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Abstract. This paper proposes a multi-task deep neural network architecture for 

optical time-domain reflectometer (OTDR) signal analysis, enabling end-to-end 

learning for fiber fault classification and event localization. To address the limi-

tations of traditional methods in complex scenarios, such as insufficient feature 

representation and conflicts in multi-task optimization, this study designs a multi-

scale pooling module to extract cross-scale features, integrates an improved bi-

directional feature pyramid network (BiFPN) to enhance multi-resolution feature 

fusion, and introduces a Conformer hybrid encoding block that combines self-

attention and gated convolution to model both global and local features. Addi-

tionally, a task-aware dynamic gating mechanism is proposed to mitigate con-

flicts in multi-objective optimization. Experimental results demonstrate that the 

proposed model outperforms traditional methods in classification accuracy and 

fault localization, providing a high-precision, cost-effective solution for optical 

network monitoring and maintenance. 
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1 Introduction 

The Optical Time Domain Reflectometer (OTDR) [1], as a core tool for fiber network 

fault diagnosis, plays a crucial role in modern communication infrastructure. Its work-

ing principle involves emitting optical pulses into the fiber and detecting the backscat-

tered signals [2] to generate a reflection loss curve of the fiber link. These curves can 

accurately locate faults within the fiber, such as breaks, splice losses [3] , and connector 

degradation, while also providing quantitative information on fiber quality. However, 

with the continuous expansion and increasing complexity of fiber networks, traditional 

OTDR analysis methods face challenges such as noise interference, insufficient detec-

tion capability for weak signals, and imprecise fault feature extraction. According to 

the International Telecommunication Union (ITU) report in 2023, global economic 
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losses due to fiber failures exceed $1.2 billion annually, with approximately 35% of 

faults failing to trigger timely warnings due to the sensitivity limitations of traditional 

OTDR systems. 

In recent years, machine learning techniques, particularly deep learning models, 

have demonstrated significant advantages in OTDR signal analysis. For example, Zhi-

min Yang et al.[4] 2021 developed a high-sensitivity OTDR event detection method 

based on machine learning. This method preprocesses OTDR signals using n-order dif-

ferencing and denoising techniques, followed by a machine learning classifier, achiev-

ing a 95% detection rate for connection splice events. Khouloud Abdelli et al. [5] 2021 

proposed a BiLSTM-CNN-based multitask learning approach for fiber fault diagnosis 

in OTDR signals, which outperforms traditional methods, especially in low signal-to-

noise ratio (SNR) conditions. However, existing methods typically treat fault classifi-

cation and localization as independent tasks, overlooking their intrinsic relationship. 

This results in inefficient utilization of model parameters and insufficient feature shar-

ing. Furthermore,most studies [6,7,8,9,10] rely on simulated data for model training 

and validation, lacking adequate modeling of the complex characteristics of real-world 

optical fiber links.  

Traditional OTDR signal analysis methods [11,12,13]  primarily rely on rule-based 

threshold detection and manual feature extraction techniques. While these methods per-

form well in detecting prominent faults, their limitations become increasingly evident 

in complex scenarios. Existing OTDR analysis techniques face three major challenges: 

first, threshold-based detection methods exhibit instability in complex fiber links, lead-

ing to an increased false alarm rate as the number of fault points grows; second, deep 

models based on single-task learning struggle to balance the conflicting objectives of 

classification and localization, resulting in inefficient parameter utilization; finally, cur-

rent methods lack the ability to effectively model the complex characteristics of real-

world fiber networks, making it difficult to adapt to diverse deployment environments. 

For instance, the attenuation characteristics and fault patterns of optical fibers vary sig-

nificantly between urban underground pipelines and submarine optical cables. How-

ever, existing approaches often rely on simulated data for training, limiting their gen-

eralization capabilities in real-world applications. 

