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Abstract. Text-to-image generation models can produce high-quality images 

from textual descriptions. However, they are vulnerable to adversarial attacks, 

which can manipulate outputs and bypass content moderation systems, leading 

to potential security risks. We propose BDTIAG, a black-box adversarial attack 

framework that improves attack efficiency and stealthiness. It comprises two key 

phases: (1) Adversarial Sample Space Expansion (ASSE), which systematically 

perturbs text to generate diverse adversarial samples, and (2) Boundary 

Perturbation Backtracking (BPB), which refines these samples to maximize 

attack sccess while minimizing detection. Extensive experiments on DALL·E, 

DALL·E 2, Imagen, and AttnGAN demonstrate that BDTIAG outperforms 

existing black-box attack methods, achieving a 6.25% increase in attack success 

rate and reducing the number of queries by 41.02% compared to RIATIG, all 

while preserving semantic consistency and naturalness. 

Keywords: Adversarial Attack, Text-to-Image Generation, Black-Box 

Framework, Information Security, Semantic Perturbation  

1   Introduction 

Recent advances in deep learning, particularly in diffusion and transformer-based 

models, have enabled text-to-image generation systems to produce high-resolution, 

semantically coherent images from natural language descriptions. State-of-the-art 

models such as DALL·E, DALL·E 2, and Imagen [15,16,17] leverage large-scale 

training datasets and multimodal representations to translate textual prompts into 

photorealistic images with remarkable semantic accuracy. Adversarial attacks against 

text-to-image models generally fall into two categories: (1) untargeted attacks, which 

introduce textual perturbations to induce unpredictable or unintended outputs, and (2) 

targeted attacks, which craft adversarial prompts to generate specific images while 



bypassing moderation systems, potentially leading to misinformation or harmful 

content generation. Some standard techniques [6,7] used in these attacks include 

exploiting hidden vocabularies, using morphological similarity between words, and 

replacing characters with visually similar ones. However, existing adversarial attacks 

suffer from several limitations. Many methods require an excessive number of queries 

to effectively perturb text, making them computationally expensive and impractical for 

real-world applications where API-based models impose query restrictions. 

Furthermore, adversarial prompts generated by current methods often degrade 

linguistic quality, resulting in ungrammatical, incoherent, or semantically ambiguous 

text, which can hinder attack effectiveness.  

To address these challenges, we introduce Black-box Decision-boundary-based 

Text-to-Image Adversarial Generation (BDTIAG). Unlike prior methods, BDTIAG 

exploits decision-boundary information from text-to-image models, enabling the 

generation of adversarial prompts with minimal queries while maintaining high 

stealthiness and naturalness (Figure 1). BDTIAG consists of two steps: Adversarial 

Sample Space Expansion (ASSE) and Boundary Perturbation Backtracking (BPB) and 

the boundary perturbation concept is illustrated in Figure 3. The contributions of this 

work are summarized as follows: 

High-efficiency. BDTIAG is designed to be highly efficient in black-box settings. Our 

method leverages ASSE and BPB to generate adversarial examples efficiently. By 

reducing the required queries, BDTIAG achieves high attack success rates with fewer 

computational costs. This makes it more practical for real-world attack scenarios. For 

instance, on the DALL·E model, BDTIAG achieves an attack success rate (ASR) 

of 86.25% compared to RIATIG’s 83.75%, while reducing the average number of 

queries (NoQ) by 49.3% (from 2843.64 to 1440.73). Similar improvements are 

observed across other models: for AttnGAN, BDTIAG reduces NoQ by 47.7% (from 

2652.03 to 1386.24) while increasing ASR to 90.00% (vs. RIATIG’s 86.25%).  

 

 
Fig. 1. BDTIAG obtains information by querying the target model to get the 

adversarial text. 

 

High-quality and stealthy adversarial samples. BDTIAG focuses on generating 

high-quality adversarial samples that are both natural-looking and semantically 
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coherent. The ASSE stage uses advanced natural language processing techniques to 

expand the sample space while maintaining semantic and syntactic integrity. The BPB 

stage then refines these samples to ensure they are close to the target image and have a 

reasonable semantic distance from the original text, making them difficult to detect. 

Experimental results highlight that BDTIAG generates adversarial texts with lower 

perplexity (PPL) and competitive semantic distance (Dist). For example, on AttnGAN, 

BDTIAG achieves a PPL of 531.77 (vs. RIATIG’s 562.67). Furthermore, robustness 

tests show that adversarial samples generated by BDTIAG maintain an 89% ASR even 

after repeated inputs to the target model (Table 3), underscoring their stability and 

stealthiness. 

Comprehensive evaluation and contribution to security awareness. We conduct 

extensive evaluations of BDTIAG against multiple well-known Text-to-Image 

generation models. By demonstrating the effectiveness of BDTIAG, we aim to raise  

 
Fig. 2. An overview of the proposed BDTIAG. The blue blocks show the original 

words, and the pink blocks represent the substituted words. 

 

awareness of the security vulnerabilities in these models. Our findings underscore the 

need for the research community to develop more robust defenses for Text-to-Image 

generation systems. 

2 Related Work 

Text-to-image generation has evolved significantly, starting with early GAN-based 

models like AttnGAN [11], which improved text-image alignment but faced diversity 

limitations. Subsequent models like DFGAN and DMGAN [12,13] built on this 

foundation, while OpenAI's DALL·E series—evolving from DALL·E to DALL·E 2, 

integrated with ChatGPT—marked a significant advancement with enhanced outputs. 

