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Abstract. Industrial machinery monitoring is pivotal in modern manufacturing, 

where unexpected equipment failures could incur significant economic and op-

erational costs. In this work, we introduce LCAA, a novel unsupervised frame-

work tailored for acoustic anomaly detection in industrial environments. Our ap-

proach synergistically combines convolutional neural networks with multi-head 

attention mechanisms within a compact autoencoder architecture, enabling the 

effective capture of both temporal and frequency domain features inherent in 

acoustic signals. By selectively focusing on the most informative components of 

the input, the proposed model enhances feature extraction, leading to improved 

detection accuracy and faster convergence compared to traditional methods. Ex-

tensive experiments on multiple benchmark datasets demonstrate that LCAA not 

only outperforms state-of-the-art baselines in detecting subtle anomalies but also 

maintains a minimal parameter footprint, thereby facilitating real-time deploy-

ment on resource-constrained edge devices. This study contributes a robust and 

efficient solution for proactive maintenance strategies, promoting enhanced op-

erational reliability and reduced downtime in industrial systems. 

Keywords: Acoustic anomaly detection,Convolutional neural networks, Atten-

tion mechanisms, Autoencoder, Industrial monitoring.. 

1 Introduction 

Industrial systems and machinery are the backbone of modern manufacturing pro-

cesses, where unplanned downtime due to equipment failure could result in significant 

economic losses. Traditional maintenance approaches such as reactive maintenance (fix 

after failure) or schedule-based preventive maintenance are increasingly inadequate for 

today's complex industrial environments [1]. This has driven the emergence of condi-

tion-based monitoring (CBM) and predictive maintenance systems that could detect 

anomalous equipment behavior before catastrophic failures occur [2,3]. 

Acoustic-based condition monitoring has gained significant attention in recent years 

due to its non-intrusive nature and rich information content [4]. Sound signatures emit-

ted by machinery contain valuable diagnostic information about their operational states, 



as mechanical defects often manifest as distinctive acoustic patterns [5]. However, con-

ventional approaches to acoustic-based anomaly detection typically rely on supervised 

learning techniques that require extensive labeled datasets for each failure mode [6,7]. 

This presents a substantial challenge in industrial environments where anomaly data is 

inherently scarce and expensive to obtain, as machinery must be deliberately damaged 

to collect such data [8]. 

To address these limitations, unsupervised learning approaches have emerged as 

promising alternatives that could identify anomalies without requiring labeled exam-

ples of fault conditions [9,10]. Recent studies have demonstrated the effectiveness of 

various unsupervised techniques for industrial anomaly detection, including autoencod-

ers [11], generative adversarial networks [12], and one-class classification methods 

[13]. However, these approaches often face challenges related to model complexity, 

convergence speed, and computational efficiency—particularly critical factors for de-

ployment on resource-constrained edge devices in industrial settings [14,15]. 

Deep autoencoders have shown particular promise for anomaly detection due to their 

ability to learn compact representations of normal data distributions [16]. By recon-

structing the input data through a bottleneck layer, autoencoders could effectively cap-

ture the underlying data manifold of normal operational states. The reconstruction error 

then serves as an anomaly score, with higher errors indicating potential anomalies [17]. 

However, standard autoencoder architectures may struggle to capture temporal depend-

encies and complex patterns in acoustic data, limiting their effectiveness for machinery 

monitoring [18]. 

Attention mechanisms, first introduced in the context of neural machine translation 

[19], have revolutionized numerous domains by enabling models to focus selectively 

on the most relevant parts of the input. In the context of anomaly detection, attention 

mechanisms could help identify salient features in the acoustic signals that are most 

indicative of normal or abnormal operation [20]. The integration of multi-head attention 

with autoencoders presents an opportunity to enhance feature extraction while main-

taining computational efficiency. 

In this paper, we propose a novel unsupervised acoustic anomaly detection system 

for industrial equipment monitoring that addresses the aforementioned challenges. Our 

approach combines a lightweight autoencoder architecture with multi-head attention 

mechanisms and convolutional neural networks to effectively capture both temporal 

and frequency domain features in acoustic signals. The proposed model achieves supe-

rior performance in terms of both anomaly detection accuracy and convergence speed 

compared to state-of-the-art baselines, while maintaining a minimal parameter footprint 

suitable for edge deployment. 

