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Abstract. This paper introduces Group-Shared Exponents Integer Quantization 

for MobileNetV4, a novel quantization framework tailored for efficient deploy-

ment of deep learning models on resource-constrained edge devices. Our method 

employs the Group-Shared Exponents (GSE) format, which shares exponents 

among groups of parameters and quantizes mantissas under a shared exponent 

constraint, significantly reducing memory overhead compared to traditional 

quantization techniques. Furthermore, we introduce an automated mixed-preci-

sion quantization scheme that allocates bit-widths based on layer sensitivity, 

thereby assigning each layer an optimal quantization bit-width. This strategy ef-

fectively optimizes the trade-off between accuracy and efficiency.  Extensive ex-

periments on the ImageNet1K dataset demonstrate that GSE-MN4 outperforms 

conventional quantization methods. For instance, the GSE-MIX quantization 

method on MN4-Conv-S achieves a Top-1 accuracy of 73.34\% with a memory 

footprint of only 3.23 MB, maintaining high accuracy while substantially reduc-

ing memory usage. Our work highlights the potential of GSE-INT for efficient 

and accurate deployment of deep learning models in mobile and edge scenarios. 

Keywords: Post-Training Quantization · MobileNetV4. 

1 Introduction 

In recent years, the demand for Edge AI applications has grown significantly [26], with 

mobile networks, particularly edge networks [22], becoming a critical component of 

the modern computing ecosystem. This trend has driven the need for deploying deep 

learning models on mobile and IoT devices [6], spanning a wide range of applications 

such as smart homes, autonomous driving, and augmented reality [14]. Consequently, 

the development of lightweight and efficient neural networks that can be deployed on 

mobile devices has become a major research focus [23]. For resource-constrained edge 

devices, the compression of model size is particularly challenging [13]. For instance, 

some microcontrollers (MCUs) are equipped with only 16MB of memory, imposing 

stringent requirements on the memory footprint of neural networks. 



MobileNetV4 (MN4) [19] has emerged as a promising solution for mobile and edge 

computing, striking a balance between model accuracy and computational efficiency. 

Although MN4 is inherently designed to be lightweight and efficient, further reduction 

in model size is necessary for deployment on devices with extremely limited memory, 

computational, and energy resources [8]. In such scenarios, model quantization has be-

come a crucial technique. Quantization reduces the bit-width of model weights, signif-

icantly decreasing memory usage [10] and offering substantial advantages for deploy-

ment on edge devices. However, we observe that traditional quantization methods often 

lead to a notable degradation in performance when applied to MobileNetV4. This issue 

is particularly pronounced in smaller models with highly discrete weight distributions, 

such as MN4, where quantization increases numerical variance and introduces outliers 

[12]. These outliers significantly exacerbate quantization errors when traditional quan-

tization techniques are employed [17]. 

Group quantization has been proposed as a refined approach [11] to address the issue 

of imbalanced weight distributions. However, this method incurs additional memory 

overhead due to the need to store extra FP16 scale and zero-point values for each group. 

Specifically, each group requires an additional 32 bits of storage for these parameters. 

Furthermore, the dequantization process at runtime introduces additional multiplication 

operations, further straining the already limited resources of edge devices. 

To address these challenges, we propose GSE-MN4: Group-Shared Exponents 

Integer Quantization for MobileNetV4, a novel quantization framework that lever-

ages the Group-Shared Exponents (GSE) integer format [30]. The GSE-INT method is 

specifically designed to mitigate the problem of large numerical variance in quantized 

models by employing a grouping mechanism. Simultaneously, it replaces the FP16 

scale and zero-point with a 5-bit exponent, eliminating costly multiplication operations 

during dequantization. Additionally, we observe that different structures within Mo-

bileNet exhibit varying sensitivities to GSE-INT quantization. For example, convolu-

tional layers with larger feature maps tend to be more sensitive to quantization errors 

compared to depthwise separable convolutions, which are more robust due to their re-

duced parameter count. To address this, we propose an automated mixed-precision 

quantization scheme [24]. Specifically, we first evaluate the sensitivity of each layer 

and then apply higher-bit GSE-INT quantization to more sensitive layers and lower-bit 

GSE-INT quantization to less sensitive layers. This approach achieves superior quanti-

zation results. 

