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Abstract. Long-term time series forecasting remains challenging due to complex 

temporal dependencies, diverse data distributions, and computational inefficien-

cies with extended sequences. We propose CMTFormer, a novel architecture that 

addresses these limitations through multi-scale temporal modeling and contras-

tive learning. Our approach combines adaptive trend decomposition across mul-

tiple timescales with a representation learning framework that leverages self-at-

tention mechanisms and dilated convolutions. The proposed multi-scale trend de-

composition disentangles time series into interpretable components at varying 

resolutions, while the contrastive learning strategy enhances feature discrimina-

tion by differentiating between semantically related and unrelated temporal pat-

terns. Extensive experiments on six real-world benchmarks spanning energy, 

transportation, weather, finance, and public health domains demonstrate that 

CMTFormer consistently outperforms state-of-the-art forecasting models.  

Keywords: Long-term time series forecasting, Multi-scale temporal modeling, 

Contrastive learning, Self-attention 

 Introduction 

Time series forecasting plays a pivotal role across numerous domains, including energy 

consumption prediction, traffic flow analysis, weather forecasting, disease spread mod-

eling, and economic trend analysis. The ability to accurately predict future values based 

on historical observations enables critical decision-making processes in both industrial 

applications and scientific research [1,4]. Despite significant advances in deep, learning 

approaches for time series forecasting, several challenges remain particularly intracta-

ble: multi-scenario adaptability, long-range dependency modeling, and complex tem-

poral pattern extraction [12,14]. 

Multi-scenario forecasting requires models to generalize across diverse data distri-

butions and temporal patterns without scenario-specific fine-tuning [8]. Long sequence 

modeling demands efficient architectures that can capture dependencies spanning hun-

dreds or thousands of time steps without computational explosion or gradient vanishing 

issues [3,16]. Complex temporal dynamics, characterized by the interplay of trend, 
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seasonality, and stochastic components, further complicate the forecasting task by re-

quiring sophisticated decomposition mechanisms [5,12]. 

Traditional approaches like ARIMA and exponential smoothing methods [2] perform 

well on stationary data with clear patterns but struggle with non-linear relationships and 

long-term dependencies. Recent deep learning models have shown promising results 

but often require extensive data and suffer from efficiency issues when processing long 

sequences. These include: AutoCon [9], which models term variations across different 

windows in a self-supervised manner; TimesNet [11], which employs 2D tensor trans-

formation with frequency domain analysis; MICN [10], which utilizes inception blocks 

with multi-scale convolutions; PatchTST [7], a patch-based transformer; DLinear 

[13], a decomposition-based linear model; FiLM [15], which implements frequency-

informed learning; Nonstationary [6], which handles non-stationary series; and FED-

former [16], a frequency-enhanced decomposed transformer. 

In this paper, we introduce a novel forecasting framework that addresses these chal-

lenges through an innovative combination of contrastive learning and multi-scale de-

composition. Our approach leverages dilated convolutional encoders to efficiently ex-

tract hierarchical temporal features while employing series decomposition techniques 

to disentangle complex time series into interpretable components. The key contribu-

tions of our work include: 

─ A multi-scale trend decomposition mechanism that captures temporal patterns at var-

ying resolutions, enabling robust performance across diverse forecasting scenarios. 

─ An enhanced representation learning module incorporating self-attention mecha-

nisms that effectively models global dependencies in long sequences while main-

taining computational efficiency. 

─ A contrastive learning strategy that improves feature extraction by learning repre-

sentations that differentiate between related and unrelated temporal patterns. 

─ Comprehensive empirical validation across multiple real-world datasets spanning 

mechanical systems (ETT), energy consumption (Electricity), transportation net-

works (Traffic), meteorological conditions (Weather), financial markets (Exchange), 

and public health (ILI). 

 Methodology 

We introduce Contrastive Multi-scale Transformer (CMTFormer), a novel architecture 

designed to address the fundamental challenges in long-term time series forecasting. 

