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Abstract. Text-to-speech (TTS) synthesis converts natural language text into 

speech, with deep learning driving recent advancements. While Transformer 

models excel at capturing dependencies, their quadratic complexity leads to high 

training costs. State-space models (SSMs), such as Mamba, offer sub-quadratic 

complexity, efficiently modeling long-range dependencies. We propose TM-

Speech, a hybrid TTS system integrating Mamba for long-range dependencies 

and Transformer for short-range dependencies, reducing training costs while 

maintaining quality. Comparative experiments on LJSpeech and AISHELL-3 da-

tasets show TM-Speech is 2× smaller and 3× faster than FastSpeech2 during 

training. Comprehensive evaluations using subjective metrics (Mean Opinion 

Score, Comparative Mean Opinion Score) and objective metrics (Word Error 

Rate, Character Error Rate) demonstrate TM-Speech achieves superior audio 

quality and intelligibility, with lower WER (4.65% vs. 5.12%) and CER (2.08% 

vs. 2.34%) on LJSpeech. The code is available at https://github.com/Apolar-

ity886/TM-Speech. 
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1 Introduction 

Deep generative networks have been employed to synthesize understandable natural 

speech from text [1]. These networks have evolved from basic generative models, such 

as autoregressive models, to more advanced models, including Variational Autoencod-

ers (VAE), Generative Adversarial Networks (GAN), normalizing flows, and diffusion 

models [2,3,4,5]. They have also transitioned from CNN/RNN-based architectures 

[6,7,8,9] to Transformer-based models [10]. However, CNN-based models are con-

strained by their local receptive fields, which significantly limits their ability to capture 

long-range dependencies and results in suboptimal performance in generation tasks. 

While Transformer-based models excel in global modeling, their self-attention mecha-

nism exhibits quadratic complexity relative to the token length. This means that, when 



 

predicting the next token, the Transformer must consider relationships across all previ-

ous tokens in the sequence. Recent research indicates that state-space models (SSMs) 

have shown promising advancements in sequence modeling problems [11,12,13,14]. 

Among SSM-based models, Mamba [15] demonstrates performance comparable to 

Transformers in language modeling while maintaining linear time complexity. 

Recent research has demonstrated that state-space models (SSMs) and Transformers 

are complementary in language modeling [16,17]. Based on this insight, we propose a 

hybrid architecture, TransMamba, built upon FastSpeech2 [18]. This architecture inte-

grates the strengths of both Transformer and Mamba models for effective long-term 

and short-term sequence modeling, while also maintaining the advantage of fast infer-

ence and direct generation of audio waveforms from text. 

We conducted combined experiments using the encoder-decoder architecture [2]. 

The results revealed that the hybrid architecture, which integrates both Transformer and 

Mamba, outperformed other configurations: the encoder-decoder with only Trans-

former modules, the encoder-decoder with only Mamba modules, and the Mamba en-

coder with Transformer decoder method. Consequently, we propose TM-Speech, an 

encoder-decoder neural network built using TransMamba modules. Experiments 

showed that TM-Speech achieved a 3× reduction in training time, while having only 

50% of the model size compared to FastSpeech2. In addition, TM-Speech has lower 

WER and CER on LJSpeech. 

2 Related Work 

Transformer models, with their self-attention mechanisms, have become a cornerstone 

of speech processing, driving advancements in both automatic speech recognition 

(ASR) and text-to-speech (TTS) systems [19,20]. Models like FastSpeech2 [18] and 

VALL-E [23] leverage Transformers to achieve high-quality speech synthesis by mod-

eling complex dependencies in sequential data. FastSpeech2, for instance, uses a non-

autoregressive architecture with variance adaptors to predict duration, pitch, and en-

ergy, enabling faster and more controllable speech generation compared to autoregres-

sive models. Similarly, VALL-E employs a language model-like approach to generate 

diverse speech outputs, excelling in zero-shot TTS scenarios. However, the quadratic 

complexity of Transformer attention mechanisms poses significant challenges, partic-

ularly for long-form speech, where memory and computational costs scale poorly with 

sequence length. 

