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Abstract. Images captured in complex low-light environments often exhibit 

weak contrast, high noise, and blurred edges. Directly applying existing target 

detection models to low-light images can lead to missing details and inaccurate 

localization, resulting in poor detection accuracy. To address these issues, this 

paper presents a low-light target detection method based on LADF-YOLO. The 

method first introduces a ReS Feature Pyramid Network (ReSFPN) integrated 

with a backbone network to capture more effective image features in low-light 

conditions. The method then designs a detection head that eliminates the need for 

non-maximum suppression (NMS-Free), utilizing a dual-label assignment strat-

egy and a consistent matching metric to align the optimization direction of the 

head, thereby enhancing the model's overall performance. Finally, experiments 

on the real low-light image dataset DarkFace demonstrate that the proposed 

LADF-YOLO outperforms other leading target detection algorithms in low-light 

conditions. Compared to the benchmark model YOLOv8, LADF-YOLO 

achieves a 10.8% improvement in mAP@0.5 and a 9.9% improvement in Recall. 

Keywords: Low-light images, Targeted Detection, YOLO, Feature Pyramid 

Network. 

1 Introdution 

Low-light target detection, a key research area in computer vision, holds significant 

application value in fields such as nighttime security [1], autonomous driving [2], and 

agricultural production [3]. However, its technical implementation faces substantial 

challenges. Due to issues like low image brightness, noise interference, and color dis-

tortion from insufficient lighting, traditional target detection methods struggle to effec-

tively extract feature information, leading to frequent false detections and missed de-

tections. Overcoming the bottleneck of feature representation in low-light environ-

ments and enhancing the robustness of target recognition are key breakthroughs for 

advancing the practical application of target detection technology.  

Current mainstream methods for low-light target detection typically follow a two-

stage framework: first, the low-light image undergoes pre-processing with brightness 

enhancement and noise suppression using image enhancement techniques, and then it 

is input into the target detection network to perform the recognition task. Image 



 

 

enhancement methods are mainly classified into two types: traditional algorithm-based 

strategies, such as histogram equalization, and deep learning-based end-to-end en-

hancement models. Both approaches require independent enhancement modules that 

run sequentially with the detection network, leading to computational redundancy and 

error accumulation within the system. 

Traditional image enhancement methods improve low-light image quality through 

various techniques. Histogram equalization-based algorithms enhance visibility by ad-

justing global or local contrast, such as adaptive HE [4] and JHE, which incorporates 

pixel neighborhood information [5].The STAR model, based on Retinex theory [6], 

optimizes image structure and texture by decomposing light and reflection. There are 

also the Progressive Recursive Network (PRIEN) [7] and fused gamma correction au-

tomatic conversion technology [8], which enhance brightness from the perspectives of 

deep learning and probability distribution, respectively. However, these methods often 

lead to issues like local overexposure, noise amplification, and color distortion when 

enhancing dim areas. Balancing background suppression with target feature preserva-

tion is challenging, resulting in key information being obscured by noise or halo effects 

during contrast adjustment, which significantly impacts subsequent detection accuracy.  

Current deep learning-based low-light detection methods still predominantly rely on 

a discrete enhancement-detection architecture. For example, the IAT network [9] en-

hances the image using an illumination adaptive transformer before applying YOLOv3 

for detection, while Vinoth et al. [10] build a serial system using a lightweight 

YOLOv8. Although these methods outperform traditional algorithms in terms of en-

hancement, their discrete architecture requires separate training of the enhancement 

module and detection network, leading to issues such as computational redundancy and 

error propagation. Additionally, achieving end-to-end joint optimization is challenging, 

which limits model deployment efficiency and hinders performance breakthroughs.  

The single-stage object detection algorithm directly performs object localization and 

classification using dense anchor boxes or feature points. Its core architecture is exem-

plified by the YOLO [11] and SSD [12] series: YOLO uses a joint regression strategy 

with global image input and output layers, while SSD predicts both target category and 

position through multi-scale convolutional layers. Both achieve efficient detection via 

end-to-end single forward inference. Studies have shown that YOLO outperforms SSD 

and two-stage models in detection speed and low-light adaptability [13]. ViT-YOLO 

[14] further incorporates the MHSA-Darknet backbone network to enhance global fea-

ture extraction and introduces a weighted BiFPN to optimize cross-scale feature fusion, 

significantly improving detection robustness in complex scenarios. With its real-time 

performance and accuracy, the YOLO series has become the mainstream solution for 

industrial-grade low-light detection. 