We validate the effectiveness of the GSE-INT method through extensive experi-

ments on the MobileNetV4 architecture. Our results demonstrate that GSE-INT quan-

tized models achieve significantly higher accuracy compared to traditional quantization 

methods under the same memory constraints. For instance, at 8-bit quantization, the 

GSE-INT quantized MN4-Conv-S model achieves a Top-1 accuracy of 72.6\%, with a 

memory footprint of only 2.7 MB (Original BF16 is 7.2MB). These results highlight 

the potential of GSE-INT in enabling efficient deployment of deep learning models on 

resource-constrained devices without compromising performance. 

Our key contributions are as follows: 

1. Group-Shared Exponents Integer Quantization for MN4. We introduce a quan-

tization strategy that shares exponents among groups of parameters, enabling efficient 
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representation of model weights in integer format. This approach reduces the memory 

footprint of MN4, making it more suitable for resource-constrained mobile devices. 

(This is the first work to introduce GSE-Tuning into MobileNetV4 [28], enabling effi-

cient deployment in mobile scenarios.) 

2. Mixed-Precision Quantization. We conduct the first sensitivity analysis of Mo-

bileNetV4 to quantization and propose an automated mixed-precision quantization 

scheme that optimizes bit-width allocation based on layer sensitivity. 

3. Pareto-Optimal Performance. Through extensive experimentation, we demon-

strate that GSE-MN4 achieves a favorable trade-off between accuracy and efficiency, 

making it a practical solution for deploying MN4 on a wide range of mobile devices. 

2 Related Work 

2.1 Efficient Neural Network Architectures 

The evolution of MobileNets has been marked by a continuous effort to balance accu-

racy and efficiency. MobileNet [8] introduced depthwise separable convolutions, sig-

nificantly reducing the computational cost compared to traditional convolutions. Mo-

bileNetV2 [20] further improved efficiency by introducing inverted residual blocks 

with linear bottlenecks, which reduce the number of parameters while maintaining 

model capacity. MobileNetV3 [7] leveraged neural architecture search (NAS) to opti-

mize the network structure for mobile devices, achieving state-of-the-art performance 

on various benchmarks. MobileNetV4 [19] represents the latest iteration in this lineage, 

introducing the Universal Inverted Bottleneck (UIB) block and Mobile Multi-Query 

Attention (MQA) to achieve Pareto-optimal performance across diverse hardware plat-

forms. The UIB block unifies several prominent micro-architectures, including Inverted 

Bottleneck, ConvNext, and Feed Forward Network (FFN), offering flexibility in spatial 

and channel mixing. Mobile MQA, on the other hand, optimizes attention mechanisms 

for mobile accelerators, delivering significant speedups without compromising accu-

racy. 

2.2 Quantization Techniques 

Quantization has emerged as a critical technique for reducing the memory and compu-

tational demands of neural networks [6]. Traditional quantization methods, such as 8-

bit integer (INT8) quantization [18], have been widely adopted due to their simplicity 

and compatibility with hardware accelerators. However, these methods often struggle 

to maintain accuracy in models with large dynamic ranges, such as MN4. 

Recent advancements in quantization have focused on more sophisticated approaches 

to preserve model accuracy. Quantization-Aware Training (QAT) involves training the 

model with quantized weights and activations, allowing it to adapt to the reduced pre-

cision [1,21]. Post-Training Quantization (PTQ), on the other hand, quantizes a pre-

trained model without additional training, making it more practical for deployment 

[25,29,27]. In this paper, we focus on the PTQ for MobileNetV4. Floating-point (FP) 



quantization [16], particularly FP8, has gained attention for its ability to represent a 

wide range of values with reduced precision. However, FP8 quantization still incurs 

higher memory and computational costs compared to integer-based methods. This has 

led to the development of hybrid quantization techniques that combine the benefits of 

FP and INT quantization. 

