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Abstract. Video Anomaly Detection (VAD) is widely applied in the field of pub-

lic safety. Recently, training-free video anomaly detection based on large lan-

guage models (LLMs) has achieved remarkable progress. However, while pre-

trained LLMs in previous methods contain rich general-domain knowledge, they 

often lack a nuanced understanding of domain-specific knowledge, leading to 

reduced performance in specific scenarios, such as campus environments. Fur-

thermore, these methods often overlook the temporal consistency and motion 

continuity between anomalous video frames when utilizing LLMs for score judg-

ment. To address these challenges, we propose a method for video anomaly de-

tection using rule augmentation and perception smoothing. Specifically, the rule 

augmentation strategy can automatically generate anomaly detection rules based 

on the management standards of various scenarios. Perception smoothing em-

ploys an adaptive temporal smoothing strategy to enhance the robustness of score 

judgment based on LLMs. Extensive experiments demonstrate that the proposed 

method not only outperforms state-of-the-art, training-free methods on general 

datasets such as UCF-Crime and XD-Violence, but also achieves significant im-

provements on the specific scenario dataset ShanghaiTech. 

Keywords: Video Anomaly Detection, Large Language Models, Training-free, 

Perception Smoothing, Rule Augmentation. 

1 Introduction 

Video Anomaly Detection (VAD) is a critical area within the domains of artificial in-

telligence and computer vision, aiming to accurately identify abnormal events from 

large-scale video streams [1-4]. Anomalies in videos are contextually defined based on 

real-world scenarios and settings, typically classified into two categories. The first cat-

egory involves normal behaviors or events occurring in restricted locations within a 

specific scene, such as cycling or rollerblading on a sidewalk [26]. The second category 



includes abnormal behaviors or events that can occur at any location within a scene, 

such as fires or explosions [27]. Due to its significant application potential in public 

safety and video content analysis, video anomaly detection has been extensively studied 

in recent years. 

Most existing video anomaly detection methods rely on training to ensure accuracy, 

which significantly limits their generalization capability. VAD models trained on spe-

cific datasets often perform poorly when applied to videos captured in different envi-

ronmental conditions (e.g., daylight versus nighttime settings). Another closely related 

challenge in VAD is data collection, particularly in certain application domains such as 

video surveillance, where privacy concerns may severely hinder effective data acquisi-

tion. Therefore, the aforementioned training-based video anomaly detection method 

faces significant challenges in terms of generalization ability and data collection. To 

address these issues, Luca et al. [13] leveraged the powerful prior knowledge capabili-

ties of LLMs, combined with vision-language models, to propose the first training-free 

video anomaly detection method. 

However, several limitations persist with this approach. First, the implicit knowledge 

embedded in pre-trained LLMs tends to focus on general-domain knowledge, lacking 

a nuanced understanding of specific domain knowledge. In practical applications, spe-

cific domain scenarios usually follow fixed security management protocols, which im-

plicitly define the rules and requirements for anomaly detection. In other words, there 

is a misalignment between the anomalies as understood by LLMs and the anomaly def-

initions required in specific scenarios. For instance, GPT-4 typically classifies ‘skate-

boarding’ as a normal activity, but in certain high-safety-demanding contexts, such as 

sidewalks on a campus, it should be considered an anomalous activity. Nevertheless, 

fine-tuning the LLM for each specific application to incorporate such domain 

knowledge is costly. Therefore, flexible prompting strategies are needed to guide the 

LLM in adapting to various VAD tasks. Secondly, when scoring anomalies based on 

descriptive inputs, LLMs typically evaluates the description of each frame in isolation. 

In fact, from a theoretical standpoint, video content typically manifests stable patterns 

over time, wherein successive frames exhibit temporal coherence and continuity of mo-

tion. For instance, in frame-level descriptions generated by a video captioning model, 

consecutive abnormal frames might individually be labeled as normal when assessed 

separately, even though they collectively represent a consistent anomaly. 