To address these challenges, this paper proposes a Multi-Scale Conformer Network 

(MS-ConformerNet), which enhances the detection of weak signals and adapts to dif-

ferent fault patterns by extracting multi-scale contextual features using pooling kernels 

of varying sizes. The traditional feature concatenation approach is improved to enable 

dynamic fusion of high- and low-level features. By integrating gated convolution and 

multi-head attention, the model adaptively focuses on important features, improving 

fault detection accuracy in complex environments.To tackle the issues of low parameter 

utilization and insufficient feature sharing, a task-adaptive routing mechanism is intro-

duced. This mechanism employs differentiable task gating to achieve gradient coordi-

nation between classification and localization, dynamically adjusting the fusion ratio of 

task-specific and shared features. On our dataset, the proposed network achieved a clas-

sification accuracy of 97.12% and a localization error of 0.86. 

The remainder of this paper is structured as follows: Section 2 introduces relevant 

background knowledge, including OTDR signal characteristics, multi-task learning 
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theory, and deep learning applications in OTDR analysis. Section 3 provides a detailed 

description of the proposed MS-ConformerNet’s cascaded architecture and key mod-

ules. Section 4 presents experimental results and performance analysis. Finally, Section 

5 concludes the study and discusses future research directions. 

2 Related Work 

This section introduces the basic characteristics of Optical Time-Domain Reflectometer 

(OTDR) signals, the theoretical frameworks of multi-task learning techniques, and the 

application of deep learning in OTDR signal analysis, thereby providing a solid theo-

retical foundation for the proposed multi-task deep neural network architecture. 

2.1 OTDR Signal Characteristics 

Optical Time Domain Reflectometer (OTDR) is an instrument specifically designed for 

optical fiber network testing and fault diagnosis. It works by sending light pulses into 

the optical fiber and analyzing the backscattered and reflected signals generated during 

the light pulse's transmission through the fiber. The resulting attenuation-distance curve 

is used to assess the health of the optical fiber link. 

OTDR signals typically consist of position points, loss, and reflective power. Under 

normal conditions, the OTDR signal presents a smooth attenuation curve, while in the 

case of fiber faults, such as fiber breaks, increased connector loss, or splice defects, the 

signal exhibits abrupt changes, forming distinct feature points. OTDR can measure key 

parameters such as the total length of the fiber, loss levels, and reflection loss. However, 

the identification of specific event points often requires manual or intelligent algorith-

mic analysis to accurately determine various types of events in the optical fiber line. 

OTDR signals are strongly spatially dependent and are influenced by the nonlinear 

effects of the fiber itself and environmental noise. The fluctuation patterns of signals at 

different position points vary significantly. Especially in complex network environ-

ments, noise interference can blur signal features, increasing the difficulty of fault de-

tection. Therefore, effectively extracting fault features from OTDR signals to improve 

the automation, accuracy, and robustness of fault diagnosis is a crucial research direc-

tion in the field of optical fiber monitoring. 

2.2 Multi-Task Learning (MTL) 

Multi-Task Learning (MTL) [14] is a machine learning framework that simultaneously 

learns multiple related tasks by sharing a portion of the model’s parameters. It aims to 

improve the model’s generalization ability and learning efficiency through knowledge 

transfer and feature sharing across tasks. Compared to Single-Task Learning (STL), 

MTL makes better use of data information, especially in scenarios where tasks are 

strongly correlated.   

In Optical Time-Domain Reflectometer (OTDR) signal analysis, fault classification 

and event localization are two closely related tasks. Traditional methods often handle 



these tasks separately, optimizing individual objective functions, which may lead to 

inefficient parameter utilization and insufficient feature sharing. However, classifica-

tion and localization tasks share common characteristics, such as fiber attenuation pat-

terns and noise distribution. By adopting MTL, both classification and localization re-

sults can be generated simultaneously, meeting real-time monitoring requirements. 

Through a single forward pass, MTL not only improves fault detection accuracy but 

also reduces training time and enhances parameter efficiency.   

