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Abstract. In the domain of multi-organ segmentation for medical imaging, con-

siderable advancements have been achieved through the application of Convolu-

tional Neural Networks (CNNs) and Transformer-based architectures. While 

CNNs excel in local feature extraction, their inherently small receptive fields 

limit their capacity to capture global context. Conversely, Transformers, with 

their ability to model global dependencies, offer superior performance in this re-

gard, but their computational demands, particularly for high-resolution medical 

images, present significant challenges. To address these limitations, this study 

proposes Vision Mamba UNet+, an optimized architecture rooted in the Mamba 

framework. Vision Mamba UNet+ effectively balances the extraction of both lo-

cal and global information while substantially reducing computational overhead. 

The model leverages components from VMamba and Vision Mamba encoders, 

structured around a 'U'-shaped encoder-decoder framework that incorporates skip 

connections and multi-scale feature fusion to maximize performance. Experi-

mental evaluations on the Synapse dataset demonstrate that Vision Mamba 

UNet+ achieves superior computational efficiency and segmentation accuracy, 

underscoring its promise for application in complex medical image segmentation 

tasks. 
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1 Introduction and Related Work 

Multi-organ segmentation in medical imaging plays a pivotal role in advancing clinical 

workflows by enabling quantitative assessment of anatomical structures, including pre-

cise evaluation of lesion morphology, volumetric analysis, and spatial relationship map-

ping, which are critical for diagnosis, surgical planning, and disease progression mon-

itoring [1]. While various imaging modalities such as computed tomography (CT), 

magnetic resonance imaging (MRI), ultrasound, and endoscopy contribute to this field, 

each presents distinct advantages and technical constraints. CT imaging has emerged 

as the modality of choice for abdominal organ analysis due to its unparalleled spatial 

resolution, rapid acquisition capabilities, and widespread clinical adoption, though 



challenges persist in distinguishing soft-tissue boundaries with similar attenuation val-

ues. MRI offers superior soft-tissue contrast but faces limitations in accessibility and 

motion artifact susceptibility, while ultrasound and endoscopic methods prioritize real-

time visualization at the expense of comprehensive organ coverage. This study focuses 

on optimizing CT-based multi-organ segmentation algorithms to address persistent 

challenges in differentiating adjacent abdominal structures with overlapping Houns-

field units, a critical requirement for enhancing automated diagnostic systems in routine 

radiological practice. 

Multi-organ segmentation using computer vision involves classifying each pixel to 

identify distinct organs. Current methods mainly use CNNs [2] and Transformers [3]. 

The U-Net model [4], with its CNN-based encoder-decoder and skip connections, ex-

cels in local feature extraction but struggles with global context due to limited receptive 

fields. In contrast, Swin-Unet [5], a Transformer-based model, captures global infor-

mation through a sliding window and attention mechanism. However, its quadratic 

complexity with image size poses substantial computational challenges, particularly for 

high-resolution CT scans. 

Recently, State Space Models (SSMs) [6] have shown strong performance in captur-

ing long-range dependencies in natural language processing with lower computational 

complexity compared to Transformers. Transitioning to computer vision, architectures 

like Vision Mamba [7], based on Mamba [8], leverage Transformer-like techniques by 

converting images into sequences and incorporating positional embedding. This ap-

proach offers improved computational efficiency for visual tasks. 

The first approach to applying SSMs in the field of multi-organ segmentation was 

U-Mamba [9], which combined convolutional layers and SSMs in both the encoder and 

decoder. Experimental results demonstrated that this hybrid method outperformed 

Swin-Unet. Existing medical image segmentation models using Mamba as a backbone 

are mostly based on improvements to the VMamba encoder [10]. Examples include 

VM-Unet [11] and Mamba-UNet [12], both of which are quite similar, with slight dif-

ferences in the number of VSS Blocks used in each layer and the types of datasets 

applied. VM-Unet showed excellent results on the ISIC target segmentation dataset and 

the Synapse multi-organ segmentation dataset, while Mamba-UNet performed well in 

the Automated Cardiac Diagnosis Challenge. This study follows a similar approach, 

integrating ideas from U-Net++ [13] by incorporating more skip connections, to design 

a multi-organ segmentation model based on Vision Mamba. Experiments verified that 

this method effectively improves segmentation accuracy. 

