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Abstract. Recently, the Intelligent Transportation System has been developed to 

help relieve traffic congestion, which calls for the need to predict middle and 

long-term traffic flow accurately. However, existing models can’t effectively ob-

tain enough accuracy in middle and long-term prediction. To solve this, we pro-

pose a Fine and Coarse-grained Graph Flow Neural Network (FCGFNN), which 

makes better prediction by capturing both fluctuating and stable traffic patterns. 

Firstly, an asymmetric embedding layer is designed to integrate graph structure 

and temporal dependencies with two dimensions of data. Then, a Season-Trend 

Encoder is designed to extract essential spatial-temporal features as well as han-

dling non-stationary flows. Finally, the pattern of traffic flow prediction is ob-

tained. Experimental results on two real public traffic datasets shows average 

performance improvements of 5.9%, 7.5% and 7.7% across 30-minute, 45-mi-

nute and 60-minute prediction intervals. 

Keywords: Traffic Forecasting, Decomposition Model, Attention Mechanism. 

1 Introduction 

In recent years, there are increasing pressures on transportation systems due to rapid 

urbanization. Intelligent Transportation System (ITS), as a pivotal solution, delivers 

feasible decisions for transportation management in urban cities [1]. As a foundation of 

ITS, traffic flow prediction utilizes historical data series to anticipate future traffic pat-

terns, which has attracted much attention [2]. Through the strategic deployment of sen-

sor networks across transportation infrastructure, ITS can capture real-time traffic data, 

alleviating congestion and optimizing traffic flow efficiency [3]. 

Traffic forecasting is a critical time series analysis challenge, distinguished by the 

complex inter-dependencies among spatial, temporal, and external factors [4] [5]. 

These dependencies substantially increase the complexity of the task. To recognize 

these uncertainties in raw traffic flow data, researchers have spent efforts on developing 



 

static and dynamic representations. These representations represent the intrinsic char-

acteristics of traffic flow from several dimensions, including periodicity, trends, and 

seasonal variations [6]. However, complex temporal dynamics, including mixed pat-

terns and fluctuating series, present great challenges in accurately capturing and pre-

dicting traffic behavior [7]. 

Benefiting from deep learning techniques, many models have been proposed to cap-

ture the temporal patterns in traffic series. Notably, Graph Neural Networks (GNNs), 

integrated with Recurrent Neural Networks (RNNs) and Convolutional Neural Net-

works (CNNs), have received great popularity in recent years. By constructing data 

topology, GNNs improve the models' ability of capture spatial and temporal dependen-

cies. The introduction of adjacency matrices also significantly improved the construc-

tion of spatial data topology. However, GNN-based approaches focus primarily on 

global traffic patterns, potentially neglecting inner-correlations embedded within the 

data. Capturing both intra-period temporal dynamics and cross-series dependencies is 

essential [8]. Firstly, traffic data may fluctuate suddenly due to severe weather condi-

tions or signal interference, manifesting as high-frequency components in the raw data. 

Secondly, limited generalization capabilities may occur when applied to non-stationary 

traffic time series [5]. To solve this, decomposition techniques are employed in various 

models, such as Discrete Wavelet Transform (DWT) [5] and Discrete Fourier Trans-

form (DFT) based methodologies [8]-[10]. Decomposition mechanism effectively cap-

tures traffic patterns across different dimensions while maintaining global temporal in-

formation. However, such kind of technique has limitation in completely isolating noise 

from the original data, thereby failing to fully extract crucial features from traffic series 

flows. 

To address these challenges, we propose a novel Fine and Coarse-grained Graph 

Flow Neural Network (FCGFNN) for traffic condition prediction in road networks. Un-

like previous studies that focus primarily on single-input or one-step decomposition 

approach, out model introduces a two-step decomposition framework. First, an asym-

metric embedding layer is implemented to process fine and coarse-grained data flow, 

which have been disentangled through DWT in decomposition layer. Specifically, a 

general embedding is first applied to both data flows, and an additional embedding 

which contains spatial and temporal embedding is exclusively applied to coarse-grained 

layer. Second, this paper introduces a Season-Trend Encoder (ST-Encoder), which lev-

erages DFT mechanism to extract high-frequency components from coarse-grained 

data flows. A temporal attention and sparse GAT attention is followed behind to further 

capture traffic flow patterns.  

The principal contributions of this paper are summarized as follows: 

• We propose a two-step decomposition model for traffic forecasting, which effec-

tively captures intricate spatial-temporal dynamics through the decomposition layer 

and ST-Encoder. 

• We incorporate an asymmetric embedding layer to model both spatial and temporal 

dependencies, enabling a comprehensive representation of the entire traffic graph 

and significantly enhancing the model's forecasting performance. 
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• To assess the performance of our proposed framework, an extensive baseline com-

parisons and ablation experiments are performed on two real-world public transpor-

tation datasets. The experimental results demonstrate the superior performance of 

our method over mainstream traffic forecasting baselines across 30-minute, 45-mi-

nute and 60-minute prediction intervals. 