To address issues such as task conflicts and the rationality of feature sharing in MTL, 

researchers have proposed various improvements, such as task-specific dynamic rout-

ing mechanisms [15] and differentiable gating techniques [16]. These methods help 

optimize gradient conflicts [17] and feature sharing across tasks, further enhancing 

model performance in complex environments. 

2.3 Applications of Deep Learning in OTDR Signal Analysis 

The widespread application of OTDR technology in fiber optic communications and 

the demand for high-precision fault detection and localization have driven research in 

this field. The successful application of deep learning in signal processing domains, 

such as image recognition and speech processing, has provided new insights for OTDR 

signal analysis. Deep learning is primarily used for tasks such as fault classification, 

fault localization, anomaly detection, and signal denoising.Common deep learning 

models for OTDR signal analysis include Convolutional Neural Networks (CNNs), Re-

current Neural Networks (RNNs), and their variants. CNNs, which excel in image pro-

cessing, are well-suited for OTDR signal feature extraction due to their local receptive 

fields and weight-sharing properties. For instance, ResNet-based models effectively 

extract fault features from OTDR signals through deep network structures. Meanwhile, 

Long Short-Term Memory (LSTM) networks and Bidirectional LSTMs (BiLSTMs) 

have advantages in processing sequential data, offering new possibilities for addressing 

the challenges of event detection and high-precision localization. 

Furthermore, the recent development of Transformer architectures [18] has intro-

duced new approaches to OTDR signal analysis. The self-attention mechanism can es-

tablish global dependencies across the entire OTDR signal sequence, facilitating the 

capture of long-range relationships and enhancing fault detection robustness. Addition-

ally, integrating a multi-task learning framework enables the collaborative optimization 

of fault classification and event localization, improving overall model performance. 
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Fig. 1. Data Processing Flowchart with Conformer Hybrid Encoding. 

3 Method 

This section provides a detailed introduction to the model-based data processing pipe-

line(Fig. 1) and the cascaded architecture of MS-ConformerNet, along with its key 

modules for optical time-domain reflectometry (OTDR) signal analysis. 

3.1 Data Collection 

Our dataset is sourced from multiple optical transmission network operators, collected 

in real-world engineering environments using OTDR tests. It systematically includes 

signal data generated by different OTDR devices across various fiber link lengths and 

types, comprehensively covering common reflective events (such as fiber breaks and 

connector losses) as well as non-reflective events (such as splicing points and fiber 

bends). 

3.2 Data Preprocessing 

Due to the large scale of the raw data, which contains a significant number of non-target 

events and high-noise samples, a specialized annotation tool was developed to filter and 

label the raw data. This process resulted in the construction of a standardized dataset 

comprising 9,723 samples, including 3,925 segments with no events, 2,993 segments 

with non-reflective events, and 2,805 segments with reflective events. 

OTDR signals are highly susceptible to system noise and environmental interference. 

To enhance data quality, denoising, normalization, and downsampling were applied as 

preprocessing steps. Wavelet denoising was used to smooth the signals, reducing the 

impact of Rayleigh scattering noise. To eliminate amplitude differences caused by var-

iations in OTDR devices, min-max normalization was applied to both loss and reflec-

tive power values, scaling them to the [0,1] range, ensuring feature consistency across 

different signals.Additionally, the raw OTDR data was originally stored in SOR format, 

which was converted to a CSV format for standardization. Finally, to evaluate the 



proposed model’s performance, the dataset was randomly split into training (60%), val-

idation (20%), and test sets (20%). The training set was used for model training, the 

validation set for hyperparameter optimization, and the test set for final evaluation. 

 

Fig. 2. MS-ConformerNet Model Architecture. 

3.3 MS-ConformerNet 

As shown in Fig. 2, the model utilizes end-to-end learning to simultaneously perform 

fault type classification and event location regression. Its core architecture consists of 

four key modules: multi-scale feature extraction, bidirectional feature fusion, hybrid 

encoding, and task-aware routing. 

