information
bring improvements over the base models, confirming the value of incorporat-
ing structural information into GCN-based recommendation models. Triangle
motif information leads to more significant improvements compared to degree
information. For LightGCN, triangle motifs bring 3.59% and 4.68% improve-
ments in Recall@20 and NDCG@20, while degree information only brings 1.03%
and 1.15% improvements. Similar patterns are observed for IMP-GCN. Further-
more, the superior performance of triangle motifs over node degree suggests that
higher-order structural patterns capture more valuable information about user
preferences and item relationships compared to simple first-order connectivity.

These findings demonstrate that triangle motif information makes a signif-
icant contribution to the overall performance, and this contribution is more
substantial than that of simpler structural features like node degree.

5.4 Efficiency Analysis
Toevaluate the computational efficiency of our approach, we compare the train-

ing time and inference time of different methods on the MovieLens-1M dataset.
Table 4 presents the results.
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Table 4. Efficiency comparison on the MovieLens-1M dataset.

Method Training Time (s/epoch) Inference Time (ms/user) #Parameters (M)
BPR 0.42 1.23 0.62
NeuMF 0.78 1.87 1.05
NGCF 1.35 1.56 1.27
Light GCN 0.86 1.42 0.62
DGCF 2.43 1.89 1.35
UltraGCN 0.92 1.45 0.63
IMP-GCN 1.24 1.53 0.65
ME-Light GCN 0.89 1.44 0.63
ME-IMP-GCN 1.28 1.55 0.66

From the results, we can make observations that our motif-enhanced models
(ME-Light GCN and ME-IMP-GCN) have only slightly higher training and in-
ference times compared to their base models (LightGCN and IMP-GCN), with
increases of about 3-4%. This confirms that incorporating triangle motif infor-
mation adds minimal computational overhead.

In addition, the number of parameters in our motif-enhanced models is also
only slightly higher than the base models, with increases of about 1-2%. This
is because the motif projection layer adds only a small number of parameters
(embedding dimension x 1 for the weight matrix and embedding dimension for
the bias vector). The triangle counting step, which is performed only once as a
preprocessing step, takes about 0.5 seconds for the MovieLens-1M dataset. This
is negligible compared to the total training time, which is typically several hours.

Therefore, compared to more complex models like DGCF, our motif-enhanced
models achieve better performance with significantly lower computational costs.
These findings answer demonstrate that our approach is computationally effi-
cient, with minimal overhead compared to the base models. This makes it prac-
tical for real-world recommendation scenarios where computational resources
may be limited.

6 Conclusion

In this paper, we proposed a novel Motif-Enhanced Graph Convolutional Net-
work (ME-GCN) framework for recommendation systems. Our approach lever-
ages triangle motif information to capture higher-order structural patterns in
user-item interaction graphs, enhancing the node representations used in GCN-
based recommendation models. Extensive experiments on three public datasets
demonstrated that our approach consistently outperforms state-of-the-art recom-
mendation methods, with significant improvements in both accuracy and ranking
metrics.
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