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Abstract. With the breakthrough development of large language models, the rec-

ommendation system is undergoing a transformation from the traditional recom-

mendation model based on the unique identity (ID) of users/items (pure ID-based 

model, IDRec) to the recommendation model integrated with pre-trained modal-

ity encoder (modality-based recommendation model, MoRec). This paradigm 

overcomes the cold start problem and enables the recommendation model to 

achieve cross-platform migration through pretraining. However, the vector en-

coded by the modality encoder always contains more information. Given this, a 

natural question arises: would MoRec suffer more security issue which could 

cause serious leakage of user historical behavior data compared to IDRec? We 

aim to explore this question and study modality-based attack model in textual 

field. Specifically, we study several subquestions: (i) which recommendation par-

adigm, T-MoRec (Textual-MoRec) or IDRec, performs worse in protecting user 

privacy against attacks by the attack model? (ii) can the latest technical advances 

from NLP translate into attack improvement for T-MoRec? (iii) are there other 

factors affect textual recommendation attack model? What's the proper setting to 

conduct the attack? To answer all this questions, we purpose Text-based Recom-

mendation Attack Model (TRAM) and conduct rigorous experiments with textual 

modality. We provide the first empirical on two public datasets, MIND and EB-

NeRD, demonstrating that T-MoRec leads to serious leakage of user historical 

behavior data compared with IDRec under the same conditions. Additionally, we 

show that the leakage is consistently influenced by the hyperparameters and train-

ing cost in textual recommendation attack model.  

Keywords: Information Security, Recommendation System, Data Mining. 

1 Introduction 

Recommendation systems nowadays provide personalized item recommendations 

based on user interactions, with deep learning and graph neural networks playing a 

crucial role. However, it is important to note that both these methods heavily rely on 

ID mapping information during training. Specially, the training data consists solely of 

mapped user/item indices, and their interactions are represented in the interaction ma-

trix using binary values (1 for interaction and 0 for no interaction). While this data has 

proven effective, it overlooks other valuable data, such as rich textual information re-

lated to items. The absence of this additional information can lead to a reduction in the 

amount of information captured in the learned representations. 



In recent years, there has been a growing interest in leveraging various data modali-

ties to enhance recommendation systems. In particular, large language models (LLMs) 

such as GPT-4 [1] and LLaMA [2] have shown remarkable performance in natural lan-

guage understanding tasks. Current studies [3] have already combined recommendation 

methods with the characteristics of language models. The shift from pure ID-based 

model (IDRec) to modality-based recommendation model (MoRec) has revealed that 

under state-of-the-art LLM encoders, MoRec can achieve or surpass the recommenda-

tion effectiveness of IDRec. 

 

Fig. 1. Two illustrative examples of recommender exposure data are shown. The left illustrates 

that user interacts with two news items in the exposed item slate. And the right depicts a case 

where no interactions are observed between the exposed items and the user. 

In this paper, we intend to explore a potential security risk of Textual Modality-based 

Recommendation (T-MoRec) and investigate a key question: Whether there are secu-

rity risks in T-MoRec that affect its development? We conduct experiments using rec-

ommender system exposure data since this kind of data has been demonstrated to be 

capable of causing user behavior leakage [4]. Fig. 1 gives illustrative examples of the 

exposure data. To be concise, we attempt to address the following subquestions: 

RQ1: Equipped with modality encoders (MEs), would T-MoRec perform worse 

in protecting user privacy against attacks by the attack model? To answer this ques-

tion, we propose a new Textual modality-based Recommendation Attack Model 

(TRAM). We conduct empirical studies using both IDRec-based Attack Model (IAM) 

and TRAM, evaluated on two real-world recommendation datasets: MIND [5] and EB-

NeRD [6]. 

Novelty clarification: Previous studies on T-MoRec [7-9] have not provided rigorous 

comparison with IDRec in terms of security. A fair comparison here means that T-

MoRec and IDRec should be compared using the same backbone network and experi-

mental settings, such as training setups and optimization techniques. Security compar-

ison means that when facing the same attack model, would T-MoRec perform worse in 

protecting user privacy against attacks by the attack model compared to IDRec? 