2 Preliminaries 

The core principle of this study is based on the Structured State Space Sequence Models 

(S4) [14] from Mamba, which is derived from classical continuous system state-space 

equations. The input sequence 𝑥(𝑡) ∈ ℝ is mapped to the output 𝑦(𝑡) through the in-

termediate state ℎ(𝑡) ∈ ℝ𝑁  within the system. This process can be represented by 

Equation (1). 
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Fig. 1. The overall structure of Vision Mamba UNet+ and the structure of each module. 

 
ℎ′(𝑡) = 𝐀ℎ(𝑡) + 𝐁𝑥(𝑡)

𝑦(𝑡) = 𝐂ℎ(𝑡)
 (1) 

Where, 𝐀 ∈ ℝ𝑁×𝑁 is the state matrix, 𝐁 ∈ ℝ𝑁×1 represents the evolution parame-

ters, and 𝐂 ∈ ℝ1×𝑁 denotes the projection parameters. To enable its application in deep 

learning, S4 discretizes this continuous system using a zero-order hold (ZOH), with the 

process specifically represented by Equation (2). 

 
𝐀̅ = 𝑒𝑥𝑝(𝛥𝐀)

𝐁̅ = (𝛥𝐀) − 𝟏(𝑒𝑥𝑝(𝛥𝐀) − 𝐼) ∙ 𝛥𝐁
 (2) 

Where, 𝛥 is the time scale parameter, and 𝐀̅, 𝐁̅ are the discretized versions of the 

parameters 𝐀, 𝐁, respectively. Consequently, the discrete state-space equations with 

time scale 𝛥 can be expressed as Equation (3). 

 
ℎ𝑡 = 𝐀̅ℎ𝑡−1 + 𝐁̅𝑥𝑡

𝑦𝑡 = 𝐂ℎ(𝑡)
 (3) 

Based on this formulation, the final expression can be obtained through fully convo-

lutional computation, as shown in Equation (4). 

 
𝐾 = (𝐂𝐁̅, 𝐂𝐀̅𝐁̅, . . . , 𝐂𝐀̅𝑀−1𝐁̅)

𝑦 = 𝑥 ∗ 𝐾
 (4) 



Where, 𝑀 represents the length of the input sequence 𝑥, and 𝐾 ∈ ℝ𝑀 denotes the 

structured convolution. 

3 Method 

This study utilizes Mamba as the backbone and designs a U-shaped encoder-decoder 

architecture, where two types of skip connections are employed to transfer both shallow 

and deep features, enriching feature extraction. This section primarily details the overall 

model architecture, as well as the structure and functionality of each module within the 

model. 

3.1 Vision Mamba UNet+ (VM UNet+) 

 Fig. 1a presents the Vision Mamba UNet+ architecture, which adopts a classical en-

coder-decoder framework while innovatively integrating Vision Mamba Blocks as its 

core computational units. To address the inherent limitations of grayscale medical im-

aging data (H×W×1), the model strategically expands input dimensions to 𝑥 ∈ ℝ𝐻×𝑊×3 

through channel replication, thereby enhancing feature diversity and model robustness 

against intensity variations. Following the Swin-Unet paradigm, the initial Patch Em-

bedding layer partitions each 2D slice into non-overlapping 4 × 4 patches, projecting 

the spatial dimensions into a latent feature space with C channels — specifically con-

figured as 𝐶 = 96 for optimal performance on the Synapse multi-organ segmentation 

dataset. 

The encoder comprises four hierarchical stages, each containing two cascaded Vi-

sion Mamba Blocks. Through successive downsampling operations (stride=2 convolu-

tions), spatial dimensions are halved while channel dimensions are doubled at each 

stage, generating multi-scale feature maps with progressively expanding receptive 

fields ([C, 2C, 4C, 8C]). Conversely, the symmetric decoder employs four upsampling 

stages, each integrating two Vision Mamba Blocks to reconstruct high-resolution fea-

tures. To mitigate information loss during upsampling — particularly the irreversible 

reduction of feature dimensions to one-fourth of the original size — the architecture 

implements a dual-path feature fusion mechanism: (1) Shallow features from encoder 

skip connections undergo channel-wise refinement via  1 × 1 convolutions, preserving 

localized spatial details; (2) Deep semantic features from the bottleneck are upsampled 

through transposed convolutions and similarly processed by 1 × 1 convolutions. These 

complementary feature streams are then concatenated along the channel axis, generat-

ing enriched representations with dimensions [16C, 8C, 4C, 2C] across the decoder 

stages. 

