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Abstract.  Skin  lesion  segmentation  remains  a  challenging  task  in  medical  image 

analysis.  Although  Transformer-based  segmentation  models  have  achieved.  no-

table  progress  in  recent  years,  they  still  suffer  from  limitations  such  as  the  imbal-

ance  between  local  and  global  modeling,  single-task  architectural  design,  and  in-

sufficient  attention  to  critical  regions.  These  issues  hinder  their  segmentation  per-

formance  on  complex  skin  lesion  images.  To  address  these  challenges,  we  pro-

pose  SegMAE,  a  dual-decoder  segmentation  framework  that  integrates  image  re-

construction  and  segmentation  tasks  to  jointly  enhance  the  model’s  understand-

ing  of  both  global  context  and  local  details.  The  model  adopts  a  CNN-

Transformer  hybrid  encoder,  with  a  MAE  decoder  for  reconstruction  and  a  Cas-

caded  Upsampler  for  segmentation.  To  enhance  the  model’s  performance  and 

generalization,  we  design  a  two-stage  training  strategy  that  first  involves.  pre-

training  and  then  proceeds  to  hybrid  multi-task  training.  In  addition,  we  introduce

a  Patch-wise  Loss  function  that  adaptively  emphasizes  training  on  critical  re-

gions,  thereby  improving  segmentation  accuracy  and  robustness.  Experimental

results  on  ISIC2017,  ISIC2018  and  PH2  demonstrate  that  SegMAE  consistently 

outperforms  existing  mainstream  methods  across  multiple  evaluation  metrics,

showcasing  superior  segmentation  performance  and  strong  generalization  capa-

bility.

Keywords:  Skin  Lesion  Segmentation,  Patch-wise  Loss,  Hybrid  Training  Strat-

egy,  Dual  Decoder  Architecture.

1  Introduction

In  recent  years,  medical  image  segmentation  has  been  increasingly  applied  in  computer-

aided  diagnosis,  particularly  in  the  context  of  skin  lesion  detection.  Accurate  segmen-

tation  of  lesion  regions  is  of  vital  importance  for  the  early  identification  of  abnormali-

ties,  as  well  as  for  improving  diagnostic  efficiency  and  accuracy.  However,  skin  lesion

images  typically  exhibit  substantial  visual  complexity,  characterized  by  intricate  lesion

structures,  diverse  morphological patterns,  indistinct  boundaries,  and  low  contrast  be-

tween  lesions  and  surrounding  tissues.  These  factors  pose  significant  challenges  to  the

generalization  and  robustness  of  conventional  segmentation  methods.  Especially  under
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conditions of limited sample size or complex lesion distributions, a key research chal-

lenge is how to design a segmentation model that effectively combines local feature 

perception with global semantic understanding. 

In the domain of medical image segmentation, convolutional neural networks 

(CNNs) have long served as the mainstream solution. Models like U-Net [1], UNet++ 

[2], and Att U-Net [3] adopt encoder-decoder structures with skip connections to pre-

serve spatial information and deliver reliable performance in segmenting lesions. How-

ever, due to their reliance on local receptive fields, CNNs often struggle to capture 

global semantic relationships, which limits their effectiveness in complex medical im-

aging scenarios. In recent years, Vision Transformers (ViT) [4] have demonstrated re-

markable potential in computer vision by effectively modeling long-range dependen-

cies and capturing global semantic context via self-attention mechanisms. Building on 

this, models such as SegFormer [5], Swin-UNet [6], and TransUNet [7] have extended 

ViT to medical image segmentation. For instance, TransUNet embeds ViT into the. 

bottleneck of a U-Net structure to capture global features, while Swin-UNet introduces 

local window-based attention to balance global modeling and spatial detail preserva-

tion. These methods significantly broaden the capacity of segmentation networks to 

handle complex medical imaging tasks. 

Additionally, researchers have begun exploring multi-task learning frameworks by 

introducing auxiliary tasks to enhance the expression ability and robustness of segmen-

tation models. Current methods have attempted to integrate tasks such as deep supervi-

sion, boundary regression, feature contrastive learning, and image classification into 

segmentation pipelines. By increasing training signals and diversifying optimization 

objectives, these frameworks guide networks to learn richer and more discriminative 

feature representations. Overall, this direction is gaining increasing attention, providing 

new avenues for improving medical image segmentation performance. 

Despite the advances made by existing methods, there remain significant limitations 

in the segmentation of skin lesion images: 

Imbalanced local-global modeling: Current models predominantly focus either on 

local textures or on global context modeling, struggling to integrate multi-scale infor-

mation effectively. This imbalance leads to insufficient accuracy in handling lesions 

characterized by indistinct boundaries and varying scales. 