To overcome the structural limitations of existing two-stage methods, this paper pro-

poses an end-to-end low-light object detection algorithm, LADF-YOLO. The model 

innovatively builds a light-adaptive deep network based on the YOLOv8 architecture, 

enabling direct target localization and classification on the original low-light images 

through multi-scale feature fusion and noise robustness optimization. Compared to the 

traditional cascade enhancement-detection paradigm, LADF-YOLO eliminates the 

need for an independent image enhancement preprocessing module, effectively 
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avoiding issues like error accumulation. This significantly improves detection accuracy 

and recall rate in low-light scenes.  

The core innovation of the LADF-YOLO algorithm proposed in this paper consists 

of two key modules: First, we build a ReS feature pyramid network (ReSFPN), create 

a bidirectional cross-level feature interaction channel using deformable convolution, 

and dynamically adjust multi-scale feature weights by combining spatial-channel dual 

attention mechanisms, This effectively addresses the issues of information redundancy 

and semantic conflict when shallow detail features are fused with deep semantic fea-

tures. Secondly, we design the NMS-Free [15] detection head, which utilizes a decou-

pled dual-label allocation strategy, The coordinated optimization of classification con-

fidence and localization accuracy is achieved through task-consistent matching metrics, 

significantly improving recall rate and bounding box regression accuracy for target de-

tection in low-light images, while avoiding the computational overhead and parameter 

sensitivity issues caused by traditional NMS post-processing.  

In summary, the main contributions of this paper are as follows. 

⚫ This article overcomes the bottleneck of low-light detection through the in-

novative dual-path architecture: The ReS feature pyramid network 

(ReSFPN) introduces a bidirectional cross-level feature interaction mecha-

nism and uses channel-spatial attention to dynamically fuse multi-scale fea-

tures, significantly enhancing target detection accuracy and model inference 

efficiency in low-light scenes.  

⚫ A low-light target detection algorithm, LADF-YOLO, is proposed, with a 

dual-path optimization framework built on the YOLOv8 [16] architecture: 

By integrating the ReS feature pyramid network (ReSFPN), spatial attention-

guided multi-scale feature interaction is achieved. Deformable convolution 

is combined to enhance the multi-level semantic representation of dark area 

targets, significantly improving the multi-scale feature fusion effectiveness. 

Additionally, an NMS-Free detection head is designed, utilizing a decoupled 

dual-label allocation strategy. It achieves coordinated optimization of confi-

dence and localization accuracy through task-consistent matching metrics, 

offering an efficient solution for accurate real-time detection in low-light en-

vironments.  

⚫ LADF-YOLO obtains reliable results through rigorous experiments on the 

publicly available real low-light image dataset, DarkFace. Compared to the 

baseline YOLOv8 model, LADF-YOLO improves mAP@0.5 by 10.8% and 

Recall by 9.9%. 

This study conducted a systematic evaluation on the low-light benchmark dataset, 

DarkFace. The experimental results demonstrate that: Compared to the baseline 

YOLOv8 model, LADF-YOLO's mAP@0.5 increased by 10.8 percentage points, 

reaching 58.6%, and its recall rate improved by 9.9%, reaching 52.3%. The model 

demonstrates significant performance advantages in ultra-low-light conditions (illumi-

nance <1 lux), highlighting its effective collaboration between feature extraction and 

target positioning through synergistic optimization.  

In summary, experimental verification shows that LADF-YOLO achieves break-

through innovative advantages in low-light scenes through the collaborative 



 

 

optimization mechanism of the ReS feature pyramid network and the NMS-Free detec-

tion head: Compared to mainstream detection models, its detection accuracy is im-

proved by 10.8%, with a particularly significant improvement in target recall rate in 

extremely dark areas (illuminance <1 lux). This algorithm effectively addresses the is-

sues of feature degradation in traditional two-stage methods, providing a robust and 

efficient solution for low-light real-time detection scenarios, such as nighttime security 

and autonomous driving. 