Our approach is motivated by two key observations: first, real-world time series contain 

patterns at multiple temporal scales that traditional models struggle to capture simulta-

neously; and second, effective representation learning is crucial for generalizing across 

diverse forecasting scenarios. CMTFormer tackles these challenges by integrating 

multi-scale decomposition with contrastive learning in a unified framework. 

As shown in Figure 1, our CMTFormer architecture incorporates multi-scale decom-

position and contrastive learning to enhance the representation learning for time series 

forecasting. 
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Fig. 1. Overall architecture of CMTFormer, integrating multi-scale decomposition and contras-

tive learning to enhance representation learning for time series forecasting. 

2.1 Problem Formulation 

Long-term time series forecasting presents unique challenges compared to short-

term prediction tasks. Given a multivariate time series 𝐗 = {𝐱1, 𝐱2, . . . , 𝐱𝑇} ∈ ℝ𝑇×𝐶 

with 𝑇  timesteps and 𝐶  channels, we aim to predict future values 𝐘 =
{𝐱𝑇+1, 𝐱𝑇+2, . . . , 𝐱𝑇+𝜏} ∈ ℝ𝜏×𝐶  over a potentially lengthy horizon 𝜏 . We use a look-

back window of length 𝑇𝑖𝑛 to predict  𝑇𝑜𝑢𝑡  future steps, where 𝑇𝑜𝑢𝑡 ≫ 1 for long-term 

scenarios. 

 The central insight driving our approach is that time series naturally decompose into 

components operating at different frequencies: 

𝐗 = 𝐗𝑡𝑟𝑒𝑛𝑑 + 𝐗𝑠𝑒𝑎𝑠𝑜𝑛𝑎𝑙  (1) 

 

This decomposition reflects the inherent structure of temporal data: low-frequency 

trends capture the overall direction, while high-frequency seasonal patterns represent 

recurring behaviors. By modeling these components separately yet jointly, we can bet-

ter capture the complex dynamics that drive future values. 

2.2 CMTFormer Architecture 

The CMTFormer architecture evolves from this multi-scale perspective, integrating 

four complementary components that work together to extract and leverage temporal 

patterns at different resolutions: 



Data Normalization and Embedding. Real-world time series often exhibit non-sta-

tionarity, scale variations, and complex temporal dependencies. Before extracting 

meaningful patterns, we must address these challenges through appropriate normaliza-

tion: 

𝐗𝑛𝑜𝑟𝑚 = 𝒩(𝐗𝑖𝑛) (2) 

Our framework supports multiple normalization techniques that adapt to different 

data characteristics: 

─ ReVIN: 𝐗𝑛𝑜𝑟𝑚 =
𝐗𝑖𝑛−𝜇(𝐗𝑖𝑛)

𝜎(𝐗𝑖𝑛)+𝜖
 addresses both mean shifting and variance scaling 

─ Mean Normalization: 𝐗𝑛𝑜𝑟𝑚 = 𝐗𝑖𝑛 − 𝜇(𝐗𝑖𝑛)  removes trend components while 

preserving amplitude information 

─ LastVal Normalization: 𝐗𝑛𝑜𝑟𝑚 = 𝐗𝑖𝑛 − 𝐗𝑖𝑛[: , −1: , : ] focuses on relative changes 

from the most recent observation 

After normalization, we transform the data into a latent embedding space that cap-

tures both value information and temporal context: 

𝐄 = 𝐖𝑣𝑎𝑙𝐗𝑛𝑜𝑟𝑚 + 𝐖𝑡𝑒𝑚𝑝𝐗𝑚𝑎𝑟𝑘 (3) 

This embedding combines value information with temporal markers (e.g., hour of 

day, day of week), enabling the model to learn time-dependent patterns that respect the 

underlying temporal structure of the data. 

Multi-Scale Trend Decomposition. The core innovation of our approach lies in the 

multi-scale decomposition mechanism. Traditional forecasting models often apply a 

one-size-fits-all approach to temporal patterns, but real-world time series contain dy-

namics operating at different timescales simultaneously. Our multi-scale decomposi-

tion addresses this fundamental limitation. 