The key contributions of our work are as follows: 

• We introduce a compact, attention-enhanced autoencoder architecture specifically 

designed for unsupervised acoustic anomaly detection in industrial settings. 

• We demonstrate that our proposed approach outperforms existing baselines across 

multiple benchmark datasets in terms of initial performance and convergence rate. 
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• We validate the practical applicability of our model through successful deployment 

on resource-constrained edge hardware (Arduino Nano 33 BLE Sense), making real-

time acoustic monitoring accessible for a wide range of industrial applications. 

2 Methodology 

2.1 Problem Formulation 

Acoustic anomaly detection could be formulated as identifying deviations from normal 

acoustic patterns. Given a set of acoustic signals from normal operating equipment, we 

aim to learn a model that could distinguish between normal and anomalous signals 

without requiring examples of anomalies during training.  

Let 𝒳 = 𝑥1, 𝑥2, … , 𝑥𝑁 represent a set of acoustic signals recorded from machinery 

operating under normal conditions. Each signal 𝑥𝑖 is first transformed into a log-Mel 

spectrogram 𝑆𝑖 ∈ ℝ𝑇×𝐹, where 𝑇 is the number of time frames and 𝐹 is the number of 

frequency bands. Traditional approaches typically process the entire spectrogram 𝑆𝑖 as 

input to reconstruct the same, resulting in models with large parameter counts and com-

putational requirements that are prohibitive for edge deployment. 

To address this limitation, we propose a novel frame prediction approach. Instead of 

reconstructing the entire input spectrogram, we partition each spectrogram 𝑆𝑖 into con-

secutive segments𝑠𝑖
1, 𝑠𝑖

2, … , 𝑠𝑖
𝐾 , where each segment 𝑠𝑖

𝑗
∈ ℝ(2𝑤+1)×𝐹  contains 2𝑤 + 1 

consecutive frames centered around a time step 𝑡. Our key insight is to use the sur-

rounding 2𝑤 frames to predict the center frame, effectively transforming the problem 

from full reconstruction to center frame prediction: 

 𝐱in = [𝑠𝑖,𝑡−𝑤 , … , 𝑠𝑖,𝑡−1, 𝑠𝑖,𝑡+1, … , 𝑠𝑖,𝑡+𝑤] ∈ ℝ2𝑤×𝐹 (1) 

 𝐱target = 𝑠𝑖,𝑡 ∈ ℝ𝐹 (2) 

where 𝑠𝑖,𝑡 represents the frame at time step 𝑡 in segment 𝑠𝑖
𝑗
. This formulation signif-

icantly reduces the model's parameter count while focusing the learning task on mod-

eling the temporal dependencies between adjacent frames. 

During inference, the anomaly score for a test signal 𝑥test is computed as the recon-

struction error between the predicted center frames and the actual center frames: 

 score(𝑥test) =
1

𝐾
∑ ∥ 𝑓𝜃(𝐱in

𝑗
) − 𝐱target

𝑗
∥2

2
𝐾

𝑗=1
 (3) 

where 𝑓𝜃  represents our proposed LCAA model with parameters 𝜃 , and 𝐾  is the 

number of segments in the test signal. 



2.2 Lightweight Convolutional Attention Autoencoder Architecture 

The LCAA architecture combines the strengths of autoencoders, convolutional neural 

networks, and attention mechanisms to efficiently capture both local and global de-

pendencies in acoustic signals. Fig.1 illustrates the overall structure of our proposed 

model. 

 

Fig. 1. The architecture of the proposed Lightweight Convolutional Attention Autoencoder 

(LCAA). 

Encoder-Decoder Framework. The core of our architecture follows the autoencoder 

paradigm, consisting of an encoder that maps the input to a latent representation and a 

decoder that reconstructs the target from this representation. However, unlike tradi-

tional autoencoders that aim to reconstruct the input itself, our model is designed to 

predict the center frame from the surrounding frames. 