2 Related Work 

2.1 The YOLOv8 object detection model 

YOLOv8 (You Only Look Once Version 8) is a single-stage, real-time object detection 

framework released by Ultralytics in 2023. It strikes an excellent balance between de-

tection accuracy and real-time performance under standard lighting conditions. Its ar-

chitecture consists of four core modules: the input preprocessing module, which en-

hances model robustness through adaptive image scaling. The backbone network uti-

lizes CSPDarkNet for efficient feature extraction. The neck structure is configured with 

a Path Aggregation Feature Pyramid (PAFPN) for multi-scale feature fusion. The de-

tection head simplifies the positioning process using an anchor-free mechanism. By 

designing dual-dimensional parameterization for width (number of channels) and depth 

(number of layers), five progressively enhanced model architectures—n, s, m, l, and 

x—are formed, The model complexity and detection performance exhibit a positively 

correlated gradient, offering a flexible model selection space for deployment from mo-

bile to cloud. 

Since YOLOv8 requires fewer parameters, it offers better detection performance 

compared to YOLOv5 and YOLOv7. Additionally, YOLOv8 requires relatively low 

computational cost. Therefore, this paper chooses YOLOv8 as the foundational frame-

work. 

2.2 Feature Pyramid Network (FPN) 

Feature Pyramid Networks (FPN) [17] are a fundamental architecture in object detec-

tion. They integrate deep semantic information into shallow features through a top-

down feature propagation mechanism, This effectively addresses the semantic gap 

problem in cross-scale object detection. This paradigm has been thoroughly validated 

in classic models such as Faster R-CNN [18] and Mask R-CNN [19]. However, tradi-

tional FPN uses a homogenized feature fusion strategy and does not differentiate be-

tween the semantic value and spatial detail contribution of features at different levels. 

To overcome this bottleneck, this paper introduces the ReS Feature Pyramid Network 

(ReSFPN), through the spatial-channel dual attention mechanism, multi-scale feature 

weights are dynamically calibrated. A bidirectional interactive channel is established 

between shallow detail features and deep semantic features, enabling adaptive fusion 

of cross-level heterogeneous features and significantly enhancing multi-scale target de-

tection accuracy. 
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2.3 Non-maximum suppression (NMS) 

Non-Maximum Suppression (NMS) is a core technology in target detection post-pro-

cessing. It removes redundant detection boxes through confidence sorting and intersec-

tion-over-union (IoU) screening. However, its threshold sensitivity often results in 

missed detections or the incorrect removal of key targets. To address this issue, re-

searchers have proposed various improvement solutions. For example, Zhao et al. [20] 

developed a dynamic NMS network (D-NMS Net) to achieve image-adaptive threshold 

prediction. Kumar et al. [21] designed a differentiable grouping NMS based on geo-

metric constraints to improve the consistency of box regression in 3D detection tasks. 

However, traditional NMS and its derivative methods still introduce significant infer-

ence delay, and the parameter tuning process often disrupts the end-to-end nature of the 

detector. To address this, Wang et al. proposed the NMS-Free detection paradigm. Us-

ing a dual-label assignment strategy and task-alignment measurement method, they es-

tablished a strong correlation between classification confidence and positioning accu-

racy during training, enabling the model to directly output non-redundant, high-preci-

sion detection boxes. 

3 The proposed LADF-YOLO model 

3.1 Overview of the LADF-YOLO Model 

This paper presents the LADF-YOLO model for low-light target detection, which is 

composed of a CSPDarknet backbone network, a ReS feature pyramid network 

(ReSFPN), and an NMS-Free detection head (as shown in Figure 1). The core innova-

tions are reflected in three aspects: (1) The use of the CSPDarknet backbone network 

to construct a multi-scale gradient flow, enhancing the feature representation capability 

of low-light images through a cross-stage partial connection strategy. (2) The design of 

the ReS feature pyramid network, which dynamically calibrates the fusion weights of 

P3-P5 multi-scale features through the bidirectional cross-level feature interaction 

channel and the spatial-channel dual attention mechanism, improving the accuracy of 

cross-level feature fusion. (3) A novel NMS-Free detection head is proposed, employ-

ing a decoupled dual label assignment strategy and achieving coordinated optimization 

of classification confidence and positioning accuracy through task-consistent matching 

metrics, thus completely eliminating the need for NMS post-processing. 