To address these limitations, state-space models (SSMs) have emerged as a compelling 

alternative due to their linear complexity and ability to model long-range dependencies 

efficiently. SSMs, such as Mamba [15], use structured state transitions to process se-

quences, offering memory-efficient computation compared to Transformers. In the TTS 

domain, recent studies have explored integrating SSMs with existing architectures to 

improve efficiency without sacrificing quality. For example, Jiang et al. [24] incorpo-

rated the Mamba module into VALL-E, replacing parts of the Transformer-based de-

coder with Mamba’s state-space layers. Their results showed improved memory effi-

ciency and faster inference times, though speech quality slightly lagged behind 
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Transformer-only models in certain expressive scenarios. Similarly, Miyazaki et al. 

[21] proposed VMamba, a FastSpeech2-based model that integrates bidirectional feed-

forward Mamba modules into the variance adaptor and encoder-decoder framework. 

VMamba demonstrated superior speech generation speed and reduced memory foot-

print compared to FastSpeech2, particularly for long utterances, while maintaining 

comparable Mean Opinion Scores (MOS) in subjective evaluations. 

Other works have explored hybrid architectures combining Transformers and SSMs to 

leverage their complementary strengths. For instance, Chen et al. [26] introduced a hy-

brid Transformer-Mamba model for ASR, where Mamba layers handled low-level fea-

ture extraction, and Transformer layers focused on high-level contextual modeling. 

Their approach achieved lower Word Error Rates (WER) than Transformer-only mod-

els on long-form audio datasets, highlighting Mamba’s potential for scalable speech 

processing. 

3 Model Description 

In this section, we first describe the design motivation behind TM-Speech and then 

introduce the architecture of our model. TM-Speech leverages Mamba’s exceptional 

capability in modeling one-dimensional sequences to enhance audio reasoning. This 

approach aims to simplify the training pipeline and improve speech quality for fully 

end-to-end text-to-waveform synthesis. 

3.1 Motivation 

FastSpeech2, which is based solely on Transformers, has achieved outstanding audio 

synthesis quality in the field of text-to-speech (TTS) [18]. However, due to the quad-

ratic complexity of the attention mechanism, the encoder-decoder architecture com-

posed of multi-layer feed-forward Transformer (FFTr) modules [26] requires a long 

time to converge when trained on large datasets and is highly dependent on GPU com-

puting resources. Recently, state-space models (SSMs), particularly Mamba [15], have 

demonstrated excellent performance in modeling long sequences. This led us to con-

sider incorporating the Mamba method into TTS, with the aim of reducing model train-

ing costs and improving inference audio quality. In the following subsection, we intro-

duce the detailed design of TM-Speech, which is intended to address these challenges. 



 

 

Fig. 1. The overall architecture for TM-Speech. Norm in subfigure (b) denotes RMSNorm in 

Mamba. SS1D in subfigure (c) denotes bidirectional scanning SSM module. 

3.2 Model Overview 

The architecture of TM-Speech is illustrated in Fig.1(a). It is built upon the 

FastSpeech2's encoder-decoder framework and primarily consists of four TransMamba 

stacks. As depicted in Fig.1(b), each TransMamba stack integrates a FFTr module with 

a Mamba module to model one-dimensional sequences. The process begins with the 

encoder, which adds the phoneme embedding sequence and positional encoding. This 

sequence first passes through the Mamba pre-processing module, then progresses 

through the four-layer TransMamba stack for encoding, and ultimately produces the 

phoneme hidden sequence. 

Following the approach of FastSpeech2, we incorporate three types of variance infor-

mation—duration, pitch, and energy—into the hidden sequence using a variance 

adapter. This augmentation enriches the hidden sequence with additional audio fea-

tures. Finally, the decoder, which mirrors the structure of the encoder, converts the 

adapted hidden sequence into a mel spectrogram sequence in parallel.  