To address the challenges of LLMs lacking domain-specific knowledge and failing 

to account for the temporal consistency and motion continuity between anomalous 

video frames, we propose a rule augmentation and perception-smoothing video anom-

aly detection method. We design a set of adaptive templates capable of automatically 

generating anomaly detection rules based on the management protocols specific to each 

scenario, thereby producing a well-defined set of anomaly rules. Additionally, an adap-

tive temporal smoothing strategy is employed to enhance the robustness of anomaly 

judgments made by LLMs. 

The contributions of this work are summarized as follows:  

1) We designed a series of prompt templates that automatically generate anomaly de-

tection rules based on the management specifications of different scenarios. These 
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templates enhance the ability of large language models to understand domain-spe-

cific knowledge, thereby enabling more effective anomaly detection. 

2) When performing anomaly detection on each frame, the large language model does 

not consider the temporal consistency and motion continuity between frames. To 

address this limitation, we introduce an adaptive time smoothing strategy, which 

enhances the robustness of anomaly detection. 

3) We propose a rule augmentation and perception-smoothing video anomaly detec-

tion method. The proposed method not only outperforms state-of-the-art training-

free methods on the UCF-Crime and XD-Violence crime datasets, but also 

achieves significant improvements on the scene-specific ShanghaiTech dataset. 

2 Related Works 

VAD aims to identify anomalous frames within untrimmed long videos. Recently, deep 

learning methods have dominated the field of VAD and can be broadly categorized into 

weakly supervised [5-10], unsupervised [11-12, 15-18], one-class [19-22], and fully 

supervised approaches [23]. Unsupervised methods train exclusively on normal videos 

to learn normal patterns and are typically designed as reconstruction-based, prediction-

based, or hybrid approaches. Some methods have also explored a fully unsupervised 

[18] setting, including both normal and anomalous videos without labels in the training 

set. Weakly supervised methods leverage normal and anomalous videos annotated at 

the video level, utilizing multi-instance learning loss during training [6]. These methods 

are popular due to their reduced annotation time and relatively high effectiveness. One-

class methods rely solely on normal data during training. Most of these approaches 

learn normal patterns through self-supervised pretext tasks, operating under the as-

sumption that the model performs poorly on anomalous data. Fully supervised methods, 

which require precise frame-level annotations, are less common due to the high cost of 

annotation. However, these training-based anomaly detection methods face significant 

challenges related to generalization and data collection, which severely limit their ap-

plicability. 

Recently, with the advent of LLMs, Luca et al. [13] leveraged LLMs and vision-

language models (VLM) to address temporal anomaly detection in videos, introducing 

the first VAD method that requires neither training nor data collection. This method 

employs a captioning model to extract captions from video frames and designs prompts 

for LLMs to provide anomaly scores. However, the implicit knowledge acquired during 

LLMs pretraining primarily focuses on general-domain knowledge, lacking a deep un-

derstanding of domain-specific information. As a result, the method lacks flexibility 

and accuracy for diverse real-world scenarios. Moreover, it fails to consider the tem-

poral consistency and motion continuity between anomalous video frames. To address 

these issues, we propose a rule augmentation and perception-smoothing video anomaly 

detection method. This approach designs a set of adaptive templates to automatically 

generate anomaly detection rules tailored to the management protocols of different sce-

narios. Additionally, it incorporates an adaptive temporal smoothing strategy to en-

hance the robustness of anomaly judgments. 



3 Method 

As shown in Fig. 1, the overall framework of our method is presented. The visual de-

scription module utilizes a VLM that has not been fine-tuned on specific datasets. The 

rule generation module generates anomaly detection rules using LLMs, based on safety 

management protocols and designed prompts. The LLMs then evaluate the generated 

descriptions to assign anomaly scores. Finally, to enhance the robustness of these eval-

uations, an adaptive moving average strategy is applied. The following sections provide 

a detailed explanation of each module and the strategies employed. 