 

 

 

Figure 1 shows the structure of the LADF-YOLO model. 

3.2 ReS Feature Pyramid Network (ReSFPN) 

To tackle the challenge of target feature extraction in low-light scenes, this paper pro-

poses the ReS Feature Pyramid Network (ReSFPN), as shown in Figure 2. The ReSFPN 

incorporates the Selective Boundary Aggregation (SBA) module [22], illustrated in 

Figure 3. This module creates a dynamic feature interaction mechanism using deform-

able convolution, which can be mathematically expressed as: 

𝑃𝐴𝑈(𝑇1, 𝑇2) = (𝑊𝜃(𝑇1) ⊙ 𝑇1) + (𝑊𝜙(𝑇2) ⊙ 𝑇2 ⊙ (⊖ (𝑊𝜃(𝑇1)))) + 𝑇1           (1) 

Where Wθ(⋅) = Sigmoid(Conv1×1
θ (⋅)),  Wϕ(⋅) = Sigmoid(Conv1×1

ϕ
(⋅)). 

The input features T1 and T2 are processed by two linear transformations 𝑊𝜃(⋅) and 

𝑊𝜙(⋅) with sigmoid activation, reducing their channel dimensions to 32 to generate 

refined feature maps Wθ(T1) and 𝑊𝜙(𝑇2).⊙ is Point-wise multiplication.⊖ is the re-

verse operation by subtracting the feature 𝑊𝜃(𝑇1). The deep semantic features Fsand 

shallow boundary features Fbas T1 , T2  input dual path processing: The main path is 

compressed to 32 channels using 1×1 convolution and sigmoid activation to generate a 

spatial attention mask Wθ(T1), semantic weights are used to calibrate deep features. 

The compensation path operates through the inverse mask (⊖ (𝑊𝜃(𝑇1)) guides the 

refinement of shallow boundary features Fb. The two outputs are merged across levels 

and fused using a 3×3 convolution to generate the final feature map: 

 𝑍 = C (𝐶𝑜𝑛𝑐𝑎𝑡[𝑃𝐴𝑈(𝐹𝑠, 𝐹𝑏), 𝑃𝐴𝑈(𝐹𝑏 , 𝐹𝑠)])3×3                             (2) 
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The SBA module integrates multi-level features through a 𝐶3×3 block (3×3 convolution 

with batch normalization and ReLU), combining Fs(H/8×W/8×32) from encoder layers 

3-4 for semantics and Fb(H/4×W/4×32) from the backbone’s initial layer for boundary 

details. Leveraging a channel-space dual attention mechanism, the shallow path em-

ploys deformable convolution to dynamically correct deep feature positioning via pixel-

level boundary responses, while the deep path utilizes channel attention to suppress 

low-light background noise. Concatenation of these enhanced features yields the re-

fined output Z (H/4×W/4×32). 

Compared to traditional FPN, it significantly mitigates feature degradation by intro-

ducing a mathematically modeled cross-level dynamic calibration and a parameterized 

feature compensation mechanism. 

Furthermore, this paper systematically improves the architectural limitations of 

YOLOv8's Path Aggregation Feature Pyramid (PAFPN) in low-light scenes. The orig-

inal PAFPN enhances global semantic perception through a bottom-up path, but its 

four-level fixed structure (P3-P6) struggles to effectively capture the edge features of 

the P2/P3 levels in low-light images. ReSFPN innovatively constructs a six-level fea-

ture pyramid (P2-P6), significantly expanding the coverage of the multi-scale receptive 

field by incorporating the P2/P3 levels. In terms of technical implementation, the SBA 

module replaces the traditional upsample-concat structure, the deformable convolution 

kernel is used to adaptively capture the target contour, while the spatial attention mech-

anism suppresses background noise interference. ReSFPN input and output sizes and 

key parameters are (160,160,128), (80,80,256), (40,40,512), (20,20,512). The design 

of ReSFPN significantly enhances edge feature response strength, greatly improves 

multi-scale target detection accuracy, and effectively addresses the edge information 

degradation issue in feature pyramid networks under low-light conditions. 