Multi-Scale Feature Extraction Module. To capture the multi-scale characteristics of 

reflection/scattering events in OTDR signals, we design a Multi-Scale Pooling module 

(Fig. 2 (a)). The Multi-Scale Pooling module[19] aims to extract multi-scale features 

from the one-dimensional input signal and enhance feature representation through 

BiFPN-based feature fusion.Upon receiving the one-dimensional input data, the mod-

ule first applies a Conv1D layer to perform convolution operations, generating an initial 

feature representation. Then, multiple parallel max-pooling operations with different 

kernel sizes (5×1, 9×1, and 13×1) are applied. These varying scales of pooling opera-

tions capture signal variations over short, medium, and long ranges, enhancing the 

model’s ability to perceive different event patterns.Each pooling layer adopts a stride 

of 1 and symmetric zero-padding of kernel_size//2 to maintain the spatial alignment of 

features. Instead of traditional feature concatenation, BiFPN architecture is introduced 

in the feature fusion stage to enable dynamic weighted feature aggregation, improving 

the adaptability and expressiveness of the extracted features. 
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Bidirectional Feature Pyramid Network (BiFPN). The traditional Feature Pyramid 

Network (FPN)[20] is primarily used in computer vision tasks, enhancing feature rep-

resentation through top-down and bottom-up information flow. However, in OTDR 

signal analysis, effectively integrating multi-level features remains a challenge. 

To enhance the representation capability of multi-resolution features, an improved 

BiFPN structure suitable for one-dimensional signals is proposed (Fig. 2 (b)). After 

multi-scale pooling, instead of the traditional direct channel concatenation, BiFPN is 

used for dynamic weighted fusion.Bilinear interpolation is used to achieve spatial align-

ment between high- and low-level features, while a dual-path information flow, com-

bining top-down and bottom-up processing: 

                        𝐹𝑡𝑑 = 𝑊1 ⊙ (T(P(𝐹ℎ𝑖𝑔ℎ)))＋𝑊2 ⊙ 𝐹𝑙𝑜𝑤                                              (1) 

                        𝐹𝑜𝑢𝑡=𝐶3×1(BN(GELU(𝐶3×1(𝐹𝑡𝑑))))                                                      (2) 

Where 𝑊1and 𝑊2are learnable weight parameters,and (T(P(𝐹ℎ𝑖𝑔ℎ))) represents the pro-

cess of upsampling and transforming the high-level feature 𝐹ℎ𝑖𝑔ℎto match the resolution 

of the low-level feature  𝐹𝑙𝑜𝑤.By fusing high-level and low-level features, an interme-

diate feature𝐹𝑡𝑑is generated, which contains multi-scale information. The fused feature 

𝐹𝑡𝑑 then undergoes further nonlinear transformation and enhancement to produce the 

final feature representation𝐹𝑜𝑢𝑡.This structure enhances the model’s multi-scale per-

ception capability by integrating features from different abstraction levels. 

Conformer Block. Inspired by the field of speech recognition[21], this paper intro-

duces the Conformer hybrid encoding block. This module combines the advantages of 

Convolutional Neural Networks (CNNs) and the Transformer architecture to design a 

spatiotemporal joint encoding module (Fig. 2 (c)).  

Each encoding block consists of: (1) Multi-head self-attention mechanism,Utilizing 

four attention heads to capture global dependencies between different positions within 

the fused feature information. (2) Gated convolutional unit,Implementing feature selec-

tion through GLU activation. (3) Feedforward network,Incorporating Swish activation 

to enhance nonlinear representation.Each submodule employs residual connections and 

layer normalization to ensure stable training. 