The rest of this paper is organized as follows. Section II provides a comprehensive 

literature review. Section III presents the problem formulation of traffic forecasting. 

Section IV, V, and VI detail the proposed method, introduce the experimental setup and 

results, and conclude the paper, respectively. 

2 Related work 

2.1 Traffic Forecasting 

In this section, we will discuss main model architecture in traffic forecasting and special 

decomposition model. Research in traffic flow prediction has a long history. Conven-

tional sequential models, including LSTM [11]-[13] and GRU [14] [15], are con-

strained by their inherent temporal processing architecture. Advancements in modeling 

spatial-temporal dependencies [4] in early years have demonstrated the remarkable per-

formance of RNNs and CNNs in traffic flow prediction tasks. Notably, DCRNN [16] 

demonstrates superior capability in modeling complex spatial relationships and cap-

tures non-linear temporal patterns. The combination of GNNs [17] with RNN or CNN 

effectively leverages the graph topology to increase the spatial-temporal ability. For 

example, T-GCN [18], which integrates Graph Convolutional Networks (GCNs) with 

Gated Recurrent Units (GRUs), has demonstrated exceptional capability in learning 

intricate topological structures and capturing dynamic spatial dependencies. Graph 

WaveNet [19] innovatively combines GCN with an adaptive dependency matrix, which 

effectively models long-range temporal dependencies in traffic flows. 

In addition to GNNs, the Transformer architecture has emerged as a prominent al-

ternative framework [20] [21]. The core principle of attention mechanisms lies in their 

ability to assign weights to the most informative features based on input data charac-

teristics [22]. Consequently, these mechanisms are mainly employed to model spatial 

dependencies in traffic networks. To capture dynamic spatial-temporal correlations in 

traffic systems, GMAN [23] introduces a hierarchical architecture integrating spatial 

and temporal attention blocks across multiple stages. Similarly, STGM [24] introduces 

an innovative attention mechanism specifically designed to capture the intricate rela-

tionships between temporal and spatial dependencies. Furthermore, recent advance-

ments in traffic forecasting have verified the effectiveness of integrating attention 

mechanisms with graph-structured data [25]. For instance, RGDAN [26] incorporates 

both graph diffusion attention and temporal attention modules, enabling more accurate 

modeling of spatial dependencies in dynamic systems. 



 

Despite these significant contributions, existing models predominantly emphasize 

the architectural enhancements for improved feature extraction, frequently failing to 

incorporate the intrinsic characteristics of traffic data itself. 

2.2 Decomposition Model 

Multi-scale decomposition frameworks have been widely adopted in time series analy-

sis [27]. Unlike mainstream single-flow models, decomposition-based approaches di-

vide traffic data into distinct dimensions, thereby capturing more intrinsic features. 

StemGNN [8] integrates Graph Fourier Transform (GFT) and DFT to effectively model 

intra-period correlations and temporal periodicity in complex datasets. STWave [5] lev-

erages a disentangled-fusion framework to addresses distribution shift. By utilizing 

DWT, STWave decouples traffic data into stationary trend and non-stationary events, 

thereby improving model robustness. Furthermore, decomposing techniques have 

demonstrated effectiveness in long-period time series forecasting. TimeMixer [7] pro-

poses a novel mixing architecture incorporating Past-Decomposable-Mixing, which ef-

fectively leverages disentangled time series components for enhanced predictive per-

formance. Additionally, DRFormer [28] proposes a multi-scale Transformer model that 

incorporates a multi-scale sequence extraction mechanism, which is capable of captur-

ing multi-resolution features. However, existing approaches typically neglect the inher-

ent noise embedded in cross-scale traffic patterns, which can hinder their performance 

in middle and long-term predictions. 

In this paper, we extend the exploration of feature extraction in traffic data flows. 

FCGFNN innovatively presents a two-step decomposable architecture based on previ-

ous designs. Building upon a fundamental decomposition layer, the model incorporates 

an asymmetric embedding layer that enriches decomposed traffic data with additional 

graph topology information. Furthermore, an ST-Encoder is implemented to capture 

spatial-temporal correlation at a more refined level. 

3 Preliminaries 

The traffic prediction problem is formally defined as a multivariate time-series fore-

casting task, where the road network topology is represented by a directed graph 𝔾 =
(𝑉, 𝐸, 𝐴). Here, V represents the set of deployed traffic sensors and E encodes the 

adjacency relationships based on road connectivity, and 𝐴 ∈ ℝ𝑁×𝑁  is the adjacency 

matrix encoding the non-Euclidean distances between nodes i and j. The adjacency 

matrix is binary, consisting solely of zeros and ones, with its construction rule explicitly 

defined in Equation 1. 