3 Method 

3.1 Preliminary 

Quantization is a widely adopted technique [18,4] in deep learning to reduce the com-

putational complexity and memory footprint of neural networks by converting contin-

uous floating-point values (e.g. weights, activations, and gradients) into discrete integer 

representations. 

For a given floating-point tensor x, the standard b-bit INT quantization process can 

be formalized as follows: 

 

𝑥𝑖𝑛𝑡 =  𝑄(𝑥) =  𝑐𝑙𝑎𝑚𝑝 (⌊
𝑥−𝑧

𝑠
⌉ , 𝑞𝑚𝑖𝑛 , 𝑞𝑚𝑎𝑥)                               (1) 

 

where s is the scaling factor, which maps the range of floating-point values to the de-

sired integer range; z is the zero-point, an offset that ensures proper alignment between 

the quantized and floating-point ranges; ⌊⋅⌉ denotes the rounding operation (typically 

rounding to the nearest integer); clamp(⋅) restricts values to the valid integer range 

[𝑞𝑚𝑖𝑛 , 𝑞𝑚𝑎𝑥], where 𝑞𝑚𝑖𝑛 = −2𝑏−1 and 𝑞𝑚𝑎𝑥 = 2𝑏−1 − 1 for a signed b-bit represen-

tation. 

Quantization significantly reduces the memory requirements [15] of neural net-

works, making them more suitable for deployment on resource-constrained devices. 

Group Quantization extends traditional quantization by partitioning the tensor into 

multiple groups, each sharing a common scaling factor 𝑠𝑔 and zero-point 𝑧𝑔 [9]. This 

approach reduces the number of quantization parameters compared to per-channel 

quantization, thereby further optimizing memory usage and computational efficiency 

while maintaining competitive accuracy. 

For a tensor 𝑥 divided into 𝐺 groups, the quantization process for group 𝑔 is defined 

as: 

 

𝑥int,𝑔 = 𝑄𝑔(𝑥𝑔) = clamp (⌊
𝑥𝑔−𝑧𝑔

𝑠𝑔
⌉ , 𝑞𝑚𝑖𝑛 , 𝑞𝑚𝑎𝑥)                        (2) 

 

where 𝑥𝑔 represents the subset of the tensor belonging to group 𝑔; 𝑠𝑔 and 𝑧𝑔 are the 

scaling factor and zero-point specific to group 𝑔. 

GSE-INT (Group Shared Exponents Integer) is an advanced quantization tech-

nique that further enhances group quantization by sharing the exponent component 

within each group while quantizing the mantissa under the constraint of the shared ex-

ponent [30]. Mathematically, each floating point value x is decomposed as: 
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𝑥 = (−1)𝑠 ⋅ 2𝑒 ⋅ 𝑚                                                (3) 

 

 

 
Fig.1. Comparison of quantization formats (INT4, INT6, INT8) with their GSE-INT counterparts (GSE-

INT4, GSE-INT6, GSE-INT8) 

 

where 𝑠 is the sign bit (𝑠 = 0 for positive values, 𝑠 = 1 for negative values); 𝑒 is the 

shared exponent of the group 𝑔, typically chosen as the maximum exponent within the 

group to avoid overflow; 𝑚 is the mantissa, which is quantized under the constraint of 

the shared exponent 𝑒. 

As shown in Figure 1, GSE-INT reduces the memory overhead associated with stor-

ing unique exponents for each value, particularly in deep neural networks with large 

weight tensors.  