Single-task structural design: Mainstream segmentation methods typically. con-

centrate on the segmentation task, lacking structural designs that incorporate auxiliary 

tasks to enhance semantic perception. This deficiency prevents effective task synergy 

and limits deep understanding and expressive capability regarding skin lesion regions. 

Insufficient weighting in loss functions: Conventional segmentation losses (e.g., 

Dice and BCE) apply uniform weights to all pixels, neglecting focused training on chal-

lenging areas such as boundaries and low-contrast regions. This oversight reduces the 

model’s discriminative power and overall segmentation accuracy in critical regions. 

To address the aforementioned challenges, we propose SegMAE, a novel framework 

tailored specifically for skin lesion segmentation tasks. Firstly, to enhance the repre-

sentation of local textures and structural details, we design a hybrid CNN-Transformer 

encoder by introducing a CNN module preceding the ViT encoder, which extracts mid-

to-high-resolution local features. Unlike ViT, which excels at global context modeling, 
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CNN effectively captures subtle structural information inherent in skin lesion images. 

By integrating the strengths of both local and global perception, our proposed architec-

ture significantly improves segmentation performance, especially for complex lesion 

shapes. Secondly, we introduce a dual-decoder architecture to overcome the limitations 

of traditional single-task segmentation models. The segmentation branch utilizes a Cas-

caded Upsampler to gradually restore spatial resolution, generating. accurate segmen-

tation masks. Concurrently, the reconstruction branch employs an MAE decoder, re-

sponsible for reconstructing masked image patches. We adopt a pretraining-guided hy-

brid training strategy, where the reconstruction branch first undergoes an initial pre-

training phase to enhance the model’s understanding of skin lesion structures and se-

mantics. Subsequently, both segmentation and reconstruction tasks are trained jointly, 

facilitating cross-task knowledge transfer and mutual optimization through backpropa-

gation, thereby boosting segmentation performance and generalization capabilities. Fi-

nally, to address the insufficient focus on challenging regions during training, we pro-

pose a Patch-wise Loss function. Built upon pixel-level losses, this function computes 

error distributions at the patch level and employs a Softmax weighting mechanism to 

emphasize patches with higher prediction errors, thereby directing the model’s attention 

toward areas that are indistinct or irregularly shaped. This effectively mitigates the in-

herent limitation of ViT in modeling fine-grained details, significantly enhancing its 

capability to accurately identify subtle lesion areas. The main contributions of our study 

are summarized as follows: 

• We propose a hybrid encoder architecture that integrates a CNN module before the 

ViT encoder, enabling enhanced extraction of local textures and structural details 

while maintaining the global context modeling strengths of Transformers 

• We introduce a dual-decoder-based hybrid training framework that jointly performs 

image segmentation and reconstruction. The training strategy enables the reconstruc-

tion task to enrich semantic representations, while task collaboration improves seg-

mentation accuracy and generalization. 

• We design a Patch-wise Loss function to enhance the model’s focus on detailed re-

gions. By incorporating a temperature parameter and a Softmax-based weighting 

strategy, the loss adaptively emphasizes high-error patches, improving segmentation 

accuracy in blurred boundaries and complex textures. 

• We conduct comprehensive evaluations on ISIC2017, ISIC2018, and PH2 datasets. 

Compared with mainstream segmentation models, SegMAE achieves superior. per-

formance across various metrics, demonstrating high accuracy and robustness in 

fine-grained lesion delineation. 

2 Related Works 

2.1 Vision Transformer 

Transformers were first introduced by Vaswani et al. [8] for machine translation, and 

later extended to vision by Dosovitskiy et al. [4], who proposed Vision Transformer 



(ViT), by dividing the image into patches and modeling them as sequential tokens. Sub-

sequently, hierarchical Vision Transformers such as Swin Transformer and PVT [9,10] 

were developed, introducing pyramidal structures and local attention to balance global 

modeling with efficiency. 

In recent years, Transformers have been widely explored in image segmentation. For 

instance, Zheng et al. [11] proposed SETR, which leverages ViT as an encoder and 

combines it with various CNN-based decoders to improve semantic segmentation per-

formance. Chen et al. [7] introduced a Transformer module into the bottleneck of a U-

Net architecture to achieve multi-organ segmentation. Valanarasu et al. [12] designed 

a Transformer-based attention guidance mechanism to improve the accuracy of 2D 

medical image segmentation. 