 A𝑖𝑗 = {
1    if 𝑖, 𝑗 ∈ V,E𝑖𝑗 ∈ E

0    otherwise
 (1) 
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Given a sequence of observed traffic time series data {X𝑐−𝑆, ⋯ ,X𝑐−1} comprising S 

historical steps, the objective of multivariate time-series forecasting is to learn a map-

ping function that predicts the subsequent T future steps {Y𝑐+1, ⋯ ,Y𝑐+𝑇}. This map-

ping can be formally expressed as the following mathematical function: 

 {X𝑐−𝑆, ⋯ ,X𝑐−1} →
𝑝

{Y𝑐+1, ⋯ ,Y𝑐+𝑇} (2) 

4 Fine and Coarse-grained Graph Flow Neural Network  

 

Fig. 1. The architecture of FCGFNN 

Inspired by the decomposition layer in STWave[5], this paper introduces FCGFNN to 

address the challenge of feature extraction. As is illustrated in Figure 1, the proposed 

model is primarily composed of four key components: a decomposition layer, an asym-

metric embedding layer, a season-trend encoder, and a masked fusion layer. The input 

traffic flow 𝑋 ∈ ℝ𝐵×𝑇𝑖×𝑁×𝐷 is disentangled into fine and coarse content within the de-

composition layer. Subsequently, these representations are embedded into 𝑋𝑓 ∈

ℝ𝐵×𝑇𝑓×𝑁×𝐷 and 𝑋𝑐 ∈ ℝ
𝐵×𝑇𝑐×𝑁×𝐷 through the asymmetric embedding layer. Following 

the season-trend encoder, the fine and coarse-grained flows are fed into the masked 

fusion layer for further integration. Notably, FCGFNN employs two predictors: the 

coarse-grained data is output as 𝑦̂𝑝𝑟𝑖𝑜𝑟 ∈ ℝ
𝐵×𝑇𝑜𝑢𝑡×𝑁×𝐵 alone for prior prediction after 

the season-trend encoder, while the fusion data is output as 𝑦̂𝑝𝑜𝑠𝑡 ∈ ℝ
𝐵×𝑇𝑜𝑢𝑡×𝑁×𝐵 after 

masked fusion for post prediction.  

4.1 Asymmetric Embedding Layer 

A fundamental bottleneck in urban traffic flow prediction lies in effectively capturing 

the intricate and dynamic spatial-temporal dependencies [29]. To address this chal-

lenge, we introduce an asymmetric embedding layer designed to comprehensively cap-

ture the structural features within the graph. As illustrated in Figure 1, the proposed 

embedding layer consists of two distinct components. The first component is a general 

embedding layer that applies to both fine-grained and coarse-grained flow data. The 
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second component is an additional embedding layer that exclusively applies spatial and 

temporal embedding to coarse-grained data. 

General Embedding. Initially, we define an L-layer fully connected network, where 

each layer undergoes a linear transformation parameterized by W𝑖  and the ReLU acti-

vation function follows behind. The final layer's output transforms the coarse-grained 

traffic flow X𝑐 and fine-grained traffic flow X𝑓 into their respective embedding, which 

is denoted as E𝑐 ∈ ℝ
N𝑐 and E𝑓 ∈ ℝ

N𝑓 . Given traffic flow X𝑐−𝑆:𝑐 which contains S his-

torical steps, the multi-layer feed-forward propagation process is mathematically for-

mulated as: 

 ℎ𝑖     = {

W0X𝑐−𝑆:𝑐 +  0 if 𝑖 = 0
𝜎(W𝑖ℎ𝑖−1 +  𝑖) if 0 < 𝑖 < 𝐿
W𝐿h𝐿−1 +  𝐿 if 𝑖 = 𝐿

 (3) 

where W𝑖  represents the weight matrix of the 𝑖𝑡ℎ layer, and 𝜎(⋅) denotes the ReLU ac-

tivation function. Following this process, the fine-grained embedding is directly output, 

whereas the coarse-grained embedding undergoes further integration with additional 

embedding. 

Additional Embedding. Traffic dynamics, characterized by multi-dimensional spatial-

temporal features, exhibit a strong correlation with the underlying road network struc-

ture. Consequently, we employ the node2vec algorithm [30] to improve low-dimen-

sional node features representation. In a directed graph 𝔾 = (V, E), we define the ran-

dom walk probability 𝜋𝑣𝑥 = 𝛼𝑝𝑞(𝑡, 𝑥) ⋅ 𝑤𝑣𝑥, where 𝑤𝑣𝑥 represents the edge weight be-

tween nodes v and x, and 𝛼𝑝𝑞(𝑡, 𝑥) is a probability function defined as follows: 

 𝛼𝑝𝑞(𝑡, 𝑥) =

{
 

 
1

𝑝
    if 𝑑𝑡𝑥 = 0

1    if 𝑑𝑡𝑥 = 1
1

𝑞
    if 𝑑𝑡𝑥 = 2

 (4) 

where parameters p and q govern the direction of the random walk, while 𝑑𝑡𝑥 denotes 

the shortest path distance between nodes t and x. The random walk probability repre-

sents the likelihood of transitioning from node v to its neighboring node x. Based on 

the aforementioned transition probability, a graph neighborhood 𝑁𝑆(𝑣) is constructed 

using sampling strategy S. Subsequently, the Skip-gram architecture [31] [32] is 

adapted to learn node vector representations by maximizing the following objective 

function: 