Adaptive Moving Average. We start with an adaptive moving average that learns to 

extract trend components: 

MA(𝐗, 𝑘) = Conv1D(𝐗, 𝐖𝑘) ⋅ (1 + 𝛼𝑘) (4) 

Unlike traditional moving averages with fixed weights, our approach learns the op-

timal kernel 𝐖𝑘 specifically for each dataset. The learnable parameter 𝛼𝑘 provides ad-

ditional flexibility, allowing the model to adjust the strength of the smoothing effect. 

This adaptivity is crucial for handling diverse time series with varying characteristics. 

Scale-Specific Decomposition.  Building on this foundation, we perform decomposition 

at multiple temporal scales. For each scale 𝑠𝑖  in our scale set 𝒮 = {𝑠1, 𝑠2, . . . , 𝑠𝑀}, we 

extract trend and residual components:  

𝐗𝑡𝑟𝑒𝑛𝑑
(𝑖)

= MA(𝐗, 𝑠𝑖 + 1) ⋅ 𝛽𝑖 (5) 

𝐗𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙
(𝑖)

= 𝐗 − 𝐗𝑡𝑟𝑒𝑛𝑑
(𝑖) (6) 
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Each scale captures patterns with different temporal extents - smaller scales identify 

rapid changes, while larger scales capture slower-evolving trends. The parameter 𝛽𝑖 

learns the optimal contribution of each trend component, allowing the model to empha-

size the most relevant scales for each dataset. 

Multi-Scale Integration. After extracting scale-specific components, we intelligently 

integrate them to form a comprehensive representation: 

  

𝐗𝑡𝑟𝑒𝑛𝑑
𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 = ∑ 𝑤𝑖 ⋅ MLP𝑖(𝐗𝑡𝑟𝑒𝑛𝑑

(𝑖)
)

𝑀

𝑖=1

(7) 

The scale-specific MLPs transform each trend component into a representation 

space, while the attention-normalized weights 𝑤𝑖(ensuring ∑ 𝑤𝑖 = 1𝑀
𝑖=1 ) learn to em-

phasize the most informative scales. This integration mechanism adaptively combines 

information across temporal resolutions, allowing the model to capture both rapid fluc-

tuations and long-term patterns simultaneously. 

Self-Attention Enhanced Representation. While multi-scale decomposition provides 

a powerful foundation, effectively modeling long-range dependencies remains chal-

lenging. To address this, we enhance our representations with a combination of hierar-

chical convolutional processing and self-attention mechanisms. 

Hierarchical Feature Extraction. We first employ a series of dilated convolutions with 

exponentially increasing dilation rates: 

𝐇𝑙 = DilatedConv𝑙(𝐇𝑙−1, 𝑑𝑙) (8) 

where 𝑑𝑙 = 2𝑙−1 is the dilation rate at layer 𝑙, and 𝐇0 = 𝐄. 

This hierarchical approach serves two crucial purposes: First, it efficiently expands 

the receptive field exponentially while maintaining linear computational complexity, 

allowing the model to capture long-range dependencies without excessive computation. 

Second, it creates a multi-resolution feature hierarchy where early layers capture local 

patterns while deeper layers integrate information across broader temporal contexts. 

Global Context Integration. To further enhance long-range modeling, we apply multi-

head self-attention to the hierarchical features: 

𝐇𝑎𝑡𝑡 = MultiHeadAttention(𝐇𝐿 , 𝐇𝐿 , 𝐇𝐿) (9) 

where: 

head𝑖 = Attention(𝐐𝑖 , 𝐊𝑖 , 𝐕𝑖) (10) 

𝐐𝑖 , 𝐊𝑖 , 𝐕𝑖 = 𝐇𝐿𝐖𝑖
𝑄 , 𝐇𝐿𝐖𝑖

𝐾 , 𝐇𝐿𝐖𝑖
𝑉 (11) 

Attention(𝐐, 𝐊, 𝐕) = softmax (
𝐐𝐊𝑇

√𝑑𝑘

) 𝐕 (12) 

 



Self-attention complements the hierarchical convolutional features by explicitly 

modeling relationships between any two timesteps, regardless of their distance. By 

computing attention across multiple heads, the model can simultaneously focus on dif-

ferent aspects of these temporal relationships, such as short-term correlations, periodic 

patterns, and long-term dependencies. 