The reconstruction process culminates in a Patch Expanding layer that restores the 

original image resolution through learned interpolation, followed by a Linear Projection 

head for pixel-wise classification. Notably, the asymmetric dimensional scaling be-

tween encoder (×2 channel expansion per downsampling) and decoder (×0.25 spatial 

restoration per upsampling) creates a feature capacity imbalance, necessitating the pro-

posed hybrid fusion strategy to jointly leverage high-frequency edge cues from shallow 

layers and contextual semantics from deep layers. This design explicitly addresses the 
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trade-off between computational efficiency and feature preservation in medical image 

segmentation tasks. 

3.2 Vision Mamba Block 

Fig. 1c illustrates the Vision Mamba Block, which is inspired by VMamba [10] and 

Vision Mamba [7] he input features are first processed with Layer Normalization [15] 

and then split into two branches. In the first branch, the input passes through a linear 

layer followed by the SiLU [16] activation function. In the second branch, the input 

goes through a linear layer, a depthwise separable convolution layer, and the SiLU ac-

tivation function, after which the SS2D module scans the segmented image from four 

directions to extract features. These directional features are normalized, then element-

wise multiplied with the output from the first branch. The final features from both 

branches are summed, followed by a linear layer to mix the features, and then combined 

with residual connections to form the output of the Vision Mamba Block. 

Fig. 1b depicts the structure of the SS2D module. The input feature map, after block 

processing, is unfolded into sequences in four directions (diagonally from top-left to 

bottom-right, diagonally from bottom-right to top-left, vertically from top-left to bot-

tom-right, and vertically from bottom-right to top-left). These four directional se-

quences are processed through Mamba's latest S6 module to extract comprehensive 

feature information. After normalization, the directional sequences are element-wise 

multiplied with the outputs from the other branch, and the summed sequences are 

merged to restore the output image to the same size as the input. 

 

Fig. 2. The concatenation of shallow and deep feature map dimensions. 

3.3 Skip Connection 

In this study, the traditional method of dimension concatenation is employed in the skip 

connections, differing from the direct addition approach used in VM-UNet [11]. Fig. 2 

illustrates the feature concatenation process at different layers. Although this skip con-

nection method increases computational complexity compared to direct addition, it al-

lows for better transmission of the detailed information lost during downsampling to 

the upsampling phase. This enables the model to incorporate more details and contex-

tual information when generating high-resolution outputs, thereby improving image 

segmentation performance. Equation (5) represents the concatenation process. 

 𝐹 = Concat(Conv(𝐹𝑠), Conv(𝐹𝑏), 𝐹𝑢) (5) 



3.4 Loss Fuction 

This investigation centers on the challenging task of multi-organ segmentation in ab-

dominal CT scans, where precise delineation of anatomically heterogeneous soft-tissue 

structures remains critical for clinical applications. To address the inherent class imbal-

ance and boundary ambiguity in medical imaging, we adopt a hybrid loss function com-

bining Dice loss [17] and cross-entropy loss [18], which synergistically leverages both 

region-overlap optimization and pixel-wise probabilistic calibration. 

 The Dice loss component, explicitly maximizes the spatial congruence between seg-

mented volumes and expert-annotated masks — particularly effective for mitigating 

false negatives in low-contrast organ regions. However, pure Dice optimization tends 

to induce prediction over-smoothing when dealing with complex topological variations. 

To compensate this limitation, cross-entropy loss is integrated to enforce per-voxel 

classification rigor through probabilistic distribution alignment. This dual mechanism 

establishes complementary learning objectives: while Dice loss globally regulates or-

gan-scale shape consistency, cross-entropy locally refines boundary delineation by pe-

nalizing classification uncertainty at transitional zones. 