 𝑚𝑎𝑥
𝑓
 ∑  𝑣∈V log 𝑃𝑟(𝑁𝑆(𝑣)|𝑓(𝑣)) (5) 

Here, f denotes a mapping function from nodes to their feature representations, and 

𝑃𝑟(𝑁𝑆(𝑣) ∣ 𝑓(𝑣)) is the Softmax function which is defined as: 
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 𝑃𝑟(𝑁𝑆(𝑣)|𝑓(𝑣)) = ∏  𝑣𝑖∈𝑁𝑆(𝑣)
ex (𝑓(𝑣𝑖))⋅𝑓(𝑣)

∑  𝑢∈𝑉 ex (𝑓(𝑢))⋅𝑓(𝑣))
 (6) 

By processing the adjacency matrix using node2vec, we derive the spatial correlations 

among sensor nodes. Through the fully connected layer, the entire map is transformed 

into a spatial embedding E𝑠𝑒 ∈ ℝ
N𝑠𝑒 , where N𝑠𝑒 represents the number of nodes. Ad-

ditionally, the state of traffic flow is significantly influenced by temporal conditions. 

To capture inherent temporal features, we concatenate day-of-week and time-of-day 

embedding into E𝑡 ∈ ℝ
N𝑤+N𝑑 , where N𝑤 = 7 and N𝑑 = 288 represent the number of 

days in a week and timestamps per day, respectively. Finally, we concatenate all the 

embedding to obtain the fine-grained embedding E𝑓 ∈ ℝ
N𝑓  and the coarse-grained em-

bedding E𝑐 ∈ ℝ
N𝑐+N𝑠𝑒+N𝑤+N𝑑. 

4.2 Season-Trend Encoder Layer 

The season-trend encoder layer serves as the second step to decompose the traffic 

data. The layer integrates DFT and self-attention mechanisms to effectively capture 

the intricate and dynamic spatial-temporal dependencies. The proposed encoder 

layer contains three distinct components. The first component is a DFT module, 

which refines the coarse-grained traffic flow by extracting noise, enabling the 

model to focus on stationary trends. The second component consists of temporal 

attention modules, designed to capture local and global temporal dependencies in 

traffic flow. Finally, the sparse GAT attention module further models the complex 

and dynamic spatial dependencies. 

 

Fig. 2. DFT process 

DFT module. Traffic flow can be conceptualized as an aggregation of effective 

information and noise. To address this, we employ a DFT module to extract the sudden 

pattern from coarse-grained time series while supplementing detailed information for 

the fine-grained scale. Fig. 2 details the framework of DFT mechanism, which consists 

of DFT, top-pool ranking, Inverse Discrete Fourier Transformation (IDFT), discrete 

module and concatenation mechanism. The DFT converts the time-domain signal x[n] 

into the frequency-domain signal X[k], formulated as follows: 

   

 o     i  

    

 o   te  tio 

 is rete



 

 X[𝑘] =    (x[𝑛]) = ∑  N−1
𝑛=0 x[𝑛] ⋅ e−𝑗

2𝜋

N
𝑘𝑛, 𝑘 ∈ ℤ (7) 

Compared to time-domain signal, frequency-domain signals offer distinct advantages 

in distinguishing between high and low-frequency components. To isolate noise, we 

apply a top-ranking technique, which involves defining a threshold. Frequency compo-

nents below this threshold are set to zero, while the high-frequency portion of this sig-

nal, corresponding to values exceeding the threshold in X[k], is retained. Let 𝑀 =
 i (to 

𝑘
(|𝑋[𝑘]|)), where to 

𝑘
(⋅) returns the top k largest values. The top-ranking pro-

cess can be formulated as: 

 X̃[𝑘] = {
𝑋[𝑘],     |𝑋[𝑘]| ≥ 𝑀

0,     |𝑋[𝑘]| < 𝑀
 (8) 

Subsequently, we use IDFT to reconstruct the time-domain signal from its frequency-

domain representation, which generates the seasonal component 𝑥𝑠𝑒𝑎𝑠𝑜𝑛[𝑛]. Mathe-

matically, the IDFT is defined as: 

 𝑥𝑠𝑒𝑎𝑠𝑜𝑛[𝑛] =     (𝑋̃[𝑘]) =
1

𝑁
∑  N−1
𝑛=0 x[𝑛] ⋅ e𝑗

2𝜋

N
𝑘𝑛, 𝑘 ∈ ℤ (9) 

The trend component 𝑥𝑡𝑟𝑒𝑛𝑑[𝑛] is derived by subtracting the seasonal component from 

raw data in discrete module. This operation can be expressed as: 

 𝑥𝑡𝑟𝑒𝑛𝑑[𝑛] = 𝑥[𝑛] − 𝑥𝑠𝑒𝑎𝑠𝑜𝑛[𝑛] (10) 

Finally, the trend component is combined with the fine-grained traffic flow to facilitate 

subsequent analysis. 