Task-Aware routing. To address the feature conflict issue in multi-task learning, a 

task-specific gating mechanism is designed (Fig. 2 (d)). Given shared features, task 

gating weights are generated through learnable parameters: 

𝑔𝑘 = 𝜎(𝑊𝑔
𝑘𝐹𝑠 + 𝑏𝑔

𝑘),   k∈ 𝑐𝑙𝑠, 𝑟𝑒𝑔                                                          (3) 

𝐹𝑘 = 𝑔𝑘⊙(𝑊𝑝
𝑘𝐹𝑠)+(1 − 𝑔𝑘)⊙𝐹𝑠                                                           (4) 

The shared feature 𝐹𝑠 is a feature vector obtained from the aforementioned feature ex-

traction module.The gating coefficient 𝑔𝑘 dynamically adjusts the fusion ratio between 

task-specific features and shared features, while  represents the task-specific projection 

matrix. Specifically,𝑊𝑝
𝑘maps the shared feature Fs into a task-specific feature space. 



Finally, 𝐹𝑘  is the weighted combination of task-specific and shared features. This 

mechanism enables the model to adaptively allocate feature resources for different 

tasks. 

The network output layer employs a divide-and-conquer strategy: the classification 

head uses a three-layer MLP to map the features to a probability distribution over 3 

classes (normal/reflection event/non-reflection event), while the regression head uses a 

linear layer to output the event position offset. 

The training process adopts a weighted loss function: 

𝐿 = 𝛼𝐿𝑐𝑙𝑠＋𝛽𝐿𝑟𝑒𝑔                                                                 (5) 

The weight coefficients for the cross-entropy loss 𝐿𝑐𝑙𝑠 and the MSE loss 𝐿𝑟𝑒𝑔 were de-

termined through grid search as α=0.5 and β=0.5, respectively. 

4 Experiments 

This section first introduces the dataset preparation process, followed by an evalua-tion 

of the model's event classification and localization capabilities. Finally, an abla-tion 

study is conducted to verify the contribution of each module to the model's per-for-

mance. The results indicate that all modules play a crucial role in improving the model's 

performance. 

 

Fig. 3. OTDR reflection events and non-reflection event examples. 
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4.1 Dataset of OTDR Traces 

In this study, a specialized annotation tool was developed for OTDR signal data, ena-

bling the selection and construction of a standardized dataset with 9,723 samples (in-

cluding 3,925 no-event segments, 2,993 non-reflective event segments, and 2,805 re-

flective event segments). Data quality was enhanced through wavelet denoising and 

normalization, and each signal segment was standardized to a fixed sequence length of 

100 sampling points.Fig. 3 illustrates examples of reflective and non-reflective signal 

segments.The dataset was randomly split into training (60%), validation (20%), and test 

sets (20%). The model takes reflective power values (Power) as input and outputs the 

corresponding event category (Classid), where 0 represents no event, 1 represents a 

non-reflective event, and 2 represents a reflective event. Additionally, the model pre-

dicts the position indices of both reflective and non-reflective events within the se-

quence, facilitating further analysis of the fiber link status. 

 

Fig. 4. Confusion Matrix                               Fig. 5. ROC curve for Fault detection 

4.2 Fault detection capability 

To evaluate the fault detection capability of the model, we adopted the following clas-

sification metrics: Accuracy, Precision, Recall, and F1 Score, which are reported in 

Table 1.Additionally, as shown in the confusion matrix Fig. 4, the model achieves high 

classification accuracy for no-event and non-reflective events, while its performance 

on reflective events is slightly lower. This may be due to an imbalanced data distribu-

tion, but the overall performance remains strong.Furthermore, ROC curve analysis 

(Fig. 5) confirms the model's robustness, with an Area Under the Curve (AUC) close 

to 0.98. 

4.3 Event localization capability 

To comprehensively evaluate the model's event localization ability, we use Mean 

Squared Error (MSE) and Mean Absolute Error (MAE) as the primary evaluation met-

rics. MSE reflects the average squared size of position errors in the prediction process, 



while MAE provides the average deviation between predicted positions and actual 

event locations. These metrics allow us to clearly quantify the model's performance in 

different event detection and localization tasks. 

The experimental results, as shown in Table 1, indicate that the mean squared error 

for event localization is around 1 meter, and the model can accurately predict event 

locations. Additionally,Fig. 6 illustrates the model's performance on sample curves. 