However, despite their global modeling advantages, these approaches still struggle 

with skin lesions’ unique challenges like blurred boundaries, diverse lesion shapes, and 

complex textures. To address this, we propose a hybrid encoder that integrates CNN 

and Transformer modules, aiming to bridge local detail perception and global semantic 

understanding for more robust skin lesion segmentation. 

2.2 Masked Autoencoder 

Masked Autoencoders (MAE), introduced by He et al. [13], are an efficient self-super-

vised learning paradigm. By randomly masking a large portion of the input and recon-

structing it from the visible patches, MAE enables efficient pretraining and has become 

a popular framework for visual representation learning. 

Following its success in natural image domains, researchers have extended MAE to 

medical imaging tasks, especially for enhancing segmentation performance. Gupta et 

al. proposed MedMAE [14], which employs a multi-scale patch input strategy for 3D 

medical images, enabling better modeling of anatomical structures. Li et al. introduced 

UM-MAE [15], where MAE is incorporated as a pretraining module in a multimodal 

segmentation network, enhancing the understanding of fine-grained structures.  

However, existing work typically uses MAE as a pretraining tool, underutilizing its 

structural modeling potential. In contrast, we incorporate MAE as a dedicated decoding 

branch in our framework, allowing it to learn structural and contextual cues and effec-

tively support the main segmentation task. 

3 Methodology 

This research introduces a dual-branch skin lesion segmentation model that integrates 

both image segmentation and reconstruction tasks (see Fig. 1). The model takes raw 

skin lesion images as input, first extracting local spatial features through a CNN mod-

ule, and then feeding the processed features into a ViT encoder to construct global se-

mantic representations of the image. To enhance the computational efficiency of the 

encoder and improve its representation learning ability, a masking mechanism is intro-

duced, whereby only a subset of patches is retained as input to the ViT encoder. 
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The output of the ViT encoder is then directed into two task-specific branches. For 

the segmentation task, a Cascaded Upsampler decoder progressively upsamples the en-

coded features back to the original resolution to generate the segmentation mask; for 

the reconstruction task, the token sequence with mask is passed into MAE decoder to 

recover the occluded image regions and reconstruct the complete image. In terms of 

training strategy, the model adopts a pretraining-driven hybrid training strategy. Spe-

cifically, the ViT encoder is first optimized via the reconstruction task, followed by a 

joint training phase that alternates between segmentation and reconstruction tasks. The 

optimization of both tasks is guided by a combination of loss functions, including Dice 

Loss, Binary Cross-Entropy Loss, and Patch-wise Loss, which emphasizes local recon-

struction errors. These losses collaboratively strengthen the model’s attention to critical 

regions during backpropagation, thereby enhancing overall segmentation performance. 

 

Fig. 1. A general overview of our SegMAE framework. 

3.1 Hybrid Encoder 

In SegMAE, we adopt a hybrid encoder architecture that integrates CNN with Trans-

formers. Specifically, the raw input skin lesion image is first processed by a CNN block 

to extract intermediate feature maps. Unlike traditional approaches that directly divide 

the raw image into patches, we extract patch from the output feature maps of the CNN 

and feed them into the Transformer encoder. This design not only leverages the CNN’s 

strength in modeling local textures, but also allows the decoder pathway to incorporate 

medium-and-high resolution CNN representations, thereby enhancing the model’s ca-

pacity to capture structural details and local texture patterns in the image. 

To further improve the encoder’s ability to extract meaningful representations, we 

introduce a Masking mechanism that randomly samples a subset of visible patches from 

the input patch token sequence for encoding, discarding the remaining patches without 

using additional mask tokens, thus avoiding redundant computation. 

Formally, let the input image of size be partitioned into non-overlapping patches of 

size 𝑃 × 𝑃, resulting in a total of patches. The resulting patch sequence can be denoted 

as: 

 𝒵 ∈ 𝑅𝑁×𝐷 (1) 



where is the dimension of each token. 

During the Masking stage, we apply random sampling over to obtain a visible patch 

subset while discarding the remaining invisible patch subset. This process can be for-

malized as: 

 𝒵𝒱 ∪ 𝒵ℳ = 𝒵, 𝒵𝒱 ∩ 𝒵ℳ = ∅ (2) 

where and represent the sets of visible and masked patch tokens, respectively. 

To increase the learning difficulty and improve generalization, a high masking ratio 

is applied during encoding, retaining only a small portion of patches for computation. 

This strategy effectively breaks the spatial redundancy among patches, preventing the 

model from relying on local neighborhood extrapolation. Instead, it compels the en-

coder to capture richer and more meaningful global context, which significantly bene-

fits the downstream segmentation performance. 