3.1 Rule Generation 

In the domain of natural language processing, researchers have effectively implemented 

rule-based methodologies for specific tasks, yielding substantial outcomes [24]. In real 

visual world applications, each specific scenario, such as hospitals, supermarkets, dif-

ferent classrooms within schools, laboratories, and playgrounds, operates under distinct 

safety management protocols. These protocols implicitly define rules governing pro-

hibited anomalous activities within these environments. Due to the variability of sce-

narios, the types of anomalous events are virtually limitless. Moreover, the implicit 

knowledge acquired during the pretraining of LLMs primarily focuses on general con-

texts and lacks a deep understanding of domain-specific knowledge. Therefore, it is 

necessary to design a framework that automatically generates anomaly rules based on 

safety management protocols, effectively guiding LLMs in anomaly detection and 

judgment. 

 

Fig. 1. Method overview. This study introduces two strategies: the rule augmentation strategy 

and the perception smoothing strategy. First, based on safety management specifications and a 

designed prompt template, the LLMs is employed to generate anomaly detection rules tailored to 

the specific scenario. Subsequently, the VLM is used to obtain descriptions for each video frame, 

with the Text Encoder and Image Encoder models of ImageBind employed to generate high-

quality captions. The initial anomaly score is computed by the LLMs model, which uses the 

previously generated captions and anomaly rules. In the next step, the refined anomaly score is 

derived by utilizing the Video Encoder and Text Encoder models of ImageBind. Finally, an adap-

tive sliding window smoothing strategy is applied to the obtained anomaly scores, enhancing the 

robustness of the LLMs-based assessments. 
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Specifically, we first exploit the implicit knowledge embedded within the LLMs to 

extract anomaly management rules, denoted as Nnorm1. The LLMs utilized in this work 

is GPT-4. A prompt, denoted as Pl, is provided to facilitate this process: “Based on your 

general knowledge, list rules regarding prohibited human anomalous activities on cam-

pus sidewalks. Do not explain the activities after listing them; simply provide the pro-

hibited activities directly.” The output from the LLMs is denoted as Rl: 

 1 1{ ( )}R PlLLMs Nnorm= ， ， (1) 

Next, based on the ShanghaiTech dataset, we refer to its safety management proto-

cols for school sidewalks. A prompt Pr is provided: “Based on the above management 

regulations, list rules regarding prohibited human anomalous activities on campus 

sidewalks. Do not explain the activities after listing them; simply provide the prohibited 

activities directly.” This protocol and the prompt Pr are input into GPT-4 to generate 

Nnorm2, with the output denoted as: 

 2 2{ ( ), }R P   rLLMs Nnorm and Norm= ， ， (2) 

Finally, the two sets of rules, R1 and R2, along with a new prompt P, are input into 

GPT-4 to consolidate them into the required anomaly rule format. The prompt P is: 

“Based on the anomalous activities you previously listed using your general knowledge 

and the activities listed based on the ‘Management Regulations,’ provide a simplified 

list of prohibited human activities on campus sidewalks. Avoid adding any explanations 

or numbering. Simply separate the activity names with commas. For example: ‘Anom-

alous activities on campus sidewalks include: ***, ***.’ Please provide your answer 

in this format.” 

 1 2,{ )},(R    PLLMs Nnorm Nnorm Nnorm and= ， ， (3) 

3.2 Initial Anomaly Scoring 

As shown in Fig. 1, after the rule generation module exports a set of robust rules, the 

initial Anomaly Scoring module initializes the anomaly score for each frame of data. 

Next, we will provide a detailed explanation of the specific process of this module. 

Following the setup of LAVAD, given a test video V = [I1, …, IM], descriptions for 

each frame I are first generated using the VLM model BLIP2 [29]. Subsequently, a 

visual-language encoder is used to assign the most semantically relevant caption to each 

frame. 

 arg max ( ) ( ) ,
C

Ii I i T
C

C C 



=     (4) 

Where, ⟨·, ·⟩ is the cosine similarity, I  and T are image encoder and text encoders 

of the VLM , and C = [C1, … , CM] is a sequence of captions by the BLIP2 model. 