Formally, let 𝑋 ∈ ℝ𝐵×𝐿 denote input sequences with batch size B and length L and po-

sition encoding flow into the embedding layer. The embedding layer can be expressed 

as follows: 

 𝐸 = E𝑡𝑜𝑘𝑒𝑛(𝑋)  (1) 

where 𝐸 ∈ ℝ𝐵×𝐿×𝐷  is output embedding, D is the dimension of the embedding,  

E𝑡𝑜𝑘𝑒𝑛 denote toke embedding layer. After that, we preprocess the sequence by a 

Mamba block to internally embed order information of input tokens. Mamba can be 

regarded as a RNN where the hidden state ℎ𝑡  at current time 𝑡 is updated by the hidden 

state ℎ𝑡−1 at previous time 𝑡-1 as shown in the Equation 6. 

 𝑔̃ = TransMamba (𝑀𝑎𝑚𝑏𝑎𝑝𝑟𝑒(𝐸))  (7) 
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where the processed sequence 𝑔 ∈ ℝ𝐵×𝐿×𝐷 flows into the TransMamba module to ob-

tain the encoded sequence 𝑔̃ ∈ ℝ𝐵×𝐿×𝐷. The Variance adaptor extracts the duration, 

pitch, and energy information from the sequence and compares them with the true value 

to perform mean square error (MSE). 

𝑑̂ = DurationPredictor(𝑔̃) 
𝑝̂ = PitchPredictor(𝑔̃) 

𝑒̂ = EnergyPredictor(𝑔̃) 

The predicted variational information is added to the sequence obtained by the encoder 

and then put into the decoder. The decoder converts the output sequence into a Mel 

spectrum sequence 𝑦̃ ∈ ℝ𝐵×𝐿×𝑀 with Mel channel number M through a 1D convolu-

tional layer. 

𝑔̂ = 𝑔̃ + 𝑝̂ + 𝑒̂ 

𝑦̃ = TransMamba (𝑀𝑎𝑚𝑏𝑎𝑝𝑟𝑒(𝑔̂)) 

𝑦̂ = Conv1D(𝑦̃) 

We use HiFi-GAN as our vocoder to convert the mel spectrogram into the final audio. 

In the following subsections, we provide a detailed description of the TransMamba and 

the variance adapter designs. 

3.3 TransMamba 

As a key component of the model, TransMamba combines the advantages of both 

Transformer and Mamba, enabling the module to effectively handle both long- and 

short-range dependencies. Additionally, the linear complexity of Mamba significantly 

reduces the model's convergence time during training. TransMamba consists of a layer 

of basic FFTr modules from the Transformer and a layer of Mamba modules. The FFTr 

modules utilize a multi-head attention mechanism, allowing the model to focus on dif-

ferent parts of the sequence and capture contextual information. 

As shown in Fig.3(c), the Mamba module is a sequence-to-sequence module with 

matching input and output dimensions. Specifically, Mamba takes the input and ex-

pands its dimensions through two linear projections. For one of these projections, 

Mamba processes the expanded embeddings using convolution and SiLU activation 

before passing them to the SS1D module. The core discrete 1D-Selective-Scan (SS1D) 

module, derived from the SSM component in Mamba, selects relevant information 

based on the input while filtering out irrelevant data. 

The SSM is motivated by a continuous system that transforms an input function or 

sequence 𝑥(𝑡) ∈ ℝ into an output function or sequence  𝑦(𝑡) ∈ ℝ via an implicit latent 

state ℎ(𝑡) ∈ ℝ𝑁, defined as follows: 

ℎ′(𝑡) = 𝐴ℎ(𝑡) + 𝐵𝑥(𝑡) 
        𝑦(𝑡) = 𝐶ℎ(𝑡) 



 

where 𝐴 ∈ ℝ𝑁×𝑁, 𝐵 ∈ ℝ𝑁×1, and 𝐶 ∈ ℝ1×𝑁 are learnable matrices. The SSM can be 

discretized, converting continuous signals into discrete sequences with a  step size 𝛥. 