3.2 Dual Decoder Architecture 

To simultaneously perform image segmentation and image reconstruction, we design a 

dual-decoder architecture. In this architecture, the output of the ViT encoder is fed into 

two parallel decoder branches: one for the segmentation task, implemented via a Cas-

caded Upsampler, and the other for the reconstruction task, realized through an MAE 

Decoder. This parallel multi-task design enables mutual enhancement between the two 

tasks during training. 

Segmentation Decoder. In the multi-task architecture of SegMAE, the MAE branch 

focuses on the image reconstruction task. The input to this branch consists of two com-

ponents: (i) the visible patch obtained from the ViT encoder, and (ii) the learnable mask 

tokens corresponding to the masked positions. These two types of tokens are concate-

nated and combined with positional embeddings to form the decoder input: 

 𝑍dec = Concat(𝒵𝒱 , 𝒵ℳ) + 𝑬pos (3) 

where denotes the positional embeddings that encode spatial information. This com-

bined input is then passed through a series of lightweight Transformer modules, pro-

ducing the reconstructed output for the masked patches: 

 𝑥𝑗̂ = 𝑓dec(𝑍dec)𝑗 (4) 

where represents the decoder network and is the predicted value of the 𝑗-th masked 

patch. Owing to the shallower and narrower architecture of the decoder compared to 

the encoder, the per-token computation is significantly reduced, thereby greatly im-

proving pretraining efficiency and lowering computational overhead. 

The reconstruction objective is to minimize the pixel-level error between the pre-

dicted and original image regions within the masked areas. A weighted MSE loss is 
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applied, calculated only over the masked patches, guiding the model to focus on struc-

tural restoration. The detailed formulation of this loss is provided in the subsequent 

Loss Function section. 

Notably, we adopt a random sampling masking strategy during training, where visi-

ble patches are uniformly sampled from the full patch set, and the rest are masked. This 

approach disrupts the spatial redundancy between patches, forcing the model to rely 

more on global contextual reasoning for image restoration, thereby enhancing its struc-

tural understanding and reconstruction quality. 

Segmentation Decoder. For the segmentation branch, we employ a Cascaded Upsam-

pler (CUP) as the decoding module to progressively recover the low-resolution feature 

maps produced by the ViT encoder. CUP utilizes a multi-stage upsampling structure to 

gradually restore the feature dimensions from back to the original input resolution 

𝐻 × 𝑊. Each upsampling stage consists of a upsampling operation, a 3 × 3 convolu-

tional layer, and a ReLU activation function. Skip connections are used to fuse features 

from different stages of the encoder, enabling multi-scale feature aggregation and fa-

cilitating the generation of high-quality segmentation predictions with enhanced spatial 

detail and semantic consistency. 

3.3 Training Strategy 

To achieve collaborative optimization of the segmentation and reconstruction tasks, we 

adopt a pretraining-driven hybrid training strategy in this research. Under this strategy, 

the model training process is divided into two phases: 

In the first phase, namely the pretraining stage, we exclusively train the reconstruc-

tion branch (i.e., the MAE Decoder). At this point, the model loads the official pre-

trained weights of ViT and performs image reconstruction training on the skin lesion 

dataset. The segmentation branch remains frozen during this stage. The number of train-

ing epochs is set to 50, which, based on empirical results, is sufficient for the model to 

effectively capture structural and textural patterns in skin images. With the high-ratio 

masking mechanism, the model learns to reconstruct complex image content, thereby 

laying a solid foundation for representation learning in subsequent segmentation tasks. 

In the second phase, namely the hybrid training stage, we alternately optimize the 

segmentation and reconstruction tasks. Specifically, in each training cycle, the model 

first performs segmentation and computes a combined loss (comprising Binary Cross-

Entropy Loss, Dice Loss, and Patch-wise Loss), followed by backpropagation to update 

parameters. It then carries out an image reconstruction step, using the Patch-wise 

weighted MSE loss to further refine the feature extraction capability of the encoder. 

This training strategy establishes a complementary relationship between the two 

tasks. The segmentation task guides the model to focus on semantic region recognition 

and localization, while the reconstruction task enhances its ability to model fine-grained 

structures and spatial details within the image. 