Due to the lack of temporal information in the obtained frame-level descriptions, we 

leverage an LLMs to summarize temporary summaries. Specifically, we define a time 

window of T seconds centered around frame Ii. Within this window, we uniformly 



sample N frames to form a video segment Vi. Subsequently, we query the LLMs using 

and the prompt PS to generate a temporal summary Si centered on frame Ii. 

 (P )
LLMs

Cii sS


=  (5) 

The prompt PS is defined as: “Please summarize what happens in the following scene 

in a few sentences, focusing on the temporal description without including any unnec-

essary details or descriptions.” 

The anomaly score estimation is treated as a classification task, where the ΦLLMs is 

required to select a single score from a list of 11 uniformly sampled values within the 

interval [0,1], with 0 indicating normality and 1 indicating an anomaly. This approach 

results in a textual description Si that is semantically and temporally richer than Ci. The 

rule R we obtained in sec. 3.1 is then fed into the LLMs along with prompt to evaluate 

the anomaly score. The resulting scores are: 

 (P R P )
LLMsi C F ia S=  (6) 

Where, PC is defined as: “If you are a law enforcement agency, please score the 

semantics of the described scene according to the abnormal activity rules. It ranges 

from 0 to 1, where 0 represents the standard scenario and 1 represents the scenario that 

conforms to the abnormal activity rules. The description semantics conform to the ab-

normal activity rules, and the score is 1 or close to 1.” while PF provides information 

about the desired output format. 

The scores are further refined by aggregating them from semantically similar frames 

using visual information. Specifically, we encode the video segment Vi centered on 

frame Ii using V , and encode all temporal summaries using T . We define Ki as the 

index set of the K-closest temporal summaries {S1  …   M} that are most similar to Vi , 

where the similarity between Vi and a summary Sj is measured by cosine similarity, i.e. 

( ), ( )V i T jS  V . We obtain the refined anomaly score: 

 
( ), ( )

( ), ( )

V

V

V i T k

V i T k

i
i

S

i k S
k K

k K

e
a a

e

 

 

 

 




= 


 (7) 

Where, 1[ , , ]Ma a a=  denotes the anomaly score of the video, and ⟨⋅,⋅⟩ represents 

the cosine similarity. 

3.3 Perception Smoothing 

In the process of score evaluation by LLMs, they primarily rely on the current descrip-

tive information to assign scores, often overlooking the temporal consistency and action 

continuity of anomalous video frames. This can, to some extent, limit the comprehen-

siveness and accuracy of the evaluation. To enhance classification robustness, existing 

studies have explored and implemented random smoothing strategies [25], which have 

been shown to be quite effective. Therefore, to further improve the robustness of 
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anomaly score judgment, we have introduced an innovative approach, utilizing an adap-

tive moving average strategy for the obtained anomaly scores. 

Based on the predefined ratio, we calculate the size of the initial window. 

 max( ( ) ,3)w len a r =    (8) 

Where , r is the ratio of window size to data length. Then the smoothed score can be 

expressed as: 

 
/ 2

/2

1 i w

ji

j i w

x a
w

+

= −

=   (9) 

Where, the form takes 𝑥i as the center and takes ⌊w/2⌋ points before and after to 

average. For data on array boundaries, the window size may be adjusted to accommo-

date the range of data. 