The refined representations undergo further processing through residual connections 

and layer normalization: 

  

𝐑 = LayerNorm(𝐇𝐿 + Dropout(𝐇𝑎𝑡𝑡)) (13) 

followed by a position-wise feed-forward network for additional non-linear transfor-

mation: 

𝐑 = LayerNorm (𝐑 + Dropout(FFN(𝐑))) (14) 

where FFN(𝐱) = GELU(𝐱𝐖1 + 𝐛1)𝐖2 + 𝐛2. 

This attention-enhanced representation captures both local patterns and global de-

pendencies, providing a solid foundation for accurate forecasting across diverse tem-

poral horizons. 

Forecasting Mechanism. With rich, multi-scale representations in hand, we transform 

them into accurate predictions through a carefully designed forecasting mechanism: 

Temporal Projection. First, we project from the input sequence length to the prediction 

horizon: 

𝐙 = 𝐑𝐖𝑡𝑒𝑚𝑝 ∈ ℝ𝐶×𝑑𝑚𝑜𝑑𝑒𝑙×𝑇𝑜𝑢𝑡 (15) 

This projection, parameterized by 𝐖𝑡𝑒𝑚𝑝 ∈ ℝ𝑇𝑖𝑛×𝑇𝑜𝑢𝑡 , maps the input sequence rep-

resentations to the desired forecast horizon. By learning this mapping directly, the 

model can adapt to different prediction horizons and capture complex temporal rela-

tionships between past and future timesteps. 

Feature Projection. Next, channel-specific projections generate the final predictions: 

𝐘
^

𝑐 = MLP𝑐(𝐙𝑐) ∈ ℝ𝑇𝑜𝑢𝑡 (16) 

Using separate MLPs for each channel allows the model to capture channel-specific 

dynamics and dependencies, recognizing that different variables in multivariate time 

series often exhibit distinct behaviors. 

Finally, we return to the original data scale through denormalization: 

  

𝐘
^

𝑑𝑒𝑛𝑜𝑟𝑚 = 𝒩−1 (𝐘
^

) (17) 

This step ensures that our predictions align with the original scale of the data, making 

them directly interpretable and usable for downstream applications. 
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2.3 Contrastive Learning Enhancement 

While the components described above provide a powerful forecasting framework, we 

further enhance representation quality through contrastive learning. Our insight is that 

high-quality representations should capture the underlying temporal dynamics of the 

data, not just patterns specific to the forecasting task. 

Temporal Projection. For each sequence 𝐗𝑖 , we generate positive samples through 

carefully designed temporal transformations:  

𝐗𝑖
+ = 𝒯(𝐗𝑖) (18) 

These transformations preserve the semantic meaning of the sequence while intro-

ducing controlled variations: 

─ Temporal shifting:  𝒯𝑠ℎ𝑖𝑓𝑡(𝐗𝑖)[𝑡] = 𝐗𝑖[𝑡 + 𝛿]  with 𝛿 ∈ [−𝛿𝑚𝑎𝑥, 𝛿𝑚𝑎𝑥]  shifts the 

sequence slightly, teaching the model to recognize the same pattern regardless of its 

exact temporal position 

─ Masking: 𝒯𝑚𝑎𝑠𝑘(𝐗𝑖)[𝑡] = 𝐦𝑡 ⋅ 𝐗𝑖[𝑡]  where 𝐦𝑡 ∼ Bernoulli(𝑝)  randomly masks 

timesteps, encouraging the model to develop robust representations that can handle 

missing data 

Contrastive Objective. We optimize the InfoNCE loss to bring representations of aug-

mented versions of the same sequence closer together while pushing apart representa-

tions of different sequences: 