RQ2: Can the recent technical advances in the field of NLP leads to significant 

leakage of user's historical behavioral data in T-MoRec? We investigate this ques-

tion through two experimental approaches. First, we access T-MoRec by comparing 

smaller vs larger ME (Modality Encoder), as prior research indicates that pre-trained 
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ME with larger model sizes typically produce richer modality features than their smaller 

counterparts in various downstream tasks. Second, we evaluate T-MoRec by comparing 

weaker vs stronger ME, where weaker and stronger is determined based on their per-

formance in NLP tasks. 

RQ3: Are there any factors that affect the TRAM? What's the proper setting 

to conduct the attack? A key goal of T-MoRec research is to explore the framework 

and factors influencing the attack model. We aim to identify and analyze the key ele-

ments that affect the effectiveness of the attack model. To ensure a fair comparison, we 

use control variables, including components such as the self-attention based encoder 

and decoder. 

2 Preliminary 

We use 𝑈 to denote user set and 𝐼 to denote item set. In the recommender system, user 

 generates a series of user behaviors (e.g., watching, rating, or liking) based on the 

items exposed by the system. We denote the set of user behavior sequences for user 𝑢 

as 𝐵𝑢, which is considered as user privacy in this work. More specifically, in the news 

recommendation, 𝐵𝑢 could represent the user complete browsing history across multi-

ple session, where 𝐵𝑖
𝑢 corresponds to a sequence of news articles clicked during the -

th session (e.g., 𝐵1
𝑢 = ("Politics News", "Tech Review") for morning browsing, 𝐵2

𝑢 = 

("Sports Update") for afternoon browsing). The set of system recommendation item 

slates for user  is represented by 𝐸𝑖
𝑢 , which serves as the input data for the attack 

model. As shown in Fig. 2, the task of the attack model is to infer 𝐵𝑖
𝑢 from the obser-

vation of 𝐸𝑖
𝑢, which can be formulated as Eq. 1 

 1 2 1 2( , , , , , , ).M Np b b b e e e ∣  (1) 

 

Fig. 2. The attack model aims to infer the privacy of user's past behavior from the system behav-

ior data. 

The input and output of our attack model come from the systems and users, respec-

tively. As the input, the system exposure data  𝐸𝑖
𝑢 is provided solely by the system, 

meaning that the attack model is unaware of which items in  𝐸𝑖
𝑢 were clicked or inter-

acted with by the user. Additionally, the recommender system usually exposes a slate 



of items simultaneously, implying that the items in 𝐸𝑖
𝑢  could have no strong sequential 

orders. Table 1 summarizes the important notations used in this paper. 

Table 1. The glossary table. 

Notations Description 

 The user and item set 

 

The user behavior sequence set of user , 

1 2 | |
{ , , , }u

u u u u

B
B B B B=   

 
A specific user behavior sequence of 

user , 
1 2( , , , )u

i MB b b b=   with 
jb I  

 

The set of exposed item slates for user , 

1 2 | |
{ , , , }u

u u u u

E
E E E E=   

 
A specific exposed item slate for user , 

1 2( , , , )u

i NE e e e=   with 
je I  

 The length of user behavior sequence 

 The size of exposed item slate 

 The item embedding size 

3 Methodology 

3.1 Text-based Recommendation Attack Model 

Our proposed Text-based Recommendation Attack Model (TRAM) focuses on infer-

ring users' private iteration sequences from observed system exposure data. As illus-

trated in Fig. 3, the IDRec-based Attack Model (IAM) represents items using unique 

IDs and retrieves embeddings from the item ID embedding matrix, which are then fed 

into the attack model to infer user privacy. In contrast, TRAM transforms the input 

format of  𝐸𝑖
𝑢 from item IDs to textual representations. Specifically, it leverages various 

pre-trained text encoders followed by a dimension transformation (DT) layer to obtain 

the required embeddings for the attack model. Subsequently, the attack model processes 

these embeddings in the same manner to infer user privacy. To enhance the adaptability 

and effectiveness of TRAM, we employ pre-trained text encoders of varying sizes that 

represent current mainstream architectures. 
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Fig. 3. An overview of TRAM and IAM. 𝑇𝑖 denotes text features, and 𝐸𝑖 represents item embed-

ding. TRAM utilizes pre-trained text encoders, while IAM uses item ID embedding matrix.  