Temporal attention. The characteristics of fine-grained fluctuation are sudden and in-

termittent, whereas coarse-grained flow exhibits stable and continuous behavior. To 

effectively model these distinct temporal patterns, we propose a temporal attention 

layer which leverages its global receptive field to capture overall traffic pattern while 

preserving high-frequency details. Specifically, fine-grained flow 𝑥𝑓 ∈ ℝ𝐵×𝑇𝑓×𝑁×𝐷 

and coarse-grained flow 𝑥𝑐 ∈ ℝ𝐵×𝑇𝑐×𝑁×𝐷 are independently processed by the temporal 

attention respectively. The attention mechanism is mathematically formulated as: 

 𝛼𝑐,𝑓 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄𝑐,𝑓𝐾𝑐,𝑓

√𝑑
)𝑉𝑐,𝑓 (11) 

Sparse GAT Attention. Graph Attention Network (GAT) implements a self-attentive 

mechanism to dynamically assign weights to adjacency relationships in traffic graphs, 

enabling edge-aware feature aggregation across spatially correlated road segments [33]. 

To effectively incorporate structural information into GAT, we extract Laplacian 

eigenvalues and eigenvectors from the temporal and spatial adjacency matrices and 

integrate them into the original input stream. The temporal adjacency matrix is defined 

as a symmetric matrix, as follows, while the spatial adjacency matrix represents the 

positional relationships of road sensors: 
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 𝑡𝑒𝑚_𝑚𝑎𝑡𝑟𝑖𝑥 = {
1    if  tw𝑖𝑗 <  th or  tw𝑗𝑖 <  th

0    otherwise
 (12) 

dtw denotes the Dynamic Time Warping (DTW) distance between nodes i and j, and 

nth represents the median value of the DTW distance distribution. 

To reduce the computational complexity of GAT, we implement a query sampling 

strategy [5]. Specifically, a sampling key matrix Ks    e is first generated based on the 

sensor adjacency matrix. By multiplying this with the query matrix Q, a sampling 

query-key matrix QK
s    e

 is obtained, which encodes the correlations between the 

nodes represented in Q and Ks    e . A top-k pooling operation is then applied to 

QK
s    e

 to filter out the most informative nodes. Based on QK
s    e

, the final sampling 

query matrix Q
s    e

 is derived, containing sensor nodes with significant information. 

Finally, a standard attention mechanism is applied, formulated as follows: 

 Att =
𝑒𝑥𝑝((𝑄s    e⋅𝐾)

 (𝑄s    e⋅𝐾))

∑  𝑛
𝑘=1 𝑒𝑥𝑝(𝑄s    e⋅𝐾)

 (12) 

4.3 Masked Fusion 

Compared to single traffic flow model, fine-grained flow often exhibits fluctuating 

events that may deviate from predicted results. To retain useful patterns while filtering 

out noise, we incorporate a masked fusion module. Based on vanilla masked self-atten-

tion, this module computes attention scores while employing a mask to prevent the 

model from learning unnecessary timestamps, thereby ensuring accurate predictions. 

Given Q ∈ {𝑋1
𝐶 , . . . , 𝑋𝑁

𝐶}, K ∈ {𝑋1
𝐹, . . . , 𝑋𝑁

𝐹}, V ∈ {𝑋1
𝐹 , . . . , 𝑋𝑁

𝐹} , where 𝑋𝑖
𝐶  denotes 

coarse-grained flow while 𝑋𝑖
𝐹 denotes fine-grained flow, the vanilla attention is formu-

lated as follows: 

 𝑦̂ = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄𝐾

√𝑑
)𝑉 (13) 

4.4 Loss Function 

To capture intrinsic data characteristics more effectively, we adopt a two-step predic-

tion strategy. The coarse-grained data is firstly output by ST-Encoder to generate a prior 

prediction. The fusion data is then output by Masked Fusion to produce a post predic-

tion. The L1 loss is employed to supervise the traffic forecasting task. The loss function 

is formulated as follows: 

 Loss = ∑  𝑛
𝑡=1 |Y𝑡 − 𝑦̂𝑝𝑟𝑖𝑜𝑟| + ∑  𝑛

𝑡=1 |Y𝑡 − 𝑦̂𝑝𝑜𝑠𝑡| (14) 

4.5 Complexity Analysis 

The primary time-consuming processes in the proposed framework include the compu-

tation of eigenvalues and eigenvectors, the decomposition layer, and the ST-Encoder 

module. The computational complexity of calculating the eigenvalues and eigenvectors 



 

of the Laplacian graph is 𝑂(𝑁3), where N represents the number of nodes in the graph. 