In GSE-INT, the shared exponent 𝑒 is determined by the maximum value in the 

group to ensure that all values within the group can be represented without overflow 

[5]. The mantissa 𝑚 is then quantized to a fixed bit-width, allowing for efficient storage 

and computation. This strategy achieves a balance between memory efficiency and 

model accuracy by grouping tensor elements with similar magnitudes [2] and sharing 

their exponents. We use 5 bits for exponent in each group, which is significantly smaller 

than the classical INT quantization using 16 bits to store scale and zero point. 



3.2 GSE in MobileNetV4 

In this section, we present the method, GSE-MN4, which involves the integration of 

Group-Shared Exponents Integer (GSE-INT) quantization into MobileNetV4.  

Our approach consists of three steps: (1) layer-wise analysis to determine the quantiza-

tion sensitivity of each layer, (2) automatic bit-width allocation based on sensitivity 

thresholds, and (3) group-wise quantization using GSE-INT. 

Step 1: Layer Sensitivity Analysis. To effectively apply quantization to Mo-

bileNetV4, we first perform a layer-wise sensitivity analysis to identify the sensitivity 

of each layer to quantization errors. This step is crucial for determining the optimal bit-

width allocation for each layer. 

Procedure 1. We select a small calibration dataset (e.g., 128 samples) from the train-

ing dataset. 2. For each layer 𝑙, we quantize its weights and activations to different bit-

widths 𝑏 (e.g. 2-bit, 4-bit, 8-bit) while keeping all other layers at their original preci-

sion. 3. Inference using quantized network on the calibration dataset to get 𝑂𝑏
𝑙̂  for each 

layer 𝑙 and its bit-width 𝑏. 4. We measure the Mean Squared Error (MSE) between the 

original logits 𝑂 and the quantized logits 𝑂𝑏
𝑙̂ . The sensitivity metric 𝑂𝑏

𝑙̂  for layer 𝑙 at bit-

width 𝑏 is defined as: 

 

𝑆𝑏
𝑙 = 𝑀𝑆𝐸 (𝑂, 𝑂𝑏

𝑙̂ )                                                 (4) 

 

where 𝑂 represents the original logits, and 𝑂𝑏
𝑙̂  denotes the logits obtained when layer 𝑙 

is quantized to 𝑏-bit precision. 

In Figure 2, we present the sensitivity plots for MobileNetV4 variants, including 

MobileNetV4-Conv-Small, MobileNetV4-Conv-Medium, and MobileNetV4-Hybrid-

Medium, under INT4, INT6, and INT8 quantization. The plots illustrate the sensitivity 

metric 𝑆𝑏
𝑙  for each layer across different bit-widths, providing a comprehensive analysis 

of quantization sensitivity. 

Step 2: Automatic Bit-Width Allocation. We propose an automatic bit-width allo-

cation strategy based on the sensitivity analysis to assign the optimal bit-width to each 

layer. This strategy ensures a balance between model compression and accuracy preser-

vation. 

Procedure 1. We define a threshold τ that represents the maximum acceptable sen-

sitivity for a layer. 2. For each layer 𝑙, we select the minimum bit-width 𝑏𝑙 that satisfies 

𝑆𝑏
𝑙 < 𝜏. 3. This results in a mixed-precision quantization scheme, where sensitive layers 

are assigned higher bit-widths (e.g., 8-bit) to minimize information loss, while less sen-

sitive layers are assigned lower bit-widths (e.g., 2-bit or 4-bit) to enhance compression 

efficiency. 

The bit-width allocation process is visualized in Figure Y, which demonstrates how 

the sensitivity metric 𝑆𝑏
𝑙  guides the selection of optimal bit-widths for each layer. We 

identify the minimum bit-width that satisfies the accuracy constraint by comparing 𝑆𝑏
𝑙  

against the threshold τ. 
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Fig. 2. Layer sensitivity analysis of different MobileNetV4 variants. The group size is 32. 