3.4 Loss Function 

Segmentation Loss. The segmentation task for skin lesion images often suffers from 

severe class imbalance, where the number of pixels belonging to the lesion region is 

significantly smaller than that of the background. This imbalance can cause the model 

to overlook small lesion areas during training. To address this issue, we design a com-

posite loss function composed of three components: Patch-wise Loss, Binary Cross-

Entropy Loss (BCE), and Dice Loss. Among them, the Patch-wise Loss is a locality-

aware enhancement loss function specifically designed for the ViT architecture, which 

guides the model to focus more on regions with larger prediction errors. The construc-

tion process is as follows: 

First, we compute the pixel-wise squared error: 

 𝐿 = (𝑝𝑟𝑒𝑑 − 𝑔𝑡)2 (5) 

where denotes the predicted pixel value, and is the ground truth label. represents the 

MSE at the pixel level. 

Then, Next, we compute the average loss within each patch: 

  𝐿𝑖
′ =

1

𝑙 
∑ 𝐿𝑖,𝑗

𝑙
𝑗=1  (6) 

where is the mean error of the 𝑖-th patch, is the number of pixels in each patch, and is 

the squared error of the 𝑗-th pixel in the 𝑖-th patch. 

Then, we introduce a temperature factor to scale the patch-wise losses and apply a 

Softmax function to obtain attention weights: 

 𝑤𝑖 =  Softmax (
𝐿𝑖

′

𝛽
) (7) 

where is a hyperparameter controlling the sharpness of the Softmax distribution, and 

is the weight assigned to the 𝑖-th patch, giving higher priority to patches with larger 

reconstruction errors. 

Finally, the Patch-wise Loss is calculated as: 

 ℒ𝑝𝑎𝑡𝑐ℎ =
1

𝑁
∑ 𝑤𝑖  𝐿𝑖

′𝑁
𝑖=1   (8) 

where is the number of patches. This formulation ensures that the patch-wise weighted 

loss is converted into an average pixel-level loss, making it comparable across images 

of varying sizes or patch configurations. Additionally, it prevents isolated large patch 

errors from dominating the training, thus enhancing stability and generalization. 

In addition, we incorporate two commonly used loss functions: Binary Cross- En-

tropy (BCE) Loss and Dice Loss. The BCE Loss is defined as: 

 ℒ𝐵𝐶𝐸 = − ∑ [(1 − 𝑦𝑖̂) ln(1 − 𝑦𝑖) + 𝑦𝑖̂ ln(𝑦𝑖)]𝑁
𝑖=0  (9) 

where denotes the ground truth label, is the predicted probability, and is the total num-

ber of pixels. 

The Dice Loss is given by: 
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 ℒ𝐷𝑖𝑐𝑒 = 1 − 2 ×
2 ∑ 𝑦𝑖

𝑁
𝑖=0 𝑦𝑖̂

∑𝑖=0
𝑁 (𝑦𝑖+𝑦𝑖̂)

 (10) 

where the numerator denotes the intersection of the predicted and ground truth masks, 

while the denominator measures their combined extent, capturing the overlap quality. 

Finally, the overall segmentation loss is formulated as a weighted combination of 

the three components: 

 ℒ𝑆𝑒𝑔 = 𝜆1ℒ𝐵𝐶𝐸 + 𝜆2ℒ𝐷𝑖𝑐𝑒 + 𝜆3ℒ𝑝𝑎𝑡𝑐ℎ (11) 

where 𝜆1, 𝜆2, are weighting coefficients that determine the contribution of each loss 

component to the total loss. 

Reconstruction Loss. We introduce two key modifications to the reconstruction loss 

originally proposed by MAE in this study: (1) the use of a Designated Masking strategy, 

where a deterministic mask replaces the original random masking mechanism; and (2) 

the introduction of a temperature coefficient 𝛽, which amplifies the training weight of 

high-error regions, thereby accelerating the convergence of the MAE branch parame-

ters and improving reconstruction quality in critical areas. 

In the reconstruction branch, we adopt a weighted mechanism similar to the Patch-

wise Loss. First, the reconstruction error for each pixel is computed, followed by patch-

level normalization, and then a Softmax operation is applied to generate a weight dis-

tribution. This mechanism enables the model to automatically focus on regions that are 

more difficult to reconstruct during training, enhancing its ability to model fine details 

and improve perceptual understanding of images. The basic formulation of the loss 

function is defined as: 

 ℒ𝑀𝐴𝐸 =
1

𝑁
∑ (𝑦𝑖

true − 𝑦𝑖
pred

)
2

𝑁
𝑖=0  (12) 

where denotes the ground truth pixel value, denotes the predicted reconstruction value, 

and represents the number of pixels involved in the reconstruction. This loss is com-

puted only over the masked patches, avoiding overfitting on the visible regions and 

improving the encoder’s ability to model the global structure of the image.  