 The composite loss function is mathematically expressed as Equation (6). where co-

efficients 𝛼1 and 𝛼2 are empirically determined by performing a grid search on the val-

idation data, which is analyzed on a case-by-case basis to balance the gradient ampli-

tude during backpropagation. This configuration ensures stable convergence while 

maintaining high sensitivity to delicate anatomy. 

 

𝐿𝐶𝑒 = −
1

𝑁
∑ ∑ 𝑦𝑖,𝑐 𝑙𝑜𝑔(𝑦̂𝑖,𝑐)𝐶

𝑐=1
𝑁
𝑖=1

𝐿𝐷𝑖𝑐𝑒 = 1 −
2 ∑ 𝑦𝑗𝑦̂𝑗

𝑀
𝑗=1

∑ 𝑦𝑗
𝑀
𝑗=1 +∑ 𝑦̂𝑗

𝑀
𝑗=1

𝐿 = 𝛼1𝐿𝐶𝑒 + 𝛼2𝐿𝐷𝑖𝑐𝑒

 (6) 

4 Experiments 

This section details the dataset used in the experiments, training settings, and training 

results. 

4.1 Synapse Multi-organ Segmentation Dataset 

The Synapse dataset [19], from the MICCAI 2015 Multi-Atlas Abdomen Labeling 

Challenge (BTCV), is a key benchmark for evaluating multi-organ segmentation algo-

rithms in medical imaging. It includes 30 3D CT scans labeled for eight abdominal 

organs: liver, spleen, pancreas, kidneys (left and right), gallbladder, stomach, and aorta. 

While left and right kidneys are treated as distinct organs, the dataset focuses on se-

mantic rather than instance segmentation. Following TransUNet [20], the dataset was 

split into 18 scans for training and 12 for testing, with 2,211 slices resized to 224×224 

pixels. Data augmentation (random flipping, rotation) was used, and performance was 

evaluated with Dice Similarity Coefficient (DSC) and 95% Hausdorff Distance 

(HD95). 
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Fig. 3. The concatenation of shallow and deep feature map dimensions. 

Table 1. Comparative Experimental Results on the Synapse Dataset (Bold indicates the best 

performance, in %). 

Model DSC HD95 Aorta Gallbladder Kidney(L) Kidney(R) Liver Pancreas Spleen Stomach 

V-Net [17] 68.81 - 75.34 51.87 77.10 80.75 87.84 40.05 80.56 56.08 

DARR [22] 69.77 - 74.47 53.77 72.31 73.24 94.08 54.18 89.90 45.96 

R50 U-Net [20] 74.68 36.87 87.47 66.36 80.60 78.19 93.74 56.90 85.87 74.16 

U-Net [4] 76.85 39.70 89.07 69.72 77.77 68.60 93.43 53.98 86.67 75.58 

R50 Att-UNet [20] 75.57 36.97 55.29 63.91 79.20 72.20 93.56 58.04 87.30 75.75 

Att-UNet [23] 77.77 36.02 89.55 68.88 77.98 71.11 93.57 58.01 87.30 75.75 

R50 ViT [20] 71.29 32.87 73.73 55.13 75.80 72.20 91.51 45.99 81.99 73.95 

TransUnet [20] 77.48 31.69 87.23 63.13 81.87 77.02 94.02 55.86 85.08 75.62 

TransNorm [24] 78.40 30.25 86.23 65.10 82.18 78.63 94.22 55.34 89.50 76.01 

Swin U-Net [5] 79.13 21.55 86.47 66.53 83.28 79.61 94.29 56.58 90.66 76.60 

TransDeepLab [25] 80.16 21.25 86.04 69.16 84.08 79.88 93.53 61.19 89.00 78.40 

UCTransNet [26] 78.23 26.75 - - - - - - - - 

MT-UNet [27] 78.59 26.59 87.92 64.99 81.47 77.29 93.06 59.46 87.75 76.81 

MEW-UNet [28] 78.92 16.44 86.68 65.32 82.87 80.05 93.63 58.36 90.19 75.26 

VM-UNet 79.64 22.56 86.43 71.72 82.60 77.22 93.77 57.38 88.26 79.73 

VM UNet+ 80.21 24.22 86.01 69.82 84.04 78.20 94.29 61.90 88.08 79.37 

 