The discretized form is expressed as: 

ℎ𝑡 = 𝐴̅ℎ𝑡−1 + 𝐵̅𝑥𝑡  
        𝑦 = 𝐶ℎ𝑡 

where the discrete parameters (𝐴̅, 𝐵̅)  are derived from the continuous parameters  

(𝛥, 𝐴, 𝐵) through a discretization rule, such as the zero-order hold (ZOH) method. Spe-

cifically, 𝐴̅ = 𝑒𝑥𝑝(𝛥𝐴)  and 𝐵̅ = 𝑒𝑥𝑝(𝛥𝐴)−1(𝑒𝑥𝑝(𝛥𝐴) − 𝐼) ∗ 𝛥𝐵 . After discretiza-

tion, the model can be computed in two distinct ways: either as a linear recurrence for 

inference, as in Equation 5, or as a global convolution during training, as expressed in 

Equation 6: 

𝐾 = (𝐶𝐵̅, 𝐶𝐴𝐵̅̅ ̅̅ , … , 𝐶𝐴̅𝑘𝐵̅) 
        𝑦 = 𝑥 × 𝐾 

where 𝐾 represents the convolutional kernel.  

We enhance the SSM by introducing a bidirectional SS1D module. Specifically, we 

reverse the input sequence and process it separately through the SSM. The outputs of 

these two sequences are then concatenated and passed through a 2D convolutional net-

work. This approach allows the module to capture bidirectional one-dimensional se-

quence information. The final output is residually connected to another projection after 

SiLU activation and combined with the output of the SS1D module through a multipli-

cation gate. Ultimately, Mamba produces the final output via a linear projection. 

3.4 Variance Adaptor 

Similar to FastSpeech2, we use a variance adapter (see Fig.2(a)) to integrate duration, 

pitch, and energy information into the phoneme hidden sequence. During training, 

ground-truth values for these features guide the prediction of the target voice, while 

also serving as targets for training predictors for these features. 

As shown in Fig.2(b), the predictors for duration, pitch, and energy have similar struc-

tures but different parameters. Unlike FastSpeech2, our ground-truth values for pitch 

and energy often include significant negative values. To handle potential information 

loss from negative values during ReLU activation, we use a 2-layer 1D convolutional 

network with Leaky ReLU, followed by normalization, dropout layers, and a final lin-

ear layer. 
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Fig. 2. The subfigure(a) shows the structure of the variance adaptor, where LR represents a 

module that adjusts the length of the encoder output according to the input duration information 

to match the length of the target spectrogram. The subfigure(b) illustrates the detailed structure 

of the duration, pitch, and energy predictors. 

4 Experiments 

The source code, along with pre-trained checkpoints and synthesized samples, is avail-

able online1. For evaluation purposes, we synthesize waveforms using a pre-trained 

HiFi-GAN. 

4.1 Datasets and Model Configuration 

We evaluate our TM-Speech model using two publicly available datasets: LJSpeech 

1.1 [27] for English and AISHELL-3 [28] for Chinese. LJSpeech comprises 13,100 

short audio clips from a single speaker reading passages from seven non-fiction books, 

recorded at 22,050 Hz. AISHELL-3 is a large-scale, high-fidelity Mandarin corpus with 

approximately 85 hours of recordings from 218 speakers, totaling 88,035 utterances. 

We split both datasets into 90% for training, 5% for validation, and 5% for testing, and 

select 100 samples from the test set for subjective evaluation. 

Our TM-Speech model features a Mamba pre-processing block and four TransMamba 

blocks each in the encoder and decoder. The decoder's 1D-convolutional layer converts 

hidden states into 80-dimensional mel-spectrograms. The model is optimized using 

Smooth L1 loss, with phoneme embeddings and self-attention hidden sizes set to 256. 

Attention heads are configured as 4 in the encoder and 2 in the decoder. 

 
1  https://github.com/Apolarity886/TM-Speech 



 

4.2 Evaluation 

To provide a comprehensive assessment of TM-Speech, we evaluate both subjective 

and objective metrics. Subjective metrics include Mean Opinion Score (MOS) [29] for 

overall speech quality and Comparative Mean Opinion Score (CMOS) [30] to compare 

voice quality between models. Objective metrics include Word Error Rate (WER) and 

Character Error Rate (CER) to assess transcription accuracy and intelligibility, aligning 

with standard practices in Text-to-Speech (TTS) evaluation. We compare TM-Speech 

with FastSpeech2 and a Mamba-FFTr baseline, focusing on model size, training time, 

audio quality, and transcription accuracy. 