𝐿𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = −𝑙𝑜𝑔
𝑒𝑥𝑝(𝑠𝑖𝑚( 𝒓𝒊, 𝒓𝒊

+)/𝜏)

𝑒𝑥𝑝(𝑠𝑖𝑚( 𝒓𝒊, 𝒓𝒊
+)/𝜏) + ∑

𝑗≠𝑖
𝑒𝑥𝑝(𝑠𝑖𝑚( 𝒓𝒊, 𝒓𝒋)/𝜏)

(19) 

Here,𝐫𝑖 = 𝑓𝜃(𝐗𝑖)is the representation of sequence 𝐗𝑖 , sim(𝐮, 𝐯) =
𝐮𝑇𝐯

||𝐮||⋅||𝐯||
  is the co-

sine similarity, and 𝜏 is a temperature parameter controlling the sharpness of the distri-

bution. 

This contrastive approach encourages the model to learn representations that capture 

the fundamental structure of the time series rather than superficial patterns, enhancing 

generalization to unseen data and robustness against noise. 

2.4 Training Objective 

Our final training objective integrates both forecasting accuracy and representation 

quality: 

ℒ𝑡𝑜𝑡𝑎𝑙 = ℒ𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 + 𝜆ℒ𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 (20) 

The forecasting loss ℒ𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 =
1

𝑇𝑜𝑢𝑡×𝐶
∑ ∑ (𝑦

^

𝑡,𝑐 − 𝑦𝑡,𝑐)2𝐶
𝑐=1

𝑇𝑜𝑢𝑡
𝑡=1  directly optimizes 

prediction accuracy, while the contrastive loss ℒ𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡  enhances representation qual-

ity. The hyperparameter 𝜆 balances these objectives, allowing us to control their rela-

tive importance. 



 Experiments 

In this section, we conduct extensive experiments to evaluate the performance of our 

proposed CMTFormer model for long-term time series forecasting.We implement 

CMTFormer using PyTorch and conduct all experiments on NVIDIA L40s GPUs. 

3.1 Experimental Setup 

We evaluate our approach on six widely-used benchmark datasets: ETTh2 (hourly 

electricity transformer temperature readings, 7 variables, 2 years), Elec tricity (hourly 

consumption of 321 clients, 2 years), Traffic (hourly occupancy rates from 963 sensors, 

1 year), Weather (21 meteorological indicators, 10 minute intervals, 2020-2021), Ex-

change (daily rates of 8 countries, 1990-2016), and ILI (weekly illness percentages 

from CDC, 2002-2021). All datasets follow a 7:1:2 train-validation-test split with 

standard normalization.  

The model is trained using the Adam optimizer with an initial learning rate of 10−4 

and a weight decay of 10−5. We employ a cosine annealing scheduler with warm re-

starts, setting the minimum learning rate to 10−6.  

The multi-scale trend decomposition uses kernel sizes 𝒮 = {7,15,31,63} to capture 

both short-term and long-term dependencies. For the contrastive learning component, 

we set the temperature parameter 𝜏 =  0.1 and the loss balancing coefficient 𝜆 =  0.2 .  

For fair comparison, we maintain the same lookback window length of 96 time steps 

across all models and datasets. We train each model with a batch size of 32 for 30 

epochs and select the best model based on validation performance. 

3.2 Forecasting Performance 

Main Results.  Table 1 presents the main results comparing CMTFormer with baseline 

models on all six datasets across various prediction horizons. Following the standard 

practice, we report the Mean Squared Error (MSE) and Mean Absolute Error (MAE) 

metrics. 

As shown in Table 1, our proposed CMTFormer consistently outperforms all base-

line models across most datasets and prediction horizons. Specifically, for the ETTh2 

dataset with shorter prediction horizons (96 and 720 time steps), CMTFormer achieves 

the best performance with significant improvements. For longer prediction horizons, 

AutoCon shows comparable performance but CMTFormer still maintains competitive 

results. 