Additionally, to improve training efficiency, we employ a temperature-adjusted 

Softmax weighting mechanism to emphasize patch-level reconstruction errors. The cor-

responding mathematical formulation is consistent with the Patch-wise Loss described 

earlier and is thus omitted here. 

4 Experiments 

4.1 Datasets 

This paper utilizes three publicly available datasets for performance evaluation: 



• ISIC2017 [26] dataset includes 2000 training images, 150 validation images, and 

600 test images. All images have been manually annotated by professional derma-

tologists for segmentation tasks. Following Cheng et al., the colors of the images are 

normalized using the gray world algorithm. 

• ISIC2018 [27] dataset contains 2594 RGB skin lesion images with various types of 

skin lesions at different resolutions. Adopting the partitioning approach by Wu et al., 

the dataset is split into 1815 training images, 259 validation images, and 520 test 

images, maintaining a 7:1:2 ratio. 

• PH2 dataset [28] consists of 200 RGB skin lesion images. Following a similar par-

titioning strategy (7:1:2 ratio), we use 140 images for training, 20 for validation, and 

40 for testing. 

4.2 Evaluation Metrics 

For comprehensive comparison, we employ several evaluation metrics to assess the 

performance of the proposed model, including Accuracy (ACC), Dice coefficient 

(Dice), Intersection over Union (IoU), Sensitivity (SE), and Specificity (SP). 

 𝐴𝐶𝐶 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (13) 

 𝐷𝑖𝑐𝑒 =
2×𝑇𝑃

2×𝑇𝑃+𝐹𝑃+𝐹𝑁
 (14) 

 𝐼𝑜𝑈 =
𝑇𝑃

𝑇𝑃+𝐹𝑃+𝐹𝑁
 (15) 

 𝑆𝐸 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (16) 

 𝑆𝑃 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
 (17) 

where TP refers to the number of correctly segmented skin lesion pixels, TN refers to 

the number of correctly identified background pixels, FP refers to the number of back-

ground pixels incorrectly labeled as skin lesion pixels, and FN refers to the number of 

skin lesion pixels incorrectly predicted as background pixels. 

4.3 Implementation Details 

The proposed model is developed using the PyTorch framework, with all experiments 

conducted on an Nvidia 4090 RTX 24G GPU. To maintain uniformity in model input 

and enhance computational efficiency, we resized all training, validation, and test im-

ages to a standard resolution of 224×224. Additionally, to improve model initialization, 

we adopted ViT-B_16 as a pre-trained model. 

For training, we utilized a stochastic gradient descent optimizer with a weight decay 

of 0.001. The initial learning rate was configured at 0.008, and the ReduceLROnPlateau 

algorithm was applied for dynamic learning rate adjustment. The model was trained 

with a batch size of 24 over 100 epochs. The weight parameters 𝜆1, and were assigned 

values of 1.2, 0.4, and 0.8, respectively. 
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To reduce the risk of overfitting, we followed the strategy outlined by Wu et al. and 

incorporated multiple data augmentation techniques. These included random horizontal 

and vertical flips, random rotations within a range of -15 to 15 degrees, and random 

modifications to brightness and contrast within predefined limits. 

4.4 Evaluations and Analyses 

ISIC2017 dataset. Experimental results on ISIC 2017 dataset, as presented in Table 1, 

demonstrate that the proposed SegMAE model achieves outstanding performance 

across multiple evaluation metrics. Specifically, SegMAE attains the highest scores in 

Dice coefficient (0.864), SE (0.858), and ACC (0.938), highlighting its strong capabil-

ity in accurately identifying lesion regions, particularly excelling in the detection of 

small or indistinct lesions. 

Table 1. Quantitative comparison on the ISIC 2017 dataset. 

Method Dice SE SP ACC IoU 

U-Net [1] 0.783 0.806 0.954 0.933 0.696 

UNet++ [2] 0.832 0.830 0.965 0.925 0.743 

Att U-Net [3] 0.808 0.800 0.978 0.915 0.717 

FocusNet [16] 0.832 0.767 0.990 0.921 0.756 

DoubleU-Net [17] 0.845 0.841 0.967 0.933 0.760 

DAGAN [18] 0.859 0.835 0.976 0.935 0.771 

TransUNet [7] 0.841 0.807 0.979 0.932 0.755 

FAT-Net [19] 0.850 0.840 0.973 0.933 0.765 

ResGANet-MsASPP[20] 0.862 0.842 0.950 0.936 0.764 

SegMAE 0.864 0.858 0.961 0.938 0.757 

Compared with traditional models such as U-Net, UNet++, and Att U-Net, SegMAE 

significantly improves foreground sensitivity while maintaining high overall accuracy. 