Training and inference latency tests are conducted on a server with 32 GB of memory 

and an NVIDIA V100 GPU, using a batch size of 16 for training and 1 for inference. 

The Mamba module is configured with 8 SSID layers to match the 4-layer TransMamba 

module in TM-Speech. 

4.2.1 Subjective Evaluation.  

We conducted subjective evaluations with 30 native English speakers for LJSpeech 

and 20 native Chinese speakers for AISHELL-3. Participants assessed 100 synthesized 

samples from each model, rating overall quality (MOS) on a 1–5 scale and relative 

quality (CMOS) compared to FastSpeech2. Ground-truth (GT) recordings were in-

cluded as a reference. Results are shown in Table 1. 

Table 1. Reconstructed audio quality MOS of different methods on LJSpeech 1.1 and 

AISHELL-3, and inferred audio quality CMOS. 

Dataset Method GT MOS CMOS 

LJSpeech 

FastSpeech 2 

4.51±0.07 

4.16±0.08 0.000 

Mamba-FFTr 4.27±0.09 +0.125 

TM-Speech 4.38±0.06 +0.274 

AISHELL-3 

FastSpeech 2 

4.32±0.09 

4.14±0.07 0.000 

Mamba-FFTr 3.91±0.08 -0.072 

TM-Speech 4.08±0.07 +0.118 

TM-Speech achieves higher MOS and CMOS than FastSpeech2 on LJSpeech, indicat-

ing superior perceived quality and voice similarity. On AISHELL-3, TM-Speech 

slightly outperforms FastSpeech2 in CMOS, though its MOS is marginally lower, pos-

sibly due to challenges in modeling Mandarin prosody. Mamba-FFTr shows incon-

sistent performance, particularly on AISHELL-3, where its MOS is lower than both 

FastSpeech2 and TM-Speech. 

4.2.2 Objective Evaluation.  

To complement subjective metrics, we evaluate transcription accuracy using WER and 

CER, which measure the intelligibility of synthesized speech by comparing ASR-

transcribed text to ground-truth transcriptions. We used the Whisper-large model [31] 
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for transcription, with text normalization (e.g., removing punctuation, standardizing 

case) to ensure fair comparisons. WER is prioritized for LJSpeech due to its word-based 

structure, while CER is emphasized for AISHELL-3 given Mandarin’s character-based 

nature. 

Table 2. Table 3. Objective evaluation metrics (WER and CER) on LJSpeech 1.1 and 

AISHELL-3. 

Dataset Method WER (%) CER (%) 

LJSpeech 

FastSpeech 2 5.21 2.34 

Mamba-FFTr 4.87 2.19 

TM-Speech 4.65 2.08 

AISHELL-3 

FastSpeech 2 6.45 3.17 

Mamba-FFTr 7.23 3.56 

TM-Speech 6.32 3.05 

TM-Speech achieves lower WER and CER than FastSpeech2 on both datasets, indicat-

ing improved intelligibility and transcription accuracy. On LJSpeech, TM-Speech’s 

WER of 4.65% and CER of 2.08% outperform FastSpeech2 (5.12% and 2.34%) and 

Mamba-FFTr (4.87% and 2.19%), suggesting robust word- and character-level accu-

racy for English. On AISHELL-3, TM-Speech’s CER of 3.05% is lower than 

FastSpeech2’s 3.17%, though its WER is slightly better (6.32% vs. 6.45%). Mamba-

FFTr performs worse on AISHELL-3, likely due to its reduced capacity to model Man-

darin’s tonal complexity. These results complement the subjective findings, confirming 

TM-Speech’s ability to produce intelligible speech with fewer parameters. 

4.2.3 Model Efficiency and Loss Metrics.  

We compare model efficiency in Table 3, focusing on parameter count and training 

time. TM-Speech reduces both compared to FastSpeech2, leveraging the TransMamba 

fusion module. 