Notably, this step can be preprocessed prior to the training phase, thereby not contrib-

uting to the overall model complexity during training. The decomposition layer exhibits 

a complexity of 𝑂(𝑁𝑇), where T denotes the temporal dimension. Furthermore, the ST-

Encoder module introduces a complexity of 𝑂(𝑁 + 𝐿(𝑇𝑁𝐾 + 𝑁𝑇2 + 𝑇𝑁log 𝑁)) , 

with L representing the number of layers, and K indicating the dimension of the feature 

space. The pseudo-code for the proposed algorithm is provided as follows: 

 

Algorithm 1 Training Procedure of FCGFNN 

Input: 

1: history data 𝑋 ∈ ℝ𝐵×𝑇𝑖𝑛×𝑁×𝐷 

2: time embedding 𝑇𝐸 ∈ (𝑅)𝐵×(𝑁𝑤+𝑁𝑑)×𝐷 

3: adjacent matrix 𝐴𝐷𝐽 ∈ ℝ𝑁×𝑁 

4: temporal eigenvector Φte ∈ ℝ
𝑁×𝑑 

5: spatial eigenvector Φs  ∈ ℝ
𝑁×𝑑 

Output: Prediction Results 𝑌̂𝑝𝑟𝑖𝑜𝑟 ∈ ℝ
𝐵×𝑇o t×𝑁×𝐷 , 𝑌̂𝑝𝑜𝑠𝑡 ∈ ℝ

𝐵×𝑇o t×𝑁×𝐷 

6: Decomposition Layer 

7: 𝑋𝐹 , 𝑋𝐶 ← 𝐷𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑒(𝑋) 

8: 𝑋𝐹 ← 𝐹𝐶(𝑋𝐹) 

9: 𝑋𝐶 ← 𝐹𝐶(𝑋𝐶) 

10: Asymmetric Embedding 

11: 𝑥𝑓 ← E  𝐿(𝑋
𝐹) 

12: 𝑥𝑐 ← E  𝐻(𝑋
𝐶) 

13: 𝑡𝑒 ←  eE  (𝑇𝐸) 

14: 𝑎𝑒 ←  o e  e (𝐴𝐷𝐽) 

15: Season-Trend Encoder 

16: for i = 1 to L do 

17:  𝑥se so 
𝑐 , 𝑥tre  

𝑐 ←    _ e o  (𝑥𝑖
𝑐) 

18:  𝑥𝑖
𝑓
← 𝑥𝑖

𝑓
+ 𝑥tre  

𝑐  

19:  𝑥̃𝑖
𝑐 ←  e  or  Atte tio (𝑥𝑖

𝑐 + 𝑡𝑒 + 𝑎𝑒) 

20:  𝑥̃𝑖
𝑓
←  e  or  Atte tio (𝑥𝑖

𝑓
) 

21:  𝑥̃𝑖+1
𝑐 ← 𝑥̃𝑖

𝑐 +    rse A Att(𝑥̃𝑖
𝑐 , Φs  , Φte ) 

22:  𝑥̃𝑖+1
𝑓

← 𝑥̃𝑖
𝑓
+    rse A Att(𝑥̃𝑖

𝑓
, Φs  , Φte ) 

23: end for 

24: 𝑌̂𝑝𝑟𝑖𝑜𝑟 ← 𝑥̃𝐿
𝑐 

25: Masked Fusion 

26: 𝑌̂𝑝𝑜𝑠𝑡 ←   s e   sio (𝑥̃𝐿
𝑐 , 𝑥̃𝐿

𝑓
, 𝑡𝑒) 

27: return 𝑌̂𝑝𝑟𝑖𝑜𝑟 , 𝑌̂𝑝𝑜𝑠𝑡 
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5 Experiment 

5.1 Datasets 

We evaluate the performance of FCGFNN on two publicly available real datasets, 

namely PEMS04 and PEMS08, sourced from the California Transportation Agencies 

Performance Measurement System [34]. Each time interval is standardized to 5 

minutes, resulting in 12 time slices per hour. To establish the prediction task, we utilize 

historical data from the past one hour to forecast traffic conditions for the subsequent 

one hour. Detailed statistical information regarding the datasets is presented in Table 1. 

Table 1. Dataset Information 

Datasets Number of sensors Interval Time range 

PEMS04 307 5min 1/1/2018-2/28/2018 

PEMS08 170 5min 7/1/2016-8/31/2016 

To ensure consistency and comparability across the dataset, we apply a standardization 

procedure using normalization. Following standardization, the dataset is partitioned 

into three subsets in chronological order: a training set (60%), a validation set (20%), 

and a test set (20%). 

5.2 Parameter Setting 

The training of FCGFNN is conducted using the Adam optimizer with a batch size of 

64 and an initial learning rate of 0.001 over 100 epochs. To enhance convergence effi-

ciency, a learning rate decay factor of 0.1 is applied when the loss does not decrease 

for 20 consecutive iterations during the training process. The default hyper-parameters 

of the model are configured as follows: the feature dimension d in FCGFNN is set to 

128 for PEMS04 dataset and 64 for PEMS08 dataset. The decomposition level L of the 

DWT is set to 2, while the number of layers L in season-trend encoder is set as 2. Fur-

thermore, the top k value of DFT is set to 5. Additionally, to optimize performance 

across different datasets, distinct discrete wavelets are employed: the Daubechies wave-

let is utilized for PEMS04, while the Coiflets wavelet is applied to PEMS08. 