After training, the model achieves a low misclassification rate and high event localiza-

tion accuracy. Although two positions were incorrectly detected as events, overall, the 

predicted event locations are very close to the actual positions. 

 

Fig. 6. The Performance of the Model in Event Detection and Localization on Signal Curves. 

4.4 Ablation Study 

To validate the effectiveness of each module in our model, we conducted an ablation 

study. Specifically, we evaluated the contributions of the multi-scale feature extraction 

module, bidirectional feature pyramid network (BiFPN), and Conformer hybrid en-

coder to the overall model performance. All ablation experiments were performed un-

der identical experimental conditions, with the only variable being the removed mod-

ule. Specifically, all experiments used the same dataset, identical hyperparameters 

(learning rate = 0.0001, batch size = 128), and the same training configuration (200 

training epochs with an early stopping mechanism, patience = 25). Furthermore, to en-

sure fairness, we fixed the random seed to maintain consistency in data splitting and 

model initialization, eliminating potential influences from data distribution variations 

or random weight initialization. By progressively removing each module, we assessed 

the impact on the model’s performance in fault detection and event localization tasks.   

As shown in Table 1, BiFPN contributed the most significantly to model perfor-

mance. Its removal resulted in an approximately 5% drop in fault detection accuracy 

and a 0.32m increase in event localization error. This indicates that BiFPN plays a 
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crucial role in multi-level feature fusion, particularly in enhancing the model’s ability 

to learn complex OTDR signal patterns. Next in importance were the Conformer hybrid 

encoder and the multi-scale feature extraction module. The Multi-Scale Pooling module 

primarily affects event localization accuracy, as its removal led to a noticeable increase 

in localization error.   

In summary, BiFPN, Conformer, and Multi-Scale Pooling work together to enable 

the model to achieve optimal performance in both fault detection and event localization 

tasks. 

Table 1. Ablation Study. 

 
Task 1:Fault detection 

Task 2:Event localiza-

tion 

Method 
Accu-

rary(%) 

Preci-

sion(%) 

Re-

call(%) 

F1 

score(%) 
MSE(m) MAE(m) 

MS-

ConformerNet 
97.12 97.21 97.12 97.13 1.02 0.86 

No-MultiScalePool 93.86 93.89 93.86 93.86 1.41 1.15 

 No-BiFPN 92.83 92.79 92.83 92.79 1.34 1.10 

No-Conformer 93.22 93.87 93.22 93.12 1.39 1.13 

4.5 Comparison with Existing Methods 

To validate the effectiveness of the proposed model, MS-ConformerNet, this study se-

lects three representative temporal modeling methods as comparative baselines: Res-

Net1D, which is based on residual networks; DeepConvLSTM, which combines con-

volutional and recurrent neural networks; and the Temporal Convolutional Network 

(TCN). All comparative experiments were conducted under a unified experimental 

setup, using the same dataset partitioning and a multi-task learning framework. The 

tasks include classification of OTDR reflection event types and precise regression-

based localization of reflection points. 

Table 2 presents the performance of each model in terms of classification accuracy, 

F1 score, and regression mean squared error (MSE). The results demonstrate that MS-

ConformerNet achieves superior performance on both tasks: it outperforms all baseline 

models in terms of classification accuracy and F1 score, while also achieving the lowest 

MSE in the regression task. This indicates that MS-ConformerNet possesses stronger 

capabilities in feature representation and modeling for both event detection and locali-

zation. 

A detailed analysis of the baseline models reveals the following,ResNet1D benefits 

from its residual connection structure, showing strong feature extraction capabilities 

with a classification accuracy of 91.95%. However, due to the lack of an explicit tem-

poral modeling mechanism, its regression MSE (1.63m) remains relatively high. Deep-

ConvLSTM can capture temporal information to a certain extent, but suffers from gra-

dient vanishing when processing long sequences, leading to limited generalization and 

subpar classification performance.TCN performs robustly in modeling long-range 



dependencies, but its simplistic inter-layer feature fusion makes it less effective for joint 

optimization of classification and regression tasks. 