Long-horizon Forecasting. To evaluate the model's capability for long-term forecast-

ing, we extend the prediction length for various datasets: from 720 to 2160 time steps 

for ETTh2, Electricity, Traffic, and Weather; from 720 to 1080 time steps for Ex-

change; and from 56 to 112 time steps for ILI. 

The results demonstrate that CMTFormer maintains robust performance even with 

extended prediction horizons. For instance, on the ETTh2 dataset with a 720-step  
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Table 1. Comparison of forecasting errors between CMTFormer and baseline models on six 

benchmark datasets across various prediction horizons. Best results are in bold and second-best 

results are  underlined. 

Model 

CMT-

Former 

(ours) 

AutoCon 
[9] 

TimesNet
[11] 

MICN 
[10] 

PatchTST 
[7] 

Dlinear 
[13] 

FiLM 
[15] 

Nonsta-

tionary 

[6] 

FED-

former 

[16] 

O MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE 

E
T

T
h

2
 

96 0.119 0.262 0.124 0.269 0.139 0.290 0.122 0.264 0.136 0.292 0.128 0.271 0.129 0.275 0.192 0.343 0.129 0.277 

720 0.163 0.332 0.177 0.344 0.207 0.370 0.313 0.457 0.233 0.392 0.319 0.461 0.256 0.407 0.231 0.394 0.273 0.419 

1440 0.181 0.348 0.176 0.340 0.192 0.358 0.520 0.599 0.351 0.481 0.514 0.597 0.389 0.506 0.211 0.379 0.384 0.487 

2160 0.210 0.374 0.198 0.358 0.263 0.413 0.759 0.734 0.610 0.659 0.740 0.728 0.610 0.645 0.240 0.399 0.919 0.737 

E
lectricity

 

96 0.188 0.305 0.196 0.313 0.286 0.386 0.241 0.367 0.227 0.336 0.207 0.322 0.394 0.451 0.332 0.426 0.279 0.393 

720 0.263 0.377 0.275 0.386 0.417 0.471 0.336 0.446 0.332 0.426 0.304 0.412 0.467 0.504 0.505 0.533 0.417 0.486 

1440 0.329 0.435 0.338 0.441 0.491 0.523 0.419 0.504 0.482 0.537 0.395 0.484 0.625 0.610 0.577 0.574 0.651 0.609 

2160 0.371 0.472 0.380 0.481 0.536 0.547 0.421 0.501 0.768 0.644 0.415 0.496 0.938 0.758 0.642 0.610 0.896 0.714 

T
raffic 

96 0.127 0.198 0.132 0.206 0.145 0.219 0.168 0.256 0.192 0.296 0.219 0.327 0.264 0.334 0.247 0.326 0.220 0.312 

720 0.138 0.218 0.144 0.225 0.163 0.269 0.304 0.394 0.213 0.318 0.309 0.419 0.247 0.329 0.277 0.360 0.255 0.344 

1440 0.169 0.244 0.174 0.251 0.188 0.292 0.375 0.443 0.246 0.341 0.353 0.409 0.311 0.390 0.303 0.361 0.297 0.376 

2160 0.169 0.245 0.175 0.252 0.190 0.304 0.360 0.426 0.261 0.353 0.324 0.386 0.988 0.745 0.222 0.317 0.317 0.394 

W
eath

er 

96 0.511 0.514 0.521 0.522 0.584 0.536 0.569 0.525 0.545 0.539 0.579 0.529 0.589 0.533 0.636 0.567 0.703 0.625 

720 0.941 0.705 0.963 0.715 1.090 0.753 1.080 0.754 0.987 0.752 1.007 0.706 1.003 0.728 1.007 0.725 1.114 0.822 

1440 1.254 0.819 1.280 0.835 1.547 0.926 1.351 0.863 1.342 0.860 1.299 0.823 1.472 0.900 1.394 0.867 1.435 0.919 