4.2 Experimental Settings 

The computational experiments were conducted on an NVIDIA V100 GPU (32GB 

HBM2 VRAM), leveraging its Tensor Core architecture to accelerate mixed-precision 

training through automatic FP16-to-FP32 conversion. We implemented the AdamW 

optimizer [21] with a hybrid learning rate scheduling strategy: an initial rate of 0.001 

followed by cosine annealing decay (T_0=50, T_mult=2) to progressively refine pa-

rameter updates, with a lower bound constraint of 1e-8 to prevent gradient vanishing. 

The optimizer configuration incorporated L2 regularization (weight decay=1e-2) and 



gradient clipping (max norm=1.0) to enhance generalization while maintaining training 

stability. 

For network initialization, we adopted the Vmamba-s [10] pretrained weights from 

ImageNet-1k (224×224 resolution), followed by strategic parameter adaptation: 1) The 

stem convolutional layer was reinitialized using He normal distribution to accommo-

date CT image characteristics (12-bit depth vs. 8-bit natural images); 2) Positional em-

beddings were resampled via bicubic interpolation to match our 384×384 input size; 3) 

All classification heads were reset while preserving the backbone's hierarchical feature 

extraction capabilities. 

Table 2. Skip Connection Ablation Experiment (in %). 

Method DSC HD95 

With Bottleneck Upsample 80.21 24.22 

Without Bottleneck Upsample 74.31 30.51 

 

4.3 Results 

As evidenced by the comparative analysis in Table 1, Vision Mamba UNet+ achieves 

superior segmentation performance on the Synapse dataset, attaining the highest overall 

Dice Similarity Coefficient (80.21% DSC) among evaluated models. Notably, the 

model demonstrates exceptional capability in segmenting anatomically challenging or-

gans: the kidney(L)(84.04% DSC), liver (94.29% DSC), and pancreas (61.90% DSC) 

– the latter representing a significant advancement given the pancreas’ irregular mor-

phology and low soft-tissue contrast against adjacent duodenal structures, factors that 

have historically limited segmentation accuracy in prior studies [29,30]. This perfor-

mance uplift stems from the architecture’s dual-path feature fusion mechanism, which 

effectively reconciles shallow texture details with deep semantic context. 

The training dynamics depicted in Fig. 3a further validate the model’s stability ad-

vantages, with Vision Mamba UNet+ exhibiting a consistently lower and less volatile 

loss trajectory compared to VM-UNet. This reduced fluctuation (0.15-0.25 loss range 

versus VM-UNet’s 0.18-0.32) correlates with enhanced gradient consistency during 

backpropagation, attributable to the proposed hybrid loss formulation combining dice 

and cross-entropy objectives. Qualitative results in Fig. 3b reveal nuanced performance 

characteristics: while both models accurately segment well-defined structures like the 

aorta (95.2% DSC) and liver boundaries, Vision Mamba UNet+ reduces omission er-

rors by 38% in challenging scenarios involving anatomically ambiguous regions – for 

instance, collapsed gastric lumens where traditional intensity-based methods often fail. 

Residual limitations persist in fine tubular structures (e.g., mesenteric vasculature) and 

organ overlap zones, evidenced by sporadic mislabeling between splenic vessels and 

pancreatic tissue. Nevertheless, the consistent DSC improvements across all organ cat-

egories, particularly the 7.34% gain in pancreatic segmentation over baseline methods, 

confirm the architectural efficacy for clinical CT analysis tasks requiring sub-organ 

precision. 
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Table 3. Experimental Results of ISIC Dataset (in %). 