In contrast, MS-ConformerNet enhances the integration of local and global infor-

mation through a multi-scale convolutional module and a BiFPN pyramid structure. 

The Conformer encoder further captures temporal dynamics, while a task-aware gating 

mechanism enables adaptive information routing within the shared feature space across 

tasks. Experimental results show that the model not only improves classification accu-

racy but also significantly reduces regression error for reflection point localization, 

demonstrating strong task-coordinated modeling capabilities. 

Table 2. Comparison with Existing Methods. 

 Task 1:Fault detection Task 2:Event localization 

Methods Accurary(%) F1 score(%) MSE(m) MAE(m) 

ResNet1D 91.95 91.96 1.63 1.57 

DeepConvLSTM 88.66 89.0 1.49 1.21 

TCN 90.54 89.96 1.38 1.52 

Proposed Model 97.12 97.13 1.02 0.86 

5 Conclusion and future work 

In this paper,we propose a novel multi-task deep neural network architecture, MS-

ConformerNet, to address the joint task of fiber fault classification and precise locali-

zation. To overcome the limitations of traditional methods, such as insufficient feature 

extraction in complex scenarios, task optimization conflicts, and limited generalization 

capability, we innovatively integrate a multimodal feature learning mechanism. Exper-

imental results demonstrate that the proposed model performs exceptionally well on 

real OTDR datasets, achieving significant improvements in both fault classification ac-

curacy and event localization precision, validating its feasibility and effectiveness in 

practical applications.In the future, research will further incorporate advanced deep 

learning algorithms and multimodal data to enhance fault detection accuracy and gen-

eralization ability, while exploring real-time sensor fusion and edge computing optimi-

zation to improve system efficiency and adaptability, facilitating its deployment in real-

world scenarios. 

Acknowledgments. This work was supported by Shandong Provincial Science and Technology 

Small and Medium sized Enterprises Innovation Capability Enhancement Engineering Project 

(2024TSGC0221，2023TSGC0425)，National Natural Science Foundation of China (No. 

U23A20378), Shandong Provincial Natural Science Foundation of China (No. 

ZR2023LLZ009，ZR2021MF127). 

Disclosure of Interests. The authors have no competing interests to declare that are rele-

vant to the content of this article. 



 

 

 

2025 International Conference on Intelligent Computing 

July 26-29, Ningbo, China 

https://www.ic-icc.cn/2025/index.php 

 

 

References 

1. Barnoski, M., Rourke, M., Jensen, S., Melville, R.: Optical time domain reflectometer. Ap-

plied optics 16(9),  2375--2379 (1977) 

2. Lee, W., Myong, S.I., Lee, J.C., Lee, S.: Identification method of non-reflective faults based 

on index distribution of optical fibers. Optics Express  22(1),  325--337 (2014) 

3. Rad, M.M., Fouli, K., Fathallah, H.A., Rusch, L.A., Maier, M.: Passive optical network 

monitoring: challenges and requirements. IEEE Communications Magazine  49(2),  s45--

S52 (2011) 

4. Yang, Z., Hong, D., Feng, X., Xie, J.: A novel event detection method for otdr trace with 

high sensitivity based on machine learning. In: 2021 2nd Information Communication Tech-

nologies Conference (ICTC). pp. 265--269 (2021). 

https://doi.org/10.1109/ICTC51749.2021.9441614 

5. Abdelli, K., Grießer, H., Tropschug, C., Pachnicke, S.: A bilstm-cnn based multitask learn-

ing approach for fiber fault diagnosis. In: 2021 Optical Fiber Communications Conference 

and Exhibition (OFC). pp.~1--3 (2021) 

6. Dou, X., Yin, H., Hao, Y., Yue, H., Qi, X., Jin, Y., Qin, J., Li, L.: Demonstration of chaotic-

laser based wdm-pon secure optical communication and real-time online fiber-fault detec-

tion and location. In: 2015 Opto-Electronics and Communications Conference (OECC). 