The attack model in TRAM and IAM is designed to reconstruct users' historical be-

havior sequences by leveraging encoded item representations obtained from system ex-

posure data. As shown in Fig. 4, it consists of two key components: a self-attention 

based encoder and an attention-based transformer decoder. The encoder processes the 

sequence of item embeddings to capture the latent contextual information within the 

exposed items, while the decoder utilizes this latent representation to predict the most 

likely sequence of user interactions. To ensure the model effectively captures both 

short-term and long-term dependencies in user behavior, we incorporate position em-

beddings and masked attention in the decoder, enabling it to generate more possible 

predictions of past user actions. The overall architecture facilitates a robust privacy 

inference process by progressively refining the extracted information through multi-

head attention and feed-forward networks. 

 

Fig. 4.  The overall attack model structure. The encoder mapping the system exposure 𝐸𝑖
𝑢 to a 

representation 𝑐. Then the user privacy 𝐵𝑖
𝑢 could be inferred through sequence-wise decoding. 

3.2 Encoder 

The self-attention based encoder consists of multi-head attention and feed-forward net-

work. The multi-head attention mechanism uses scaled dot-product attention in each 

head to capture the relevance of input items. The dot-product attention can be expressed 

as Eq. 2 

 ( , , ) ( ) ,
TQK

Attention Q K V softmax V
d

=  (2) 



where , ,  represent the queries, keys and values, respectively. The scaling fac-

tor √𝑑 is employed to normalize the computed correlations, preventing excessively 

large inner products. Then the multi-head attention on the input item embeddings is 

formulated as Eq. 3 and Eq. 4 

 
1 2( ) concat{ , , , } O

hMHA head head head= E W  (3) 

 Attention( , , ),Q K V

i i i ihead = W E W E W E  (4) 

where
1 2[ , ,... ] N d

N

= E e e e  is the stacked embedding matrix of the exposed 

items. , ,Q K V

i i iW E W E W E  and O
W  are trainable parameters, where h denotes the num-

ber of attention heads. 

To mitigate overfitting and enable a more stable learning without vanishing or ex-

ploding gradient issues, here we also introduce residual connection, dropout layers and 

layer normalization. The representation following the multi-head attention mechanism 

is formulated as Eq. 5 

 𝑬̃ = 𝑬 + 𝑑𝑟𝑜𝑝𝑜𝑢𝑡(𝑀𝐻𝐴(𝐿𝑎𝑦𝑒𝑟𝑛𝑜𝑟𝑚(𝑬))) ∈ ℝ𝑁×𝑑. (5) 

Subsequently, a two-layer of feed-forward network (FFN) is utilized to enhance the 

capacity of encoder. The latent representation after self-attention based encoding is for-

mulated as Eq. 6 

 𝑪𝑎𝑡𝑡 =  𝑬̃ + 𝑑𝑟𝑜𝑝𝑜𝑢𝑡(𝐹𝐹𝑁(𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑬̃))) ∈ ℝ𝑁×𝑑. (6) 

Additionally, a CLS token is inserted into the original input sequence 
1 2( , ,... )Ne e e . 

The corresponding vector of the CLS token in 𝑪𝑎𝑡𝑡 can then be regarded as the final 

encoded vector representation of the system exposure. 

3.3 Decoder 

Based on the encoded latent representation of system behavior, we propose attention-

based transformer decoder. The mathematical details are not reiterated here, as the 

transformer decoder shares a similar calculation process to the attention-based encoder. 

However, it is important to highlight the follow key differences. 

• Unlike the encoder, position embeddings are incorporated in the decoder to differ-

entiate the order of the user's past behaviors and to introduce sequential signals. 

• Given the nature of the attack on user past behavior sequences, the model should 

only consider the last  items when inferring the ( -1)-th item. To address this, a 

casual mask is introduced in the decoder to modify the attention mechanism, thereby 

implementing masked multi-head attention. 