2160 1.389 0.875 1.415 0.887 1.744 0.994 1.544 0.937 1.506 0.924 1.454 0.887 1.712 0.988 1.598 0.944 1.786 1.054 

E
x

ch
an

g
e 

48 0.047 0.167 0.051 0.172 0.054 0.178 0.054 0.181 0.068 0.197 0.049 0.170 0.052 0.173 0.054 0.178 0.059 0.184 

360 0.434 0.519 0.448 0.527 0.479 0.532 0.459 0.536 0.548 0.573 0.485 0.531 0.492 0.534 0.493 0.541 0.528 0.556 

720 1.035 0.780 1.067 0.794 1.239 0.856 1.383 0.927 1.264 0.859 1.718 1.024 1.291 0.864 1.358 0.894 1.381 0.903 

1080 0.978 0.781 1.004 0.792 1.327 0.900 4.874 1.972 1.255 0.873 4.982 1.973 1.670 1.010 1.774 1.058 1.600 0.980 

IL
I 

14 0.701 0.558 0.725 0.574 1.414 0.735 0.815 0.701 1.558 0.965 1.397 0.901 1.079 0.739 1.107 0.698 0.773 0.619 

28 0.865 0.671 0.887 0.683 1.604 0.854 1.670 1.062 1.878 1.110 2.008 1.134 1.315 0.887 1.515 0.767 0.989 0.770 

56 0.782 0.711 0.807 0.725 1.021 0.787 1.757 1.210 1.451 1.028 1.584 1.075 1.080 0.891 0.895 0.742 0.856 0.741 

112 1.458 1.027 1.499 1.038 1.669 1.072 3.593 1.759 2.846 1.438 3.332 1.572 2.608 1.387 1.724 1.108 1.660 1.097 

1st Count 22 2 0 0 0 0 0 0 0 

 

CMTFormer achieves an MSE of 0.163 and MAE of 0.332, significantly outperforming 

all baseline models. This superior performance on long-horizon forecasting can be at-

tributed to the multi-scale trend decomposition mechanism that effectively captures 

patterns at different temporal scales. 

It is worth noting that for some extremely long prediction horizons (e.g., 2160 steps), 

AutoCon occasionally shows better performance. This suggests potential future 



improvements for CMTFormer by incorporating contextual information similar to Au-

toCon while maintaining the strengths of our multi-scale approach. 

3.3 Ablation Studies 

To validate the effectiveness of each component in CMTFormer, we conduct compre-

hensive ablation studies by removing or replacing key components and evaluating the 

resulting performance impact. 

Table 2. Ablation study on CMTFormer components using ETTh2 dataset with prediction hori-

zon of 96 and 720 time steps. 

Model Variant Horizon=96 Horizon=720 

MSE MAE MSE MAE 

CMTFormer (Full model) 0.119 0.262 0.163 0.332 

w/o Multi-scale Decomposition 0.135 0.281 0.211 0.373 

w/o Contrastive Learning 0.126 0.270 0.179 0.346 

w/o Self-Attention 0.132 0.275 0.198 0.358 

Single-scale (kernel=15) 0.131 0.278 0.204 0.368 

ReVIN → Mean Normalization 0.124 0.268 0.175 0.339 

 

Effect of Multi-scale Decomposition. Replacing our multi-scale trend decomposition 

with a single-scale approach leads to a performance degradation of approximately 10% 

in terms of MSE for longer horizons (720 steps). This confirms the effectiveness of 

modeling temporal patterns at different resolutions, particularly for long-term forecast-

ing. When we completely remove the decomposition mechanism, the performance 

drops even further, highlighting the critical role of explicit trend modeling in our frame-

work. 

Impact of Contrastive Learning. Removing the contrastive learning component re-

sults in a 5.9% increase in MSE and a 3.1% increase in MAE for short-term forecasting 

(96 steps), with more pronounced effects for longer horizons. This demonstrates that 

the contrastive learning strategy effectively enhances representation quality by encour-

aging the model to distinguish between related and unrelated temporal patterns. 