 

Figure 2 illustrates the diagram of the ReS feature pyramid network. 



 

 

 

Figure 3 shows the framework of the SBA module. 

3.3 No need for non-maximum suppression detector head  

To address the NMS dependency issue caused by the one-to-many label assignment 

strategy in the traditional YOLO detection model, this paper proposes a dual-path col-

laborative optimization mechanism. Traditional methods enhance supervision signals 

by matching multiple prediction boxes to a single target, but this leads to a large number 

of redundant detection boxes during inference, necessitating reliance on non-maximum 

suppression (NMS) for post-processing. This introduces computational bottlenecks and 

hyperparameter sensitivity during end-to-end deployment. This method innovatively 

introduces a dual-branch detection head architecture. During the training phase, a joint 

supervision paradigm is adopted, simultaneously performing one-to-many label assign-

ment (dense positive sample supervision) and one-to-one label assignment (precise po-

sitioning learning). In the inference stage, the one-to-one branch is activated through 

the task alignment strategy, directly outputting high-confidence detection results (as 

shown in Figure 4). This dual-label assignment strategy employs a dynamic feature 

decoupling mechanism to fully eliminate the NMS post-processing step, while preserv-

ing the benefits of strong supervision signals, thereby enabling true end-to-end low-

light target detection. 

 

Figure 4 Structure of the Detection Head without Non-Maximum Suppression 

To address the supervision mismatch issue between the one-to-many (o2m) and one-
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to-one (o2o) branches in the dual-label assignment strategy, this paper proposes a uni-

fied matching metric framework based on dynamic balancing. By constructing a com-

posite metric function, 

 𝑚(𝛼, 𝛽) = 𝑠 ⋅ 𝑝𝛼 ⋅ 𝐼𝑜𝑈(𝑏
^

, 𝑏)𝛽                                         (3) 

 

Classification-localization collaborative optimization is achieved, where p is the clas-

sification score, 𝑏
^

 and b denote the bounding box of prediction and instance, the spatial 

prior s ∈ {0,1} represents the spatial association of the anchor point, and the hyperpa-

rameters α and β control the weights of classification confidence p and bounding box 

regression accuracy IoU, respectively. Given the maximum IoU u ∗ of an instance, the 

two-branch matching metrics are mo2m = m(αo2m, βo2m) and mo2o = m(αo2o, βo2o). 

The supervision gap can be quantified using the 1-Wasserstein distance of the classifi-

cation target difference, 

 𝐴 = 𝑡𝑜2𝑜,𝑖 − 𝐼(𝑖 ∈ 𝛺)𝑡𝑜2𝑚,𝑖 + ∑
𝑘∈𝛺∖{𝑖}

𝑡𝑜2𝑚,𝑘                     (4) 

Where to2m,j = u∗ ⋅
mo2m,j

mo2m
∗  and to2o,i = u∗. The analysis shows that when to2m,i → u∗ 

(i.e., when i becomes the best sample in the positive sample set Ω), the gap A is mini-

mized. To address this, parameter ratio constraints αo2o = r ⋅ αo2m  and βo2o = r ⋅
βo2m with mo2o = mo2m ⋅ r, are established. This mechanism ensures that the optimal 

sample from the o2m branch also achieves the highest matching degree in the o2o 

branch, enabling alignment optimization of the dual-branch target space and effectively 

mitigating the semantic misalignment issue caused by independent measurements in 

traditional methods. Where the hyperparameter r serves as a scaling factor that ensures 

consistency between the one-to-one and one-to-many detection heads. 

4 Experiment 

4.1 Dataset Processing and Evaluation Metrics 

This study conducts a comprehensive experimental evaluation using the DarkFace da-

taset [23], which consists of 6,000 low-light images collected from real-night scenes. 

The dataset covers a variety of complex lighting scenarios, including urban roads, 

building complexes, and transportation hubs, with all images providing detailed anno-

tated face bounding box ground truth. Following standard machine learning practices, 

the dataset is split into a training set (4,800 images), a validation set (600 images), and 

a test set (600 images) in an 8:1:1 ratio. These sets are used for model parameter opti-

mization, hyperparameter tuning, and evaluation of generalization ability, ensuring the 

statistical significance and reproducibility of the experimental results.  