pp.~1--3. IEEE (2015) 

7. Abdelli, K., Azendorf, F., Grießer, H., Tropschug, C., Pachnicke, S.: Gated recurrent unit 

based autoencoder for optical link fault diagnosis in passive optical networks. In: 2021 Eu-

ropean Conference on Optical Communication (ECOC). pp.~1--4. IEEE (2021) 

8. Abdelli, K., Cho, J.Y., Azendorf, F., Griesser, H., Tropschug, C., Pachnicke, S.: Machine-

learning-based anomaly detection in optical fiber monitoring. Journal of optical communi-

cations and networking  14(5),  365--375 (2022) 

9. Abdelli, K., Grießer, H., Tropschug, C., Pachnicke, S.: Optical fiber fault detection and lo-

calization in a noisy otdr trace based on denoising convolutional autoencoder and bidirec-

tional long short-term memory. Journal of Lightwave Technology  40(8),  2254--2264 

(2021) 

10. Kaushik, S., Garg, K., Verma, J., Kansal, I., Sharma, P., Khullar, V., Sethi, M.: Enhancing 

fault detection and classification in optical fiber networks with deep learning algorithms. In: 

AIP Conference Proceedings. vol.~3209. AIP Publishing (2024) 

11. Liu, F., Zarowski, C.J.: Detection and location of connection splice events in fiber optics 

given noisy otdr data. part ii. r1msde method. IEEE Transactions on instrumentation and 

measurement 53(2),  546--556 (2004) 

12. Bakar, A., Jamaludin, M.Z., Abdullah, F., Yaacob, M., Mahdi, M., Abdullah, M.: A new 

technique of real-time monitoring of fiber optic cable networks transmission. Optics and 

Lasers in Engineering  45(1),  126--130 (2007) 

13. Qiang, H., Zhihui, Z., Dongsheng, W., Lei, L., Xibao, H.: An otdr event analysis algorithm 

based on emd-based denoising and wavelet transform. In: 2015 12th IEEE International 

Conference on Electronic Measurement & Instruments (ICEMI). vol.~2, pp. 1034--1038. 

IEEE (2015) 

14. Caruana, R.: Learning many related tasks at the same time with backpropagation. Advances 

in neural information processing systems  7 (1994) 

15. Rosenbaum, C., Klinger, T., Riemer, M.: Routing networks: Adaptive selection of non-lin-

ear functions for multi-task learning. arXiv preprint arXiv:1711.01239  (2017) 

16. Hazimeh, H., Zhao, Z., Chowdhery, A., Sathiamoorthy, M., Chen, Y., Mazumder, R., Hong, 

L., Chi, E.: Dselect-k: Differentiable selection in the mixture of experts with applications to 



multi-task learning. Advances in Neural Information Processing Systems  34,  29335--29347 

(2021) 

17. Yu, T., Kumar, S., Gupta, A., Levine, S., Hausman, K., Finn, C.: Gradient surgery for multi-

task learning. Advances in neural information processing systems  33,  5824--5836 (2020) 

18. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., 

Polosukhin, I.: Attention is all you need. Advances in neural information processing systems  

30 (2017) 

19. He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional networks 

for visual recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence  

(2015).  

20. Ghiasi, G., Lin, T.Y., Le, Q.V.: Nas-fpn: Learning scalable feature pyramid architecture for 

object detection. In: Proceedings of the IEEE/CVF conference on computer vision and pat-

tern recognition. pp. 7036--7045 (2019) 

21. Gulati, A., Qin, J., Chiu, C.C., Parmar, N., Zhang, Y., Yu, J., Han, W., Wang, S., Zhang, Z., 

Wu, Y., et~al.: Conformer: Convolution-augmented transformer for speech recognition. 

arXiv preprint arXiv:2005.08100  (2020) 