 

Group-Wise Quantization with GSE-INT. After determining the bit-width 𝑏𝑙  for 

each layer 𝑙, we apply group-wise quantization using the Group-Shared Exponents In-

teger (GSE-INT) method. This approach further optimizes the quantization process by 

leveraging shared exponents within groups of weights. 



 
 

Fig. 3. Bit-width allocation process based on layer sensitivity analysis. 

 

Procedure 1. For each layer 𝑙, we partition its weights into groups 𝑔 based on a pre-

defined strategy (e.g., by output channels or feature map blocks); 2. Within each group 

𝑔, we represent the weights using the GSE-INT format: 

 

𝑥 = (−1)𝑠 ⋅ 2𝑒 ⋅ 𝑚                                               (5) 

 

where 𝑒 is the shared exponent in a group, typically derived from the maximum abso-

lute value in the group. 

Step 3: The mantissa 𝑚 is quantized according to the allocated bit-width 𝑏: 

 

𝑚 =
clamp(⌊

2𝑏−1𝑥

(−1)𝑠2𝑒⌉,0,2𝑏−1−1)

2𝑏−1
                                      (6) 

 

This ensures that the quantization error is minimized while adhering to the bit-width 

constraints. 

4 Experiments 

4.1 Settings 

Datasets and Evaluation Metrics. In our experiments, we utilize the ImageNet-1K [3] 

dataset, which is a widely recognized benchmark for image classification tasks. This 

dataset comprises 1.28 million training images and 50,000 validation images, spanning 

1,000 distinct classes. To evaluate the performance of our proposed GSE-MN4 model, 

we employ several key metrics, including Top-1 and Top-5 accuracy, which measure 

the model's ability to correctly identify the most probable class and the top five probable 

classes, respectively. Additionally, we assess the model's memory footprint, which is 

crucial for deployment on resource-constrained devices. 
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Table 1. Quantization results of different methods on MobileNetV4. The group size for GSE-

INT is 32, and the group size for INT is 128. 

Network Quantization Method Bitwidth Memory (MB) Top-1 (%) Top-5 (%) 

MN4-Conv-S 

BF16 

INT8 

INT6 

GSE-INT8 

GSE-INT6 

GSE-MIX (τ=0.1) 

GSE-MIX (τ=0.5) 

16 

8 

6 

8 

6 

4/6/8 

4/6/8 

7.15 

3.69 

2.79 

3.64 

2.75 

3.23 

2.73 

73.74 

73.44 

51.97 

73.12 

43.09 

73.34 

72.60 

91.43 

91.20 

75.94 

91.10 

67.85 

91.17 

90.93 

MN4-Conv-M 

BF16 

INT8 

INT6 

GSE-INT8 

GSE-INT6 

GSE-MIX (τ=0.1) 

GSE-MIX (τ=0.5) 

16 

8 

6 

8 

6 

4/6/8 

4/6/8 

18.40 

9.49 

7.19 

9.38 

7.08 

7.20 

6.19 

79.09 

79.09 

77.55 

79.02 

77.76 

78.55 

77.55 

94.77 

94.72 

93.97 

94.74 

94.07 

94.41 

93.90 

MN4-Hybrid-M 

BF16 

INT8 

INT6 

GSE-INT8 

GSE-INT6 

GSE-MIX (τ=0.1) 

GSE-MIX (τ=0.5) 

16 

8 

6 

8 

6 

4/6/8 

4/6/8 

20.96 

10.81 

8.19 

10.69 

8.07 

7.86 

7.03 

80.43 

80.36 

79.69 

80.41 

77.74 

79.92 

79.04 

95.38 

95.27 

94.92 

95.38 

93.78 

95.14 

94.78 

4.2 ImageNet-1K Accuracy Experiments 

Baseline Methods. To establish a comprehensive comparison, we evaluate the perfor-

mance of our proposed GSE-MN4 model against several baseline quantization methods 

applied to different variants of MobileNetV4 [19]. Specifically, we consider the fol-

lowing networks and quantization methods: (1)MN4-Conv-S: A small convolutional 

variant of MobileNetV4; (2) MN4-Conv-M: A medium convolutional variant of Mo-

bileNetV4; (3) MN4-Hybrid-M: A medium hybrid variant of MobileNetV4, combining 

convolutional and attention-based layers. We quantize these networks using different 

quantization methods, including classical group integer quantization to 8 bits and 6 bits 