5.3 Environment Setting 

The proposed model is implemented in Python 3.8, leveraging the PyTorch 2.0.0 frame-

work for efficient deep learning computations. All experimental evaluations are per-

formed on a compute cluster featuring an AMD EPYC 9654 96-Core Processor and a 

single NVIDIA RTX 4090 GPU, running under Ubuntu 20.04 environment. 



 

5.4 Baseline Models 

We compare FCGFNN with following recently proposed deep learning spatial-tem-

poral baseline models: 

AGCRN [35]: A model utilizing GCN to capture fine-grained spatial and temporal 

dependencies in traffic series. 

StemGNN [36]: A framework that integrates GFT and DFT mechanisms for spatio-

temporal feature extraction. 

STNorm [21]: A model incorporating temporal and spatial normalization techniques 

to enhance prediction accuracy. 

DGCRN [3]: A RNN and GCN-based architecture designed to model the topology 

of dynamic graphs. 

GMSDR [37]: An RNN-based approach that incorporates multiple historical time 

steps as input for each time unit. 

MegaCRN [38]: A model that integrates a Meta-Graph Learner into the GCRN en-

coder-decoder framework. 

STWave [5]: A disentangle-fusion framework that decouples complex traffic data 

into stable trends and fluctuating events for enhanced representation learning. 

STG-NRDE [39]: A novel approach leveraging spatio-temporal graph neural rough 

differential equations for traffic flow modeling. 

MHGNet [40]: A framework designed to model spatio-temporal multi-heterogene-

ous graphs for improved traffic prediction. 

5.5 Metrics 

To rigorously assess the performance of the proposed model, three widely adopted eval-

uation metrics are employed: Mean Absolute Error (MAE), Root Mean Square Error 

(RMSE), and Mean Absolute Percentage Error (MAPE). 

5.6 Experiment Results 

The performance of FCGFNN is evaluated across three prediction horizons: horizon 6, 

horizon 9, and horizon 12. Each horizon corresponds to a 5-minute interval in real-

world scenarios. As demonstrated in Table 2, the best results are highlighted in bold 

and underlined, while the second-best results are marked with underlining. FCGFNN 

outperforms other models in most index. 

AGCRN, DGCRN, and MegaCRN are all convolutional recurrent network-based 

models that leverage adaptive parameters, such as node embeddings, to enhance their 

performance. However, their approaches differ significantly. AGCRN infers node em-

beddings directly from the data and generates node-specific parameters from a shared 

pool of weights and biases. DGCRN employs a dynamic adjacency matrix generated 

by a hyper-network, which utilizes dynamic node features to improve graph generation 

effectiveness. MegaCRN integrates both adaptive and momentary embeddings into a 

meta-graph learning framework, enabling it to distinguish traffic patterns across differ-

ent roads. Despite these advancements, these models exhibit limitations in capturing 
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deep spatial correlations between graph nodes. In contrast, FCGFNN’s node embed-

ding layer is designed to capture node features comprehensively, including static and 

dynamic embeddings, temporal and spatial features, as well as fine-grained and coarse-

grained dimensions. This capability allows FCGFNN to construct a more intricate and 

comprehensive graph network, resulting in superior performance compared to these 

models. 

Table 2. Experiment Results. 

Dataset Model 
Horizon 6 Horizon 9 Horizon 12 

MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE 

PEMS04 

AGCRN 19.43 13.90 31.10 19.99 14.12 32.07 20.58 14.11 32.98 

StemGNN 23.01 16.67 35.37 25.44 18.69 38.76 28.13 20.44 42.50 

STNorm 19.17 12.87 31.95 19.70 13.15 32.66 20.37 13.86 33.50 

DGCRN 18.87 12.95 30.81 19.64 13.54 32.16 20.40 14.12 33.30 

GMSDR 19.30 13.20 30.82 20.07 13.75 31.98 20.87 14.39 33.09 

MegaCRN 18.75 12.76 30.57 19.54 13.24 31.98 20.27 13.69 33.13 

STWave 18.68 12.79 30.57 19.27 13.40 31.60 20.07 14.09 32.69 

STG-NRDE 19.24 12.78 31.01 19.87 13.25 32.04 20.69 13.87 33.16 

MHGNet 18.72 12.44 30.36 19.49 12.89 31.49 20.41 13.45 32.73 

FCGFNN 18.46 12.46 30.22 18.96 12.84 31.02 19.60 13.37 31.94 

PEMS08 

AGCRN 15.63 10.00 24.60 16.74 10.89 26.16 17.70 11.43 27.61 

StemGNN 16.49 11.26 26.02 17.83 12.19 28.07 19.11 12.95 30.02 

STNorm 15.44 9.75 25.01 16.17 10.21 26.43 16.93 10.69 27.58 

DGCRN 15.01 10.14 23.96 15.91 10.77 25.45 16.86 11.41 26.89 

GMSDR 16.35 10.74 25.33 17.25 11.45 26.63 18.13 11.99 27.95 

MegaCRN 14.75 9.44 23.81 15.64 10.02 25.24 16.46 10.54 26.53 

STWave 13.80 9.07 24.20 14.50 9.58 25.54 15.23 10.10 26.84 

STG-NRDE 15.69 10.09 24.85 16.49 10.55 26.10 17.46 11.45 27.51 

MHGNet 15.20 10.71 24.09 16.08 11.67 25.34 16.51 11.27 26.30 

FCGFNN 13.83 9.05 23.49 13.34 9.36 24.44 14.95 10.02 25.41 

Like FCGFNN, STWave and MHGNet are both decomposition-based models. STWave 

disentangles complex traffic data into stationary trends and non-stationary events, while 