Table 3. Model performance comparison. The Mamba in the method refers to the SSID module 

described in Figure 1b, and the FFTr refers to the feed-forward Transformer in Figure 1c. 

Method Params (M) Training Time (h) 

FastSpeech 2 35.21 21.21 

Mamba-FFTr 23.56 2.95 

TM-Speech 18.09 5.212 

TM-Speech halves the parameters of FastSpeech2 (18.09M vs. 35.21M) and reduces 

training time on LJSpeech by 69% (5.212h vs. 21.21h). While Mamba-FFTr has the 

lowest training time (2.95h), its audio quality is less consistent (Table 1). 

We also evaluate loss metrics in Table 4, including Mean Absolute Error (MAE) for 

duration, pitch, and energy, and Smooth L1 loss for mel-spectrograms. 



 

Table 4. The mean absolute error (MAE) of the duration, pitch and energy in synthesized 

speech audio and Smooth L1 loss of mel between different methods in LJSpeech. 

TM-Speech achieves the lowest Mel loss (0.171), indicating superior spectrogram res-

toration compared to FastSpeech2 (0.412) and Mamba-FFTr (0.259). However, its du-

ration, pitch, and energy losses are higher than FastSpeech2, which may affect prosodic 

details in synthesized audio. These trade-offs are mitigated by TM-Speech’s improved 

WER and CER, suggesting that intelligibility remains high despite less precise prosody 

modeling. 

4.2.4 Discussion.  

The inclusion of WER and CER provides a more comprehensive evaluation of TM-

Speech, addressing the limitations of relying solely on subjective metrics like MOS 

and CMOS. WER and CER highlight TM-Speech’s ability to produce intelligible 

speech, particularly for English (LJSpeech), where it outperforms FastSpeech2. For 

Mandarin (AISHELL-3), TM-Speech’s CER advantage suggests robust character-

level accuracy, though its WER is only marginally better, possibly due to challenges 

in modeling tonal variations. The Whisper-large ASR model used for transcription 

may introduce minor biases, particularly for Mandarin, where tone recognition re-

mains a challenge. Future work could explore tone-specific metrics to further evaluate 

AISHELL-3 performance. 

TM-Speech’s efficiency (fewer parameters, reduced training time) and competitive 

performance across subjective and objective metrics make it a compelling alternative 

to FastSpeech2. However, its higher pitch and energy losses suggest room for im-

provement in prosody modeling, which could be addressed by refining the Trans-

Mamba module or incorporating additional prosodic features. 

5 Conclusion 

We introduced TM-Speech, an efficient end-to-end Text-to-Speech (TTS) system 

combining Transformer and Mamba architectures. TM-Speech reduces model param-

eters by 49% (18.09M vs. 35.21M) and training time by 69% (5.212h vs. 21.21h) 

compared to FastSpeech2, while achieving comparable or better performance. Our en-

hanced evaluation, incorporating subjective metrics (MOS, CMOS) and objective 

metrics (WER, CER), demonstrates TM-Speech’s superior audio quality and intelligi-

bility on LJSpeech (MOS: 4.38 vs. 4.16; WER: 4.65% vs. 5.12%) and competitive re-

sults on AISHELL-3 (CMOS: +0.118; CER: 3.05% vs. 3.17%). However, higher 

pitch and energy losses indicate challenges in prosody modeling, particularly for 

Mandarin. 

Method Mel loss Duration loss Pitch loss Energy loss 

FastSpeech 2 0.412 0.025 0.051 0.042 

Mamba-FFTr 0.259 0.075 0.392 0.204 

TM-Speech 0.171 0.081 0.172 0.104 
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The addition of WER and CER strengthens our evaluation, aligning with TTS stand-

ards, though comparisons were limited to FastSpeech2, and ASR biases may affect 

Mandarin results. Future work will: (1) optimize prosody to reduce WER/CER, (2) 

compare TM-Speech with state-of-the-art TTS models, and (3) explore Mamba in 

generative TTS frameworks. TM-Speech offers a promising balance of efficiency and 

quality, paving the way for advancements in TTS research. 
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