(represented as INT8 and INT6, respectively). The GSE-INT8 and GSE-INT6 methods 

involve quantization with the same bitwidth for all layers. GSE-MIX is the proposed 

method with different sensitivity thresholds τ. 

The results of our experiments are summarized in Table 1, which presents the Top-

1 and Top-5 accuracy, as well as the memory footprint for each combination of network 

and quantization methods. 



 
Fig. 4. Influence of Group Size on Model Performance. 

 

Analysis. The proposed GSE-MN4 model, particularly with the GSE-MIX quanti-

zation method, demonstrates competitive performance across all network variants. For 

MN4-Conv-S, GSE-MIX (τ = 0.1) achieves a Top-1 accuracy of 73.34%, with a 

memory footprint of 3.23 MB. This performance is notably close to the full-precision 

BF16 model while significantly reducing memory usage. 

Similarly, for MN4-Conv-M and MN4-Hybrid-M, the GSE-MIX methods consist-

ently outperform traditional INT8 and INT6 quantization in terms of accuracy, with 

only a marginal increase in memory footprint. For instance, GSE-MIX (τ = 0.01) on 

MN4-Hybrid-M achieves a Top-1 accuracy of 78.55%, compared to 77.55% for INT6 

quantization. They have nearly the same memory consumption (7.20 MB v.s. 7.19 MB). 

These results highlight the efficacy of the Group-Shared Exponents (GSE) approach 

in balancing accuracy and model efficiency, making it a promising candidate for de-

ployment in mobile and edge devices. The mixed-precision GSE-MIX methods, in par-

ticular, offer a superior trade-off between accuracy and compression, demonstrating the 

importance of adaptive quantization strategies in modern neural network deployment. 

4.3 Ablation 

Impact of Group Size on Model Performance. To further investigate the impact of 

group size on the performance of the GSE-MN4 model, we conduct an ablation study 

focusing on the MobileNetV4-Conv-Medium variant. Specifically, we compare the 

Top-1 accuracy and memory footprint for different group sizes: 8, 16, 32, and 64. The 

results are visualized in Figure 4. 
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As shown in Figure 4, the group size significantly influences both the model's accu-

racy and memory footprint. The following observations can be made: The ablation 

study reveals that the choice of group size is crucial in balancing the trade-off between 

model accuracy and memory efficiency. Smaller group sizes (e.g., 8) tend to prioritize 

accuracy but demand more memory, while larger group sizes (e.g., 64) considerably 

reduce memory usage at the expense of accuracy. Group size 32 achieves a Pareto op-

timal balance between memory usage and top-1 accuracy. It provides a satisfactory 

compromise, ensuring a reasonable level of accuracy while maintaining a manageable 

memory footprint. These insights are instrumental in optimizing the GSE-MN4 model 

for specific deployment scenarios, particularly in resource-constrained environments. 

5 Conclusion 

In this work, we introduced GSE-MN4: Group-Shared Exponents Integer Quantization 

for MobileNetV4, a novel quantization framework designed to address the challenges 

of deploying deep learning models on resource-constrained edge devices. By leverag-

ing the Group-Shared Exponents (GSE) format, our approach significantly reduces the 

memory footprint while maintaining high accuracy. These results outperform tradi-

tional quantization methods, highlighting the potential of GSE-INT for efficient de-

ployment on mobile and edge devices. Our work paves the way for more efficient and 

accurate deep learning models in resource-constrained environments. 
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