In attention-based transformer decoding, we define cross-entropy loss for each out-

put position to perform the classification. The final loss function for decoding can thus 

be formulated as Eq. 7 
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| |

1 1

( , ) log ,
M

mj mj

m j

y q
= =

= −Q Y
I

L  (7) 

where 
mjy  and 

mjq  are ground-truth probability and the -th entry of the com-

puted probability matrix  (i.e., the stack of tq ). It is important to note that during the 

inference stage, we cannot obtain the ground-truth user behaviors like the training pro-

cess. Therefore, the inference results from previous steps are used as the input for sub-

sequent inference steps. 

4 Experiment 

4.1 Dataset Description 

We evaluate these experiments in two real-world news datasets: MIND [5] and EB-

NeRD [6]. Both of the two datasets contain user behavior data (e.g., clicks) and system 

behavior data (e.g., exposed impressions). Besides, news articles are published contin-

uously and are prone to expiration, which introduces a significant cold-start problem 

[10], contributing to the notable comparison results. Table 2 summarizes the statistics 

of these two datasets. To make a fair comparison between IDRec and T-MoRec, the 

dataset should ensure that user's decisions to click on an item are determined purely by 

the item's textual modality content features. Both in MIND and EB-NeRD we represent 

items by their news article titles. 

Table 2. Dataset statistics. The impressions can be seen as system behavior data while the clicks 

can be regarded as the user behavior privacy. 

Dataset EB-NeRD MIND 

#users 30,485 96,584 

#items 20,746 101,527 

#impressions 3,795,120 74,791,274 

#clicks 477,534 8,716,100 

#Avg. title len. 6.6 11.52 

4.2 Evaluation Protocols 

We use cross-validation to evaluate the performance of TRAM, setting the training, 

validation, and test data split ratio to 8:1:1. We use user-based data splitting strategy 

because it avoids the potential information shortcuts between dataset. For validation 

and test part, the evaluation is to provide the attack model with item exposed by the 

system. Then checking the rank of the 𝑀 ground-truth items in the results. We use Re-

call to evaluate the attack performance. Let @u

iB k  denote the top-𝑘 inference output 



of the attack model1. Recall  measures how many ground-truth user behaviors are 

included in @u

iB k , which is formulated as Eq. 8 

 
@

@

u u

i iB k B
Recall k

M
=
∣ ∣

 (8) 

We then report the average Recall  across the entire test user set as the final re-

sults. In addition, we also report Normalized Discounted Cumulative Gain (NDCG), 

which are weighted versions of Recall assigning higher weights to the top-ranked po-

sitions of the inference result lists. 

4.3 Hyperparameter Settings 

We conduct our experiments with a batch of system exposure data and user behavior 

data (i.e., [ |u u

i iB E ]). For fair comparison, TRAM and IAM use the same hyperparam-

eter settings. The sizes of  and  are set as  and  respectively without 

special mention. The item embedding size  from  according to the pre-

trained model. We train all models with the Adam optimizer [11]. The dropout rate is 

tuned to 0.1. The learning rate  is set as 0.001. For attention-based encoder and trans-

former-based decoder, the hyperparameters of the multi-head self-attention are set as 2 

heads with a total of 128 hidden neurons without further specification. And for the MLP 

(multi-layer perception) we set  to 2. We utilize the weight sharing technique [12, 13] 

to tie the weights of the encoder item embedding and SoftMax layer item embedding 

in the decoder. For label smoothing, the  is set to the 1/ | |I . Each experiment is con-

ducted 3 times and the average result is reported. 

4.4 IDRec vs. T-MoRec Attack Model (RQ1) 

According to existing literature, IDRec has been identified as a significant threat to user 

privacy in recommender systems [4]. As MoRec gains increasing attention in the re-

search community, our focus shifts to comparing these two paradigms to determine 

which one poses a greater risk of privacy leakage. To the best of our knowledge, such 

a direct comparison has not been explicitly addressed in prior studies. 