The encoder 𝐸θ𝑒
 maps the input frames 𝑥in  ∈  𝑅2𝑤 × 𝐹 to a latent representation 𝑧 ∈

𝑅𝑑: 

 𝑧 = 𝐸θ𝑒
(𝑥in) (4) 

 The decoder 𝐷𝜃𝑑
 then maps this latent representation to the predicted center frame 

𝐱
^

target ∈ ℝ𝐹: 

 𝐱
^

target = 𝐷𝜃𝑑
(𝐳) (5) 

This center frame prediction approach significantly reduces the model's complexity 

compared to full reconstruction methods, making it more suitable for edge deployment. 



 

 

 

2025 International Conference on Intelligent Computing 

July 26-29, Ningbo, China 

https://www.ic-icc.cn/2025/index.php 

 

Additionally, by focusing on predicting a single frame rather than reconstructing the 

entire input, the model could better capture the temporal dependencies between adja-

cent frames, leading to more precise predictions. 

Convolutional Feature Extraction. While fully connected layers are commonly used 

in autoencoder architectures, they may fail to capture local patterns and temporal de-

pendencies effectively in acoustic signals. To address this limitation, we incorporate 

convolutional layers in our encoder to extract hierarchical local features. 

For each input 𝐱in ∈ ℝ2𝑤×𝐹, we apply a series of 1D convolutional operations along 

the time dimension: 

 ℎ1 = σ(𝑊1 ∗ 𝑥i + 𝑏1) (6) 

 ℎ𝑙 = σ(𝑊𝑙 ∗ ℎ𝑙−1 + 𝑏𝑙),  for 𝑙 = 2,3 (7) 

where ∗ denotes the convolution operation, 𝑊𝑙  and 𝑏𝑙 are the weights and biases of 

the 𝑙 − 𝑡ℎ convolutional layer, σ is the activation function (ReLU in our implementa-

tion), and ℎ𝑙 represents the feature maps at the 𝑙 − 𝑡ℎ layer. 

We design a three-layer convolutional module with carefully chosen kernel sizes and 

strides to gradually extract multi-level features from the input data. The convolutional 

layers use kernel sizes of (3,1), (3,1), and (2,1) with strides of (1,1), (1,1), and (1,1) 

respectively. This configuration allows the model to capture temporal patterns at dif-

ferent scales. 

To enhance the model's representational capacity, we combine the features extracted 

by the convolutional layers with the outputs of fully connected layers at the same scale, 

creating a multi-scale feature fusion mechanism: 

 𝑓𝑙 = ℎ𝑙 ⊕ FC𝑙(𝑥i),  for 𝑙 = 1,2,3 (8) 

where ⊕ denotes channel-wise concatenation, and FC𝑙  represents the 𝑙 − 𝑡ℎ  fully 

connected layer. This fusion mechanism allows the model to benefit from both the local 

feature extraction capabilities of convolutional neural networks(CNNs) and the global 

mapping abilities of fully connected layers. 

Multi-Head Attention Mechanism. While convolutional layers excel at capturing lo-

cal patterns, they may struggle to model long-range dependencies in the data. To over-

come this limitation, we incorporate multi-head attention mechanisms in the bottleneck 

layer of our autoencoder. 

Given the fused features 𝑓3 from the final convolutional layer, we first apply a pro-

jection layer to obtain the query, key, and value matrices: 

     𝑄 = 𝑓3𝑊𝑄 ,  𝐾 = 𝑓3𝑊𝐾 ,  𝑉 = 𝑓3𝑊𝑉 (9) 

where 𝑊𝑄 , 𝑊𝐾 , 𝑊𝑉 ∈ 𝑅𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑘 are learnable projection matrices. 



The attention mechanism computes the weighted sum of values, where the weights 

are determined by the compatibility of the query with the corresponding keys: 

 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘
) 𝑉 (10) 

To capture different aspects of the input data, we employ multi-head attention with 

ℎ parallel attention heads: 

 MultiHead(𝐐, 𝐊, 𝐕) = Concat(head1, … , headℎ)𝑊𝑂 (11) 

where 

 head𝑖 = Attention(𝑄𝑊𝑖
𝑄 , 𝐾𝑊𝑖

𝐾 , 𝑉𝑊𝑖
𝑉) (12) 

and 𝑊𝑖
𝑄 , 𝑊𝑖

𝐾 , 𝑊𝑖
𝑉 ∈ 𝑅𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑘/ℎ and 𝑊𝑂 ∈ 𝑅𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑚𝑜𝑑𝑒𝑙 are learnable parame-

ters. 