According to standard evaluation metrics, this paper uses precision (P), recall (R), 

and mean average precision (mAP) to assess the performance of the object detection 

model.  



 

 

Precision refers to the proportion of samples predicted as positive by the model that 

are actually positive. In target detection, it refers to the proportion of all detected target 

frames that are correctly identified. Here, TP represents the number of true positive 

samples, FP represents the number of false positive samples, and FN represents the 

number of false negative samples. The calculation formula is as follows, 

 𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                         (5) 

Recall refers to the proportion of actual positive samples that are correctly identified as 

positive by the model. In target detection, recall refers to the proportion of all actual 

targets that are successfully detected by the model. The calculation formula is as fol-

lows, 

 𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                            (6) 

 

mAP is a commonly used metric for evaluating multi-class classification problems. It 

is calculated by determining the average precision (AP) for each category and then av-

eraging the results. The value of mAP ranges from 0 to 1, with a value closer to 1 

indicating better model performance. The calculation formula is as follows, 

 𝑚𝐴𝑃 =
∑ ∫0

1𝑁
𝑖=1 𝑃(𝑅)𝑑𝑅

𝑁
                                             (7) 

4.2 Implementation Details 

This study developed a complete training process using the PyTorch framework [24] 

and employed the stochastic gradient descent (SGD) optimizer to optimize the model 

parameters. The experimental setup follows a rigorous deep learning training paradigm, 

input images are uniformly resized to a 640×640 resolution, and a random initialization 

strategy is employed to prevent domain adaptation bias from pre-trained weights. The 

optimizer configuration includes a momentum coefficient and an L2 regularization term 

to ensure stable parameter updates. The training process employs a cosine annealing 

learning rate scheduling strategy, completing 300 training epochs of iterative optimiza-

tion on a standard GPU computing cluster, ultimately achieving stable convergence of 

the model parameters. The key hyperparameter configurations are provided in Table 1.  

Table 1 lists the processors used in the experiment and the parameters employed during train-

ing. 

Catalogory Item Params 

 

Hardware 

GPU NVIDIA A100 80GB PCIe 

CPU - 

 

 

Training 

Optimizer SGD 

Learning rate 0.01 

Weight decay 0.0005 

Momentun cofficient 0.937 

Batch_size 16 
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4.3 Ablation Experiment 

This study evaluates the effectiveness of the LADF-YOLO model's innovations 

through controlled ablation experiments. Building on the YOLOv8 benchmark model, 

a progressive module stacking strategy is employed. First, the ReS Feature Pyramid 

Network (ReSFPN) is integrated to enhance multi-scale feature interaction, followed 

by the design of the NMS-Free detection head to eliminate the reliance on post-pro-

cessing. The experiment established a multi-dimensional evaluation system based on 

four aspects: detection accuracy (mAP@0.5/mAP@0.5:0.95), recall rate (Recall), com-

putational complexity (GFLOPs), and real-time performance (FPS). Visual analysis 

was also conducted through loss curves and indicator change trends. 

Table 2 Ablation Experiment Data Summary. The symbol "✔" indicates that the corresponding 

improved module has been integrated into the model. 

YOLO

v8 

ReSFP

N 

NM

S-

Free 

mAP@0.5(

%) 

P(

%) 

R(

%) 

mAP@0.5:0.95

(%) 

GFLO

PS 

FPS 

✔   47.8 71.

2 

42.4 20.5 8.1 116.

3 

✔ ✔  57.9 75.

8 

50.8 24.8 14.9 87.1 

✔  ✔ 49.0 69.

8 

43.7 21.5 8.1 107.

5 

✔ ✔ ✔ 58.6 72.

2 

52.3 24.7 14.9 84.4 

The results of the ablation experiment (Table 2) demonstrate that the proposed ReS 

feature pyramid network (ReSFPN) and NMS-Free detection head significantly en-

hance the low-light detection performance. Compared to the baseline YOLOv8 model 

(mAP@0.5 = 47.8%), the introduction of the ReSFPN module alone boosts the detec-

tion accuracy by 10.1 percentage points, reaching 57.9%, by enhancing the multi-scale 

feature interaction capability. The NMS-Free detection head provides a 1.2% accuracy 

improvement by eliminating post-processing redundancy. After the collaborative opti-

mization of both modules, the model's mAP@0.5 on the DarkFace dataset reached 

58.6%, resulting in an overall performance improvement of 10.8%. The complementary 

advantages of ReSFPN in optimizing dark area feature representation and NMS-Free 

in improving inference efficiency were demonstrated, effectively addressing the dual 

challenges of feature degradation and post-processing bottlenecks in low-light scenes. 