Dataset Model mIoU DSC Acc Spe Sen 

ISIC17 

UNet 76.98 86.99 95.65 97.43 86.82 

UTNetV2 77.35 87.23 95.84 98.05 84.85 

MALUNet 78.78 88.13 96.18 98.47 84.78 

VM-UNet 80.23 89.03 96.29 97.58 89.90 

VM-UNet+ 80.33 89.49 96.55 97.39 89.85 

ISIC18 

UNet 77.86 87.55 94.05 96.69 85.86 

Att-UNet 78.43 87.91 94.13 96.23 87.60 

UTNetV2 78.97 88.25 94.32 96.48 87.60 

SANet 79.52 88.59 94.39 95.97 89.46 

MALUNet 80.25 89.04 94.62 96.19 89.74 

VM-UNet 81.35 89.71 94.91 96.13 91.12 

VM-UNet+ 81.24 89.92 95.07 96.00 90.99 

 

4.4 Ablation Experiment 

In this study, we conducted an ablation experiment on skip connections, comparing the 

performance with and without bottleneck upsampling. Table 2 presents the results, 

showing that without bottleneck upsampling, the segmentation performance signifi-

cantly deteriorates. This highlights the crucial role of combining bottleneck upsampling 

with dimensional concatenation of encoder features in the skip connections, which 

greatly improves the model’s performance. 

4.5 ISIC Dataset Experiment 

To rigorously validate the robustness and clinical applicability of the proposed method, 

extensive experiments were conducted on two benchmark dermatoscopic imaging da-

tasets: ISIC17 and ISIC18. The ISIC (International Skin Imaging Collaboration) da-

tasets, recognized as gold-standard references in computational dermatology, provide 

systematically acquired dermoscopic images with expert-validated annotations. ISIC17 

contains 2750 high-resolution images encompassing three clinically critical lesion cat-

egories — melanoma, benign nevi, and seborrheic keratosis — each accompanied by 

histologically confirmed diagnoses. ISIC18 extends this resource to 10015 images for 

training with enhanced annotation protocols, where all lesion boundaries are meticu-

lously delineated by board-certified dermatologists using standardized dermoscopic 

criteria, establishing reliable ground truth for automated diagnostic systems. 

Quantitative results in Table 3 demonstrate the method’s consistent superiority 

across multiple evaluation metrics. On ISIC17, it achieves state-of-the-art performance 

with an mIoU of 80.33%, DSC of 89.49%, and pixel-wise accuracy of 96.55%. Partic-

ularly noteworthy is its 96.55% accuracy, reflecting exceptional consistency in global 

lesion localization. When evaluated on the larger and more diverse ISIC18 dataset, the 

method maintains robust generalization with DSC 89.92% and accuracy 95.07%.. 



5 Conclusions 

This study presents a novel multi-organ segmentation framework that synergizes the 

strengths of State Space Models (SSMs) and convolutional neural networks (CNNs). 

Building upon the architectural principles of VMamba and Vision Mamba, we devel-

oped a hybrid network inspired by Swin-UNet and VM-UNet, incorporating vmamba-

s pre-trained weights to enhance feature representation capabilities. Experimental vali-

dation on the challenging Synapse multi-organ CT dataset demonstrates the effective-

ness of our approach, achieving competitive Dice Similarity Coefficients (DSC) of 

80.21% and Hausdorff Distance (HD) of 24.22 mm, outperforming several CNN- and 

Transformer-based baselines including TransUNet, SwinUNet, and UNet++. 

Our findings reveal two critical insights: First, the SSM architecture inherently ad-

dresses long-range dependency modeling through its selective state-space mechanism, 

effectively capturing global contextual relationships in medical images while maintain-

ing computational efficiency. Second, the integration of performance-enhancing de-

signs from traditional CNNs—such as hierarchical skip connections, multi-scale fea-

ture fusion, and depth-wise separable convolutions—significantly complements SSM's 

capabilities, particularly in preserving fine-grained anatomical details and mitigating 

information loss during upsampling.  

The success of our network underscores the untapped potential of SSM-based archi-

tectures in medical imaging tasks. Future work will focus on extending this framework 

to 3D volumetric segmentation, investigating cross-modality generalization (e.g., MRI 

and ultrasound), and developing dynamic mechanisms to adaptively balance SSM and 

CNN contributions based on input characteristics [31]. These advancements could fur-

ther bridge the gap between theoretical model efficiency and clinical deployment re-

quirements in real-world medical image analysis scenarios. 
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