As shown in Table 3, we observe that in the MIND dataset, TRAM achieves the 

highest score when utilizing the BERTbase encoder. Similarly, in the EB-NeRD dataset, 

TRAM outperforms IAM when employing the DistilBERTmulti encoder. This suggests 

that, compared to IDRec, TRAM leads to more severe leakage of users' historical be-

havior across both datasets. We attribute this to the fact that text-based encoders inher-

ently capture richer contextual information, making them more susceptible to privacy 

 
1   contains  items. It composed of the top-  items of all  inference positions. 
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leakage. This finding raises a critical security concern for T-MoRec research, highlight-

ing the potential risks associated with using stronger text encoders in recommendation 

models. 

Furthermore, we observe that TRAM’s performance aligns closely with IAM across 

various datasets, including MIND and EB-NeRD, suggesting that the primary factor 

influencing privacy leakage is the dataset itself. Compared to EB-NeRD, MIND 

demonstrates a higher risk of historical behavior leakage. This discrepancy is likely due 

to the difference in average title length—11.52 words in MIND vs 6.6 words in EB-

NeRD. The longer and richer vocabulary in MIND makes it easier for the attack model 

to capture semantic patterns, thereby increasing the likelihood of privacy leakage. 

Table 3. Attack performance comparison between TRAM and IAM. TRAM results are obtained 

using different pre-trained MEs. Boldface indicates the highest score within the same dataset. 

"Rec" denotes Recall. Since the EB-NeRD dataset includes Danish, its encoder is a multilingual 

BERT model. 

Dataset Metrics IAM BERTtiny BERTbase
 

RoBERTabase
 

Improv. 

MIND 
Rec@10 0.7387 0.7285 0.7705 0.7579 +4.29% 

NDCG@10 0.3904 0.3769 0.4207 0.4026 +7.76% 

  IAM DistilBERTmulti BERTmulti
 

XML-Rlarge
 

Improv. 

EB-NeRD 
Rec@10 0.7106 0.7387 0.7298 0.7015 +3.95% 

NDCG@10 0.3678 0.4035 0.4002 0.3731 +9.71% 

4.5 Inherit Advance in Modality Encoder (RQ2) 

Intuitively, TRAM's performance also depends on the choice of textual modality en-

coder and the size of the encoder itself. This raises a critical question: Can recent ad-

vancements in NLP lead to severe leakage of users' historical behavioral data in T-

MoRec? We aim to address this from the following perspectives. 

First, we evaluate whether a larger pre-trained ME increases the risk of user behav-

ioral data leakage in T-MoRec. As shown in Fig. 5, our evaluation on the MIND dataset 

reveals a clear trend: larger NLP models tend to heighten security risks, i.e., BERTtiny -

based TRAM < BERTsmall -based TRAM < BERTbase -based TRAM. However, when 

evaluating TRAM on the EB-NeRD dataset, we observe a different trend: BERTmulti -

based TRAM < DistilBERTmulti -based TRAM. This is likely because DistilBERTmulti 

and BERTmulti share the same hidden dimensions, but DistilBERTmulti undergoes a dis-

tillation process that removes redundant noise and focuses on the most relevant fea-

tures. This enhanced representational efficiency allows DistilBERTmulti -based TRAM 

to achieve better attack performance than its BERTmulti counterpart. Thus, while larger 

MEs generally pose a greater security risk, this trend does not hold in all cases. 

Besides, we investigate whether a more powerful encoder network leads to improved 

attack performance. For instance, RoBERTa is widely recognized as outperforming 

BERT. However, as shown in Fig. 5, TRAM with RoBERTabase does not surpass TRAM 

with BERTbase on the MIND dataset, despite RoBERTa being considered a stronger 

model. A similar pattern is observed in EB-NeRD, where the weaker DistilBERTmulti, 



paradoxically, achieves the highest Recall@10 and NDCG@10 score. These findings 

suggest that a more powerful NLP model does not necessarily increase security risks. 

 

Fig. 5. Evaluation of attack performance with different MEs in TRAM on the MIND and EB-

NeRD dataset. Rec-IAM and NDCG-IAM denote the Rec@10 and NDCG@10 of IAM. 

4.6 TRAM Study (RQ3) 

In this subsection, we conduct experiments to explore the factors that influence the 

performance of TRAM. Specifically, we examine the impact of the number of attention 

heads in the multi-head self-attention mechanism and analyze the training cost associ-

ated with different model architectures. 