The evaluation index curve (e.g., Fig. 5) shows that the four core metrics—

mAP@0.5, mAP@0.5:0.95, precision, and recall—improve simultaneously as the 

number of training rounds increases. Notably, LADF-YOLO improves the mAP@0.5 

metric by over 10 percentage points compared to the original model, consistently out-

performing other variants (such as models with only the NMS-Free or ReS feature pyr-

amid modules added). This cross-indicator consistency optimization demonstrates that 

the ReS feature pyramid network enhances the semantic representation of dark-area 

targets through multi-level feature interaction, while the NMS-Free detection head re-

duces redundant detection boxes via an end-to-end optimization mechanism. The 

mailto:mAP@0.5(%25)
mailto:mAP@0.5(%25)
mailto:mAP@0.5(%25)
mailto:mAP@0.5(%25)


 

 

synergistic effect of both components effectively addresses the dual challenges of fea-

ture degradation and positioning ambiguity in low-light scenes, validating the collabo-

rative innovation of LADF-YOLO in both feature extraction and reasoning efficiency. 

 

Figure 5 metrics_curve information diagram 

4.4 Comparative Experiments on the DarkFace Dataset 

This study conducted a systematic comparative experiment on mainstream YOLO se-

ries models using the DarkFace dataset (as shown in Table 3), including classic models 

such as YOLOv5, YOLOv8, and YOLOv10. All models are optimized end-to-end us-

ing a unified training strategy, with precision, recall, mAP@0.5, mAP@0.5:0.95, com-

putational complexity (GFLOPs), and real-time performance (FPS) serving as multi-

dimensional evaluation benchmarks. Bold indicates the best result for each metric 

among the low-light object detection algorithms.  

This study verified the technological breakthrough of LADF-YOLO in low-light ob-

ject detection through comparative experiments. Compared to mainstream YOLO se-

ries models, this algorithm leverages the cross-level feature interaction mechanism of 
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the ReS feature pyramid network and the end-to-end optimization paradigm of the 

NMS-Free detection head, a significant leap in detection accuracy was achieved, with 

a breakthrough improvement of 10.8% in mAP@0.5 and 9.9% in Recall, while the 

mAP@0.5:0.95 indicator also demonstrated steady growth. Although the model's com-

putational complexity has increased, its innovative design in feature representation ef-

fectively addresses core challenges such as blurred target edges and missing semantic 

information in low-light environments. This verifies the necessity of an accuracy-first 

algorithm optimization approach in extreme lighting conditions and offers a highly ro-

bust detection solution for real-world industrial deployment. 

Table 3 Comparison of detection performance between LADF-YOLO and classic YOLO meth-

ods on the DarkFace dataset. Bold indicates the best result for each metric among the low-light 

object detection algorithms. 

Method Back-

bone 

mAP@0.5(

%) 

mAP@0.5:0.95(

%) 

P(%

) 

R(%

) 

GFlOP

S 

FPS 

YOLOv8 CSPDar

knet 

47.8 20.5 71.2 42.4 8.1 116.

3 

YOLOv5 

[25] 

CSPNet 46.2 19.5 69.5 41.2 7.8 113.

8 

YOLOv11 

[26] 

- 42.6 18.2 68.5 38.5 6.5 123.

1 

YOLOX 

[27] 

CSPDar

knet 

56.5 - - - - - 

YOLOv10 CSPNet 41.7 17.6 65.2 37.8 8.6 101.