This improvement is largely attributed to the integration of the reconstruction decoder 

and the Patch-wise Loss, which enables the model to more precisely localize blurred or 

small lesion regions. Moreover, when compared with more advanced architectures like 

TransUNet and FAT-Net, which aim to fuse local and global features, SegMAE still 

shows clear advantages in both Dice and SE metrics, reflecting its superior ability in 

capturing fine-grained structures while preserving global consistency. 

Although the IoU score (0.757) of SegMAE is slightly lower than that of certain 

methods (e.g., DAGAN at 0.771), it still achieves overall superior performance in terms 

of ACC, Dice, and SE. This demonstrates that SegMAE effectively balances accuracy 

and sensitivity, making it both practical and generalizable. In summary, the results on 

ISIC2017 validate the effectiveness of SegMAE’s multi-task collaborative optimiza-

tion strategy. 



ISIC2018 dataset. Experimental results on ISIC 2018 dataset, as shown in Table 2, 

further validate the superior performance of SegMAE. Specifically, SegMAE achieves 

the highest scores in two key metrics: Dice coefficient (0.896) and SE (0.957), and 

also performs exceptionally well in SP (0.979) and ACC (0.947), outperforming several 

advanced models, including FAT-Net, CKDNet, and TransUNet. 

Table 2. Quantitative comparison on the ISIC 2018 dataset. 

Method Dice SE SP ACC IoU 

U-Net [1] 0.855 0.880 0.970 0.940 0.773 

Att U-Net [3] 0.857 0.867 0.984 0.938 0.776 

CPFNet [21] 0.877 0.895 0.966 0.950 0.799 

TransUNet [7] 0.850 0.858 0.986 0.945 0.809 

CKDNet [22] 0.878 0.906 0.970 0.949 0.804 

FAT-Net [19] 0.890 0.910 0.970 0.958 0.820 

SegMAE 0.896 0.957 0.979 0.947 0.820 

Compared with the strong-performing FAT-Net, SegMAE improves Dice, SE, and SP 

by 0.6%, 4.7%, and 0.9%, respectively, indicating its superior capability in both lesion 

localization and boundary discrimination. The notably high SE score demonstrates the 

model’s enhanced sensitivity to lesion detection, which is particularly valuable for. 

real-world clinical applications where missed detections can be critical. 

In addition to its accuracy, SegMAE also exhibits strong stability and robustness. It 

maintains consistent performance across images with varying resolutions and lesion 

complexities. This robustness is largely attributed to the multi-task training strategy and 

the Patch-wise Loss mechanism, which effectively guide the model to focus on chal-

lenging regions, thereby improving the overall segmentation quality. 

In summary, the experimental results on ISIC2018 not only reflect the model’s stable 

performance on a large-scale dataset but also confirm the effectiveness and generaliza-

bility of its architectural design and training strategy. 

PH2 dataset. The experimental results on the PH2 dataset, as presented in Table 3, 

further validate the generalization ability of SegMAE in small-sample medical image 

segmentation scenarios. Unlike the ISIC series datasets, which typically contain thou-

sands of skin lesion images, PH2 consists of only 200 high-resolution images with rel-

atively regular lesion shapes. Therefore, this dataset not only evaluates the model’s 

learning ability under data-scarce conditions but also serves as a benchmark for its per-

formance in relatively simple segmentation tasks. 

As shown in Table 3, SegMAE outperforms all competing methods across key metrics, 

including Dice, IoU, ACC, and SP. Specifically, SegMAE achieves a Dice coefficient 

of 0.941, surpassing the strong-performing MB-DCNN (0.933) and iFCN (0.932), in-

dicating improved precision in reconstructing the overall lesion regions. In terms of 

IoU, SegMAE reaches 0.881, outperforming all existing methods, reflecting superior 
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capability in differentiating fine-grained foreground and background areas. The model 

also attains ACC of 0.961 and SP of 0.982, demonstrating high reliability in background 

exclusion. 

Table 3. Quantitative comparison on the PH2 dataset. 