The multi-head attention module enables the model to jointly attend to information 

from different representation subspaces, thereby capturing complex relationships be-

tween different parts of the input sequence. This is particularly beneficial for acoustic 

anomaly detection, where anomalies may manifest as subtle deviations in the temporal 

or frequency domains. 

Training Objective. The training objective of our model is to minimize the reconstruc-

tion error between the predicted center frame and the actual center frame. We employ 

the mean squared error (MSE) loss for this purpose: 

    ℒMSE =
1

𝑁
∑ ∥ 𝐱

^

target
𝑖 − 𝐱target

𝑖 ∥2
2

𝑁

𝑖=1
 (13) 

where 𝐱
^

target
𝑖  is the predicted center frame for the 𝑖-th sample, and 𝐱target

𝑖  is the corre-

sponding ground truth. 

During training, we only use normal acoustic signals to optimize the model param-

eters, following the common practice in unsupervised anomaly detection. The model 

learns to capture the underlying patterns of normal operation, and deviations from these 

patterns during inference are flagged as potential anomalies. 

3 Experiments 

3.1 Training Set 

Dataset and Preprocessing. The proposed method is evaluated on the MIMII dataset 

[21], which contains sounds generated by four types of industrial machines, namely 

Valve,  Pump,  Fan and Slider. Each recording is a mono 10-second long audio file of 
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the target operating machinery sound mixed with ambient noise. Both the test and train-

ing samples have a sampling rate of 16 kHz, a bit rate of 256k, and the samples are 

encoded as 16bit signed integer PCM. Fig. 2 illustrates the log-Mel spectrograms of 

sample sounds from four machine types. 

 

Fig. 2. Examples of log-Mel spectrograms of the original sound 

For data preprocessing, the raw audio recordings are converted into a logarithmic 

Mel-band energy feature vector with 64 bands; using a 1024-bin Fast Fourier Transform 

with a jump size of 512. each audio recording is converted into a 64 × 313 frequency-

time matrix. This matrix is then converted into an overlapping window consisting of 

five consecutive frames and after extracting the center frame, it is sent to the lightweight 

self-encoder architecture proposed in this paper to determine whether it is an anomalous 

sample or not based on the generated reconstruction loss. 

As can be seen from the figure, within these four machine type sounds, the valve 

sound has a distinct non-smoothness. 

Baseline System. We used the model provided by the DCASE2020 competition as a 

baseline system [22]. The baseline system is a simple autoencoder-based anomaly score 

calculator. The architecture consists of a fully connected neural network (FCN) layer, 

followed by three hidden FCN layers, and one output FCN layer. Each hidden layer 

contains 128 hidden units, and the encoder output dimension is 8. The rectified linear 

unit (ReLU) activation function is applied after each FCN layer, except for the output 

layer of the decoder. The training process is halted after 100 epochs, with a batch size 

of 512. The ADAM optimizer is utilized, and the learning rate is fixed at 0.001. 



3.2 Results 

In this paper, the AUC metric, the number of model parameters, and the number of 

convergence rounds are used to illustrate model performance, lightweighting, and train-

ing efficiency, respectively. 

Model Performance. AUC is an important metric to measure the classification perfor-

mance of a model, and the AUC for each specific machine and the average value for 

each machine type are given in Table 1. For comparison, the baseline system results are 

also provided in the table. 

In terms of average AUC per machine type, LCAA is much better than the baseline 

system in most machine types. 

Table 1. Dataset Description 

Method Fan Pump Slider Valve 

Baseline 0.6583 0.7289 0.8476 0.6628 

LCAA 0.8318 0.6330 0.9280 0.8719 

Isolation Forest 0.7993 0.5691 0.7355 0.5222 

Lightweight and Training Efficiency. In the Industrial Internet of Things (IIoT), real-

time anomaly detection applications are often deployed on resource-constrained em-

bedded devices such as the Arduino Nano 33 BLE Sense, which has limited storage 

(e.g., 1MB Flash and 256KB SRAM). To meet these constraints, we designe a light-

weight model by streamlining convolutional layers and optimizing the attention mech-

anism, reducing parameter count to just one-quarter of the baseline model. As shown 

in Fig. 3, this significantly lowers storage and computation demands while improving 

performance, making it ideal for IIoT deployment. 