Multi-head self-attention. As shown in Fig. 6(a), we evaluate the attack perfor-

mance of TRAM using BERTtiny and BERTbase, where the number of attention heads is 

set to {1, 2, 4, 8}. We observe that the attack performance steadily decreases as the 

number of heads increases in BERTtiny. Specifically, when the number of heads is set 

to 8, the attack performance decreases by 2.37% compared to when the number of heads 

is set to 1. However, when using BERTbase, we observe a different phenomenon that 

attack performance peaks when the number of heads is set to 2, instead of following a 

consistent decline. 

Besides, we also show the results on EB-NeRD under the same experimental set-

tings. As shown in Fig. 6(b), the attack performance of TRAM with DistilBERTmulti and 

BERTmulti follows a similar trend to that observed with BERTtiny on the MIND dataset. 

Specifically, when DistilBERTmulti is used as the modality encoder, attack performance 

decreases steadily as the number of heads increases. Conversely, for BERTmulti, the at-

tack performance peaks when the number of heads is set to 1, mirroring the behavior 

observed with BERTtiny in the earlier experiment. 

The observed performance trends can be attributed to the varying representational 

capacities of the modality encoders. On the MIND dataset, BERTbase exhibits signifi-

cantly larger hidden dimensions and a more complex architecture, enabling its multi-

head attention mechanism to capture a wide range of semantic subspaces. In contrast, 

BERTtiny, with smaller hidden dimensions and fewer layers, is more constrained in its 

expressive power. As the number of heads increases, the dimensions of each head in 

smaller models decreases, limiting their ability to capture complex features. Con-

versely, encoders like BERTbase, with sufficient representational capacity, are better 
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equipped to leverage multi-head attention even as the number of heads increases. As a 

result, when the number of heads in BERTbase -based TRAM increases to N = 2, each 

head maintains a sufficient dimension to capture more complex features. 

On the EB-NeRD dataset, DistilBERTmulti and BERTmulti have the same hidden di-

mensions and a similar number of parameters, so both these models have similar rep-

resentational capacity. Explained why both of them have the same result, achieving the 

highest performance when the number of heads is set to 1 in TRAM. 

 

Fig. 6. Attack performance with different N heads on MIND and EB-NeRD. 

Training cost. As shown in Fig. 5, when facing attack T-MoRec with larger ME 

tend to pose greater security risk. However, the training time also increase since the 

architecture of attack model is self-attention based with a long interaction sequence. 

We show the training cost on MIND and EB-NeRD in Table 4. It’s easy to imagine that  

RoBERTabase and XML-Rlarge have the highest training time because both have the 

most parameters. This is consistent with existing similar research findings [4]. There-

fore, while utilizing text modality information can improve attack effectiveness, it often 

comes with a higher training cost. 

Table 4. The training cost. Param: number of tunable parameters, Time/E: averaged training time 

for one epoch, ‘m’ means minutes. We use A10 GPU with 24G memory. 

Dataset Method Param. Time/E Dataset Method Param. Time/E 

MIND 

IAM 40M 3.8m 

EB-

NeRD 

IAM 5M 0.14m 

BERTtiny 4M 7.3m DistilBERTmulti 135M 0.35m 

BERTbase 109M 16.5m BERTmulti 178M 0.33m 

RoBERTabase 125M 17.8m XML-Rlarge 559M 0.61m 

5 Conclusions and Future Work 

In this study, we propose a new recommendation attack model, TRAM, which explores 

the risk of textual modality-based recommender system in terms of user privacy leak-

age. The results show that T-MoRec would suffer more serious security risk, leading to 



leakage of users' historical behavior data, compared to the traditional IDRec. In addi-

tion, we found that the risk of privacy leakage generally increases with ME parameters 

size and is consistently influenced by the hyperparameters and training cost in the attack 

model. Therefore, how to further reduce the risk of privacy leakage while improving 

the recommendation effect is still an important direction for future research. Future 

work can further optimize the architecture of modal encoders and explore more privacy-

protecting methods, especially in large-scale datasets and diverse scenarios. In addition, 

further research is needed to investigate the portability of T-MoRec across different 

platforms and its impact on privacy protection. 
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