Method Dice SE SP ACC IoU 

U-Net [1] 0.894 0.913 0.959 0.923 0.841 

Att U-Net [3] 0.900 0.921 0.964 0.928 0.858 

DSNet [23] 0.920 0.960 0.961 0.948 0.872 

iFCN [24] 0.932 0.961 0.959 0.961 0.876 

MB-DCNN [25] 0.933 0.954 0.953 0.959 0.871 

SegMAE 0.941 0.954 0.982 0.961 0.881 

While models such as DSNet and iFCN have also shown competitive performance 

on PH2, they often rely on additional complex modules—such as color enhancement 

or lesion-centered attention—to compensate for representational limitations. In con-

trast, SegMAE leverages the synergy between the MAE-guided reconstruction branch 

and the main segmentation branch, maintaining a structurally concise design while 

achieving significant performance gains. This multi-task collaborative training strategy 

enables the model to effectively extract structural information even with limited data, 

resulting in high-quality segmentation outcomes. 

In conclusion, SegMAE demonstrates not only strong performance on large-scale 

datasets but also excellent robustness and generalizability on small-sample tasks like 

PH2, highlighting its potential and adaptability as a universal medical image segmen-

tation framework. 

Ablation studies. To evaluate the effectiveness of each component in SegMAE, we 

conducted a series of ablation studies. We began with a single-branch U-shaped archi-

tecture consisting of a pure ViT encoder and a Cascaded Upsampler decoder as the 1) 

baseline model (①Baseline). We then progressively introduced key modules to form 

multiple comparative configurations: 2) adding the MAE decoder without pre-trained 

weights (②Baseline + MAE decoder); 3) adding the MAE decoder with pre-trained 

weights (③Baseline + MAE decoder + finetuned weights); 4) introducing the MAE 

decoder and Patch-wise Loss (L1) without pre-training (④Baseline + MAE decoder + 

L1); 5) introducing the MAE decoder and reconstruction loss L2 (⑤Baseline + MAE 

decoder + L2); 6) introducing both L1 and L2 without pre-training (⑥Baseline + MAE 

decoder + L1 + L2); and finally, 7) introducing the MAE decoder with pre-trained 

weights along with both L1 and L2 losses (⑦Baseline + MAE decoder + finetuned 

weights + L1 + L2). 

Experimental results (see Table 4) demonstrate that the inclusion of the MAE decoder 

significantly enhances segmentation performance. For example, on the ISIC2017 da-

taset, the Dice score improved from 0.841 (baseline) to 0.860 after adding the MAE 

decoder, and further increased to 0.864 after loading the pre-trained weights. On the 



PH2 dataset, the Dice score reached 0.941 with the full configuration. These incremen-

tal improvements confirm the effectiveness of both the MAE module and the designed 

loss functions. Notably, the integration of the MAE decoder did not compromise the 

reconstruction task performance but instead enhanced segmentation results through col-

laborative optimization. This highlights the strong synergy and enhancement effect of 

the multi-task mechanism and well-designed loss structure within the SegMAE frame-

work for skin lesion segmentation. 

Table 4. Ablation study results on ISIC2017, ISIC2018, and PH2 datasets. 

Method Acc(17) IoU(17) Dice(17) Acc(18) IoU(18) Dice(18) Acc(PH2) IoU(PH2) Dice(PH2) 

① 0.932 0.755 0.841 0.942 0.810 0.868 0.952 0.860 0.926 

② 0.935 0.752 0.860 0.924 0.774 0.873 0.947 0.852 0.924 

③ 0.937 0.756 0.864 0.932 0.801 0.889 0.950 0.871 0.931 

④ 0.935 0.747 0.857 0.938 0.811 0.892 0.954 0.867 0.931 

⑤ 0.936 0.750 0.858 0.943 0.813 0.893 0.957 0.877 0.937 

⑥ 0.938 0.754 0.862 0.947 0.815 0.889 0.955 0.872 0.937 

⑦ 0.939 0.757 0.864 0.947 0.820 0.896 0.961 0.881 0.941 

5 Conclusion 

This paper proposes SegMAE, a dual-decoder framework for skin lesion image seg-

mentation, which jointly optimizes segmentation and reconstruction tasks to fully ex-

ploit the potential of ViT in global context modeling and local detail capturing. By 

introducing a two-branch architecture for segmentation and reconstruction, the model 

achieves clear task decoupling and effective feature complementarity. We design a 

“pretraining + hybrid training” strategy that significantly improves both generalization 

and training efficiency. Furthermore, the proposed Patch-wise Loss adaptively guides 

the model to focus on challenging regions such as blurry boundaries, thereby enhancing 

segmentation accuracy and robustness. Extensive experiments demonstrate that Seg-

MAE consistently outperforms existing mainstream methods across multiple public 

skin lesion segmentation datasets, showcasing superior segmentation performance and 

strong generalization ability. 
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