The efficiency gains extend to training. Fig. 3 highlights that our model converges 

in 30 epochs, compared to the baseline’s 85 epochs, reducing training costs and time 

overhead. This accelerates convergence, combined with superior AUC metrics, demon-

strates that our solution achieves higher accuracy with fewer resources, fulfilling real-

time IIoT requirements. 

3.3 Ablation Study 

To evaluate the contribution of different components in our proposed LCAA model, we 

conducted a series of ablation experiments. We systematically removed key compo-

nents of our architecture—specifically the CNN module and the multi-head attention 

mechanism—to assess their individual impact on performance. Additionally, we com-

pared our approach against a baseline model that uses a traditional autoencoder struc-

ture without our center frame prediction technique. Table 2 presents the AUC-ROC 
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scores for each configuration across different machinery types and their corresponding 

fault conditions. 

 

Fig. 3. Comparison in model parameters and convergence epochs 

Table 2. Ablation study: AUC-ROC scores for different model configurations across various 

machinery types and fault conditions. 

Machine Type Full LCAA w/o CNN w/o Attention Baseline 

Slider(Avg.) 0.9280 0.9161 0.9231 0.8476 

Fan (Avg.) 0.8318 0.8239 0.8283 0.6583 

Pump (Avg.) 0.6330 0.6264 0.6244 0.7289 

Valve (Avg.) 0.8719 0.8621 0.8699 0.6628 

3.4 Parameter Sensitivity 

We thoroughly investigate the effects of key hyperparameters on LCAA performance 

on the Slider. First, we systematically adjust the number of attention heads in the atten-

tion mechanism by gradually increasing it from 1 to 16 (as shown in Fig.4(a)). The 

experimental results show that with the increase in the number of attention heads, the 

model is able to capture more diverse feature relationships and the performance is grad-

ually improved. When the number of attention heads reaches 8, the model performance 

reaches its peak. However, continuing to increase the number of attention heads does 

not lead to further performance improvement, but may instead lead to an increase in 

computational complexity and a potential risk of overfitting. 



Next, we explore the effect of the embedding dimension in the attention mechanism 

on the performance of LCAA. By adjusting the size of the embedding dimension (as 

shown in Fig. 4(b)), we find that the model exhibited the best performance when the 

embedding dimension was set to 64. However, when the embedding dimension is fur-

ther increased to 128, the performance do not improve significantly and even show a 

slight decrease in some cases. This phenomenon may be related to the limited general-

ization ability of the model at higher dimension. 

 

Fig. 4. Parameter sensitivity analysis on Slider: (a) Number of attention heads, and (b) Number 

of embedding dimension 

The experimental results indicate that the number of attention heads and the embed-

ding dimension are key hyperparameters affecting the performance of LCAA, and their 

proper configuration has a significant impact on the final performance of the model. 

Although the optimal configuration is 8 for the number of attention heads and 64 for 

the embedding dimension from the perspective of model performance, considering that 

the model should be deployed on resource-constrained embedded devices, we ulti-

mately choose to set the number of attention heads to 4 and the embedding dimension 

to 32. This compromise guarantees the performance of the model while significantly 

lowering the computational resource requirements, making it more suitable for deploy-

ment in real-world applications. 

4 Conclusion 

In this paper, we presented LCAA, a Lightweight Convolutional Attention Autoencoder 

for acoustic anomaly detection in industrial equipment. By combining a center frame 

prediction approach with convolutional neural networks and multi-head attention 

mechanisms, our model achieves superior anomaly detection performance while main-

taining minimal parameter counts suitable for edge deployment. Experimental results 

on the MIMII dataset demonstrate that LCAA outperforms baseline methods across 

most machine types, with significant improvements in AUC scores for fans, sliders, 
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and valves. The model not only exhibits faster convergence during training but also 

requires substantially fewer parameters, making it particularly suitable for resource-

constrained Industrial IoT environments. The ablation studies confirm that both the 

convolutional feature extraction and attention mechanisms contribute meaningfully to 

performance gains. Overall, LCAA offers an efficient and effective solution for real-

time acoustic anomaly detection in industrial settings where computational resources 

are limited but reliable monitoring is critical. 
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