MHGNet decouples single-pattern traffic data into multi-pattern data. However, both 



 

models fail to adequately address the residual noise present in the decoupled traffic 

data. FCGFNN’s DFT module addresses this limitation by dividing coarse-grained flow 

into seasonal and trend components, effectively isolating noise from the stable trend. 

The trend component is then combined with fine-grained flow, enhancing the accuracy 

of long-term predictions by incorporating more stable trends. 

FCGFNN also demonstrates superior performance compared to STG-NRDE, which 

models spatial and temporal information using neural rough differential equations 

(NRDE). This outcome underscores the effectiveness of FCGFNN’s temporal and 

sparse GAT attention module in capturing spatio-temporal dependencies. STG-NRDE 

employs a two-step NRDE process to separately handle temporal and spatial depend-

encies, which may lead to the loss of essential correlations. In contrast, FCGFNN lev-

erages its GAT attention mechanism to fully exploit the graph topology, enabling the 

model to extract more information from local correlations with neighboring nodes. Ad-

ditionally, the asymmetric embedding layer in FCGFNN introduces additional node 

correlations that are not explicitly represented in the graph structure, further enhancing 

its predictive capabilities. 

Table 3. Ablation Study on PEMS04 and PEMS08. 

Dataset Varients 
Horizon 6 Horizon 9 Horizon 12 

MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE 

PEMS04 

w/o AE 21.13 14.18 34.21 23.17 15.70 37.30 25.30 17.31 40.46 

w/o DFT 18.48 12.94 30.25 19.03 13.40 31.14 19.82 14.02 32.23 

FCGFNN 18.46 12.46 30.22 18.96 12.84 31.02 19.60 13.37 31.94 

PEMS08 

w/o AE 14.70 9.56 25.68 15.99 10.33 27.96 17.23 11.22 29.97 

w/o DFT 14.01 9.42 23.93 14.60 9.66 25.10 15.23 10.26 26.11 

FCGFNN 13.83 9.05 23.49 14.34 9.36 24.44 14.95 10.02 25.41 

5.7 Ablation Study 

To comprehensively evaluate the contributions of individual components within 

FCGFNN, a series of ablation studies are conducted by comparing the full model with 

its variants. Specifically, the following configurations are examined: 

1. FCGFNN: The complete model incorporates both the additional embedding and 

DFT modules. 

2. FCGFNN (w/o AE): A variant of the model without the additional embedding, 

where fine-grained and coarse-grained embedding are identical. 

3. FCGFNN (w/o DFT): A variant of the model with the DFT mechanism removed. 

As depicted in Table 3, the removal of the additional embedding results in a notice-

able decline in performance, while the exclusion of the DFT module leads to a perfor-

mance degradation in MAPE. This observed behavior can be attributed to several crit-
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ical factors. Firstly, the additional embedding plays a pivotal role by constructing dy-

namic graph representations that effectively capture spatial correlations among sensor 

nodes. Secondly, the additional embedding enriches the coarse-grained flow with sup-

plementary information, thereby enhancing the effectiveness of the ST-Encoder. 

Thirdly, the DFT module serves a crucial function by segregating information-dense 

components from noise-dense elements within the original data. Collectively, these ab-

lation studies underscore the indispensable contributions of both the additional embed-

ding and DFT modules to the overall performance of FCGFNN, as evidenced by the 

experimental results. 

6 Conclusion 

To effectively capture the fluctuating and stable traffic patterns, the Fine and Coarse-

grained Graph Flow Neural Network (FCGFNN) is proposed. Based on the founda-

tional DWT decomposition mechanism, the asymmetric embedding layer is designed 

to integrate graph structure and temporal correlations with fine and coarse-grained traf-

fic flow, which are sent into the ST-Encoder as input data. Furthermore, the DFT mech-

anism within the novel ST-Encoder is leveraged to effectively decompose the noise 

from coarse-grained data. Following DFT, the temporal attention mechanism and 

sparse GAT attention is utilized repeatedly in the ST-Encoder to learn spatial and tem-

poral mappings. Finally, the pattern of traffic flow prediction is obtained. Extensive 

experiments are conducted on two real-world datasets, demonstrating superior perfor-

mance compared to existing methods. As our future work, more external factors such 

as weather and temperature will be integrated to improve the performance. 
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