4 Experiments 

4.1 Datasets 

In our study, we utilized three widely used VAD datasets: ShanghaiTech [26], UCF-

Crime [27], and XD-Violence [28]. The ShanghaiTech dataset comprises 437 videos 

collected from multiple surveillance cameras within a university campus. It captures 

130 anomalous events across 13 different scenes, covering 17 anomaly classes. Follow-

ing the configuration of Zhong et al., the dataset is divided into 238 training videos and 

199 testing videos. In our study, we used only the 199 testing videos. The UCF-Crime 

dataset is a large-scale dataset of real-world surveillance videos, consisting of 1900 

untrimmed videos that represent 13 real-world anomalies with significant implications 

for public safety. The training set includes 800 normal videos and 810 anomalous vid-

eos, while the test set comprises 150 normal and 140 anomalous videos. The XD-

Violence dataset is a large-scale dataset designed for violence detection, containing 

4,754 untrimmed videos with audio signals and weak labels. Of these, 3,954 videos 

were used for training, and 800 videos were designated for testing. The dataset has a 

total duration of 217 hours, covering various scenes and six anomaly categories. 

4.2 Experimental Details 

To enhance computational efficiency, we follow the configuration of the LAVAD 

method, sampling each video every 16 frames. BLIP-2 [29] is used as the captioning 

       Φ            -2-13b-chat [30] serves as the LLMs module Llama-2-13b-chat. 

For multi-modal encoding, we utilize the pre-trained multi-modal encoder from Im-

ageBind [31]. Specifically, the temporal window is set to T=10 seconds, consistent with 

the pretraining of the ImageBind video encoder. We use K=10 for the textual represen-

tation S of the video. Additionally, GPT-4 is utilized as the LLMs for rule summariza-

tion. The adaptive window ration for the moving average strategy is set to 0.15. 



4.3 Main Results 

We conducted experiments using the UCF-Crime and XD-Violence datasets and com-

pared the algorithm with the latest untrained video anomaly detection methods. Since 

the events in these datasets are highly recognizable and large language models possess 

rich implicit knowledge of dangerous events in general scenarios, as shown in Fig. 2, 

the image accurately represents that the red area falls within the anomalous rule. How-

ever, in the predicted description, the large model does not provide a very precise de-

scription but includes the word “thrown” If the model were to rely solely on its implicit 

knowledge, the anomaly score would be 0.8, whereas with the rule added, the anomaly 

score drops to 0.4. This is because the inclusion of the rule restricts the model's anomaly 

detection ability. Therefore, for general datasets, we did not introduce additional rules. 

 

Fig. 2. Analysis of video scores after adding rules to the UCF-Crime dataset. 

As shown in Table 1, our method is compared with state-of-the-art weakly super-

vised, unsupervised, and training-free methods on the XD-Violence dataset. It is worth 

noting that training-free VAD is a challenging task. Our results show that compared to 

the state-of-the-art train-free LAVAD method, AP improved by +2.05%, and AUC in-

creased by nearly one point. Similarly, as shown in Table 2, our method is compared 

with state-of-the-art weakly supervised, unsupervised, and training-free methods on the 

UCF-Crime dataset. It can be observed that our method outperforms the state-of-the-

art training-free methods with an improvement of +2.18%. 

Table 1. Comparison with state-of-the-art training-free methods on the XD-Violence dataset. 

 Method Backbone AP(%) AUC(%) 

Weakly-

supervised 

      P (    ’ 4) [5] ViT 84.51 - 

PE-    (  P ’ 4) [6] I3D 88.05 - 

Unsupervised RAREANOM [15] (Pattern Recognit) I3D - 68.33 

Training-free 

ZS CLIP (    ’21) [32] ViT 17.83 38.21 

ZS IMAGEBIND (CVPR’23) [29] ViT 25.36 55.06 

LLAVA-1.5 (  P ’ 4) [33] ViT 50.26 79.62 

      (  P ’ 4) [13] ViT 62.01 85.36 

TRLVAD (Ours) ViT 64.06 86.16 

As shown in Table 3, we compare our method with state-of-the-art unsupervised and 

training-free LAVAD video anomaly detection methods. Unlike the results in Table 1 
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and Table 2, Table 3 reveals that without incorporating rules and the adaptive moving 

average strategy, the accuracy of our method is only 53.51%. This significant drop in 

accuracy is attributed to the lack of in-depth understanding of domain-specific 

knowledge by large models in certain scenarios. In response, we further introduced 

rules and the moving average strategy, resulting in a substantial improvement, with the 

accuracy increasing by nearly 13 percentage points. 