7 

YOLOv9m 

[28] 

- 54.5 25.0 74.0 47.6 77.0 85.0 

LADF-

YOLO(Ou

rs) 

CSPDar

knet 

58.6 24.7 72.2 52.3 14.9 84.4 

This study systematically compares the performance of LADF-YOLO with mainstream 

detection models on the DarkFace low-light dataset, as shown in Table 4. Experimental 

results show that traditional detection methods, such as FCOS [29], YOLOX, and Cen-

terNet [30], generally exhibit low detection accuracy due to uneven illumination and 

feature degradation in low-light scenes. For instance, the FCOS model achieves only 

30.3% mAP@0.5. In contrast, the proposed LADF-YOLO enhances multi-scale se-

mantic fusion through the ReS feature pyramid network and achieves end-to-end opti-

mization with the NMS-Free detection head. As a result, it surpasses all compared mod-

els, achieving a mAP@0.5 of 58.6%—a 10.8 percentage point improvement over the 

YOLOv8 baseline (47.8%). This result validates the synergistic enhancement of the 

cross-level feature interaction mechanism and post-processing optimization strategy 

under extreme lighting conditions, offering a novel technical paradigm for low-light 

object detection. 

The visual comparison of detection results (Figure 6) demonstrates that LADF-YOLO 

exhibits significant advantages in low-light environments, Compared with classic de-

tection methods like FCOS and YOLOX, it is less prone to false detections (e.g., mis-

classifying light and shadow noise as targets) and missed detections (e.g., failing to 



 

 

recognize certain visible targets) caused by interference from dark backgrounds. Com-

pared to the latest YOLOv12 algorithm (mAP@0.5 = 40.6%), LADF-YOLO achieves 

a significant improvement, boosting mAP@0.5 to 58.6%. This method precisely delin-

eates target boundaries in low-contrast areas by leveraging the multi-scale semantic 

fusion of the ReS feature pyramid network and the task alignment strategy of the NMS-

Free detection head. Experimental cases demonstrate that in extremely dark areas (illu-

minance <1 lux) where target visibility falls below 15%, LADF-YOLO can still recon-

struct local contour features and capture global context. Compared to the baseline 

model, it significantly reduces bounding box positioning errors, confirming its strong 

and robust capability in parsing partially visible targets in low-light environments. 

Table 4 Comparison of Detection Results Between This Method and Other Mainstream Object 

Detection Methods on the DarkFace Dataset. 

Method Backbone Size mAP@0.5(%) 

YOLOv8 CSPDarknet 640×640 47.8 

YOLOX CSPDarknet 640×640 56.5 

YOLOv5 CSPNet 640×640 46.2 

CenterNet ResNet 640×640 49.1 

RetinaNet [31] ResNet 640×640 34.4 

Faster R_CNN ResNet 640×640 38.6 

Fcos ResNet 640×640 30.3 

YOLOv12 [32] - 640×640 40.6 

Dynamic R-CNN [33] ResNet 640×640 38.0 

LADF-YOLO(Ours) CSPDarknet 640×640 58.6 

 

Figure 6 Visualization of detection results for LADF-YOLO and classic object detection meth-

ods on the DarkFace dataset. 
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5 Conclusion 

It aims to address the issues of uneven illumination, blurred boundaries, difficulty in 

feature extraction in low-light target detection. This paper proposes an innovative so-

lution, LADF-YOLO, which constructs a bidirectional cross-level feature interaction 

ReS feature pyramid network (ReSFPN). By employing deformable convolution and a 

spatial-channel dual attention mechanism, it enables multi-scale semantic enhancement 

and boundary feature reconstruction of targets in dark areas. Additionally, an NMS-

Free detection head is designed to achieve collaborative optimization of classification 

and positioning tasks through a decoupled dual-label allocation strategy. This approach 

completely eliminates the reliance on non-maximum suppression (NMS) post-pro-

cessing, improves positioning accuracy, and enhances the model's performance in low-

light image detection. Compared to the base model YOLOv8, the LADF-YOLO algo-

rithm achieved an average detection accuracy of 58.6% on the low-light target detection 

DarkFace dataset, marking an increase of 10.8%. Compared to mainstream general tar-

get detection algorithms on the low-light target detection DarkFace dataset, the LADF-

YOLO model demonstrates higher detection accuracy. However, its detection speed 

needs improvement. The next step will focus on developing a lightweight network ar-

chitecture and exploring data transfer between modules to reduce parameter calcula-

tions and ultimately enhance detection speed. 
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