 

Contribution of Self-Attention. When self-attention is removed, leaving only the di-

lated convolutional encoder, the model's performance degrades by 10.9\% in MSE for 

the 96-step horizon and 21.5\% for the 720-step horizon. This significant drop confirms 

our hypothesis that capturing global dependencies through self-attention is crucial for 

accurate long-term forecasting. 
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Normalization Strategy. We also experiment with different normalization strategies. 

Replacing ReVIN with mean normalization results in a slight performance decrease, 

suggesting that maintaining scale information via ReVIN is beneficial for our model. 

3.4 Parameter Sensitivity Analysis 

To investigate the robustness of CMTFormer to hyperparameter choices, we conduct 

a sensitivity analysis on key parameters including the contrastive loss weight 𝜆, the set 

of kernel sizes 𝒮 for multi-scale decomposition, and the number of attention heads. 

 

Fig. 2. Parameter sensitivity analysis showing the impact of (a) contrastive loss weight 𝜆, (b) 

number of scales in decomposition, and (c) number of attention heads on prediction MSE for the 

ETTh2 dataset with different prediction horizons. 

Contrastive Loss Weight. Figure 2 (a) shows that CMTFormer performs best when 𝜆 

is set between 0.1 and 0.3, with 0.2 yielding optimal results. When 𝜆 becomes too large 

(>0.5), forecasting performance degrades as the model prioritizes representation learn-

ing over prediction accuracy. Conversely, when 𝜆 is too small (<0.05), the benefit of 

contrastive learning diminishes. 

Number of Scales. Figure 2 (b) illustrates the impact of varying the number of scales 

in the multi-scale decomposition. Performance generally improves as more scales are 

included, with diminishing returns beyond 4 scales. This confirms our design choice of 

using multiple scales to capture temporal patterns at different resolutions, while keep-

ing computational complexity manageable. 

Attention Heads. As shown in Figure 2 (c), increasing the number of attention heads 

initially improves performance but plateaus after 4 heads. This suggests that a moderate 

number of attention heads is sufficient to capture the diverse aspects of temporal rela-

tionships in the data. 



3.5 Case Study: Extreme Value Forecasting 

A particularly challenging aspect of time series forecasting is predicting extreme values 

or anomalies. To evaluate CMTFormer's capability in this regard, we conduct a case 

study focusing on extreme value prediction using the Electricity dataset. 

The results show that CMTFormer outperforms all baseline models in predicting 

both the highest and lowest 10% of values. This superior performance on extreme val-

ues can be attributed to the contrastive learning component, which helps the model learn 

more discriminative representations that capture the full distribution of the data, includ-

ing rare patterns associated with extreme values. 

Table 3. Performance comparison on extreme value prediction for the Electricity dataset. 

Model 

  

Top 10% Values  Bottom 10% Values 

MSE MAE MSE MAE 

CMTFormer 0.412 0.481 0.283 0.398 

AutoCon 0.459 0.512 0.301 0.407 

TimesNet 0.623 0.589 0.382 0.449 

PatchTST 0.571 0.568 0.356 0.425 

DLinear 0.548 0.551 0.339 0.437 

 

 Conclusion and Future Work 

In this paper, we proposed CMTFormer, a novel approach for long-term time series 

forecasting by integrating multi-scale trend decomposition, self-attention, and contras-

tive learning. Extensive experiments on six benchmark datasets demonstrate its superi-

ority over state-of-the-art models, particularly for long-horizon predictions. Our key 

contributions include a multi-scale decomposition mechanism for capturing temporal 

patterns, a self-attention-based representation learning strategy, and contrastive learn-

ing to enhance feature discrimination. Ablation studies and sensitivity analyses validate 

the model’s robustness and effectiveness. Future work will explore incorporating ex-

ternal factors, optimizing attention mechanisms for efficiency, and extending the multi-

scale approach to capture spatial dependencies in multivariate time series. 
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