Table 2. Comparison with state-of-the-art training-free methods on the UCF-Crime dataset. 

 Method Backbone AUC(%) 

Weakly-

supervised 

      P (    ’ 4) [5] ViT 88.02 

PE-    (  P ’ 4) [6] I3D 86.83 

Unsupervised 
 Y      (W   ’ 3) [16] I3D 79.76 

LANP-UVAD (    ’ 4) [11] I3D 80.02 

Training-free 

ZS CLIP (    ’21) [32] ViT 53.16 

ZS IMAGEBIND (CVPR’23) [31] ViT 55.78 

LLAVA-1.5 (  P ’ 4) [23] ViT 72.84 

      (  P ’ 4) [13] ViT 80.28 

TRLVAD (Ours) ViT 82.46 

Table 3. Comparison with state-of-the-art training-free methods on the ShanghaiTech dataset. 

 Method Backbone AUC(%) 

Unsupervised 

   (  P ’  ) [17] R3D 79.60 

FPDM (    ’ 3) [18] Image 78.60 

DiffVAD (IJCAI’24) [12] Image 81.90 

Training-free 
      (  P ’ 4) [13] ViT 53.51 

TRLVAD (Ours) ViT 66.43 

 

4.4 Ablation Study 

As shown in Table 4, we conducted ablation experiments on the ShanghaiTech dataset 

to evaluate the impact of different strategies on video anomaly detection accuracy. The 

experiments explored the effects of introducing rules, the adaptive moving average 

strategy, and the simultaneous application of both strategies. The data in the Table 4 

indicates that adding rules alone improved the accuracy by 6 percentage points, while 

applying the adaptive moving average strategy alone resulted in a 4-percentage-point 

increase in accuracy. Notably, when both rules and the adaptive moving average strategy 

were introduced simultaneously, the accuracy significantly increased to 66.43%. These 

results strongly validate the effectiveness of the proposed strategies in enhancing video 

anomaly detection accuracy. 

 

https://github.com/shyern/LANP-UVAD


Table 4. Results of Ablation Experiments on the ShanghaiTech Dataset. 

Rule Smoothing Strategy AUC(%) 

× × 53.51 

√ × 59.01 

× √ 57.09 

√ √ 66.43 

Fig. 3 shows some qualitative results on UCF-Crime. X represents the time se-

quence, with the subscript indicating the frame number, while the y-axis represents the 

anomaly score for each frame. The closer the score is to 1, the more anomalous the 

frame is. The pink background highlights the time period of the anomaly event in the 

video, and the blue line represents the anomaly score for each frame. In the red-back-

ground area, some anomalous frames have lower scores, while some non-anomalous 

frames have higher scores. However, by introducing the moving average smoothing 

strategy, this issue is significantly mitigated, resulting in final scores that better align 

with the temporal consistency and action continuity between video frames.   

  

(a) The moving smoothing strategy was not employed.  (b) The moving smoothing strategy was applied. 

Fig. 3. Visualizations of frame-level anomaly scores for test videos from UCF-Crime. 

5 Conclusions 

In this study, we focus on the limitations of LLMs, specifically their lack of domain-

specific knowledge and their neglect of temporal consistency and motion continuity dur-

ing score assessment. We propose a video anomaly detection method that combines rule 

augmentation and perception smoothing. The method automatically generates anomaly 

detection rules using adaptive templates and introduces an adaptive temporal smoothing 

strategy to enhance the robustness of LLMs-based score judgments. Experimental results 

demonstrate that the proposed method not only outperforms state-of-the-art training-free 

methods on general datasets such as UCF-Crime and XD-Violence, but also achieves 

significant improvements on the scenario-specific dataset, ShanghaiTech. In future 

research, we will focus on optimizing VLMs to obtain more accurate video descriptions. 

This improvement aims to provide a more reliable descriptive foundation for large 

models during score assessments. 
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