Google’s Imagen and Stable Diffusion [14] further advanced the field with innovative 

    

 
 
  
  
 
   

  
 

   
 
 
  

  

  

  

   

  

  

  

  

   

  

               

            
 
  
   

 
  

  

  
 

  
 

   

  
 

   
          

            

                     

 

 

 

   

 

  

  
 

  
 

   

  
 

  

  
 

  
 

   

  
 

      

  

  

  

   

  

  

  

  

   

  

                       

  

  
 

  
 

   

  
 

             

       

                    

        

   

  

  

  
 

   

  
 

  

  
 

  
 

   

  
 

  

  

  
 

   

  
 

   

  

  

  

   

  

   

  

  
 

  
 

   

  
 

  

  
 

  
 

   

  
 

   

  

  
 

  
 

   

  
 

  

  
 

  
 

   

  
 

  

  
 

  

   

  
 

  

  
 

  
 

   

  
 

  

  
 

  
 

   

  
 

  

  
 

  
 

   

  
   

   

    

   

           

       



attacks that have emerged as a critical concern. Untargeted attacks, like Daras and 

Dimakis' exploitation of hidden vocabulary [7], disrupt model outputs to test robustness, 

while targeted attacks, such as RIATIG’s [1] sentence-level tweaks or Millière’s 

fabricated word techniques, aim to produce specific images while bypassing security 

filters. These attacks reflect a core challenge: for a text-to-image model mapping text 

𝑇 to images 𝐼(denoted 𝐺: 𝑇 → 𝐼), an attacker crafts an adversarial prompt 𝑥∗ from an 

original 𝑥, aiming to generate an image 𝐺(𝑥∗) close to a target 𝑦𝑡  in meaning (judged 

by image similarity) while keeping 𝑥∗ sufficiently distinct from 𝑥. 

3   Methodology 

3.1   Attack Overview 

Before delving into the detailed design, we present an overview of BDTIAG. As shown 

in Figure 2, BDTIAG mainly consists of two steps: Adversarial Sample Space 

Expansion (ASSE)and Perturbation Backtracking (BPB). In the ASSE phase, the 

original text undergoes character-level and semantic-level perturbations, combined 

with crossover operations, to quickly generate a diverse pool of adversarial samples 

capable of producing images similar to the target image, regardless of the generated 

text’s quality. In the BPB phase, these samples are systematically optimized by 

iteratively reversing perturbations and evaluating their effectiveness using image 

similarity 𝑆𝑖 and semantic distance 𝐷𝑡. The final adversarial prompt is selected based 

on a weighted score that balances attack effectiveness and stealthiness, ensuring 

minimal queries to the target model while achieving high-quality adversarial outputs. 

 

 
 

Fig. 3. The BDTIAG crosses the decision image boundary in step 1 to obtain the 

candidate samples ASSEX , then finds advx  closer to the orix  one in step 2. 
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3.2   Similarity Measurement 

Selecting suitable metrics requires evaluating visual space coherence and image 

semantic representation. CLIP model is trained on many image-text pair data and can 

effectively align visual and text information. Therefore, in this paper, the pre-trained 

image encoder of CLIP is used to encode images, and the cosine distance of the encoded 

vectors is calculated to measure the similarity of images [2]. For image, the formula is: 

||)(|| ||))((||

)())((
)),((

yExGE

yExGE
yxGS

ii

ii
i


=  (1) 
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where 𝑆𝑖(the semantic similarity of images) and 𝐷𝑡  (the semantic distance of texts) are 

computed using pre-trained CLIP image encoder 𝐸𝑖(⋅) and BERT text encoder 𝐸𝑡(⋅).  

3.3   Adversarial Sample Space Expansion (ASSE) 

Using the target text as a reference, the ASSE applies extensive mutations to the original 

text. The primary purpose of ASSE is to generate an initial pool of adversarial texts that 

can guide Text-to-Image models to produce images similar to the target images while 

being semantically distinct from the original text used to generate the target images.  

Ranking the Importance of Words. The method ranks word importance as follows: 

Initially, a pre-trained BERT model [8] and its tokenizer process the input sentence by 

tokenizing it and adding unique tokens. Then, for each word, replace it with a mask 

token. Next, the BERT model predicts the word at the mask position from context, 

yielding a probability distribution. Based on information theory (low-probability events 

carry more info), a word's importance score is calculated as one minus the predicted  

probability of the original word in this distribution. Thus, lower predicted probabilities 

mean higher scores and more outstanding semantic contributions. Finally, words are 

ranked by the score in descending order to show their importance in the sentence. 

Preliminary Perturbation. For these crucial words which play a decisive role in 

sentence semantics, we carry out the initial perturbation from three methods: (1) 

character-level perturbation, insert spaces or underscores within words (e.g., “bench” 

to “ben c h”); randomly swap middle characters without changing the first and last ones 

(e.g., “umbrella” to “umbrela”); remove a non-initial and non-final character (e.g., 

“sitting” to “sitin”). (2) Intelligent perturbation based on semantic similarity, Leverage 

pretrained word vector model(Word2Vec[9]) to find semantically similar words in the 

vector space for key elements. (3) Crossover[5] inspired by the principles of biological 

inheritance, where genetic recombination drives diversity in offspring, we devise an 

advanced crossover strategy to synthesize novel adversarial samples by blending 

semantic traits from existing ones. This process begins by randomly selecting two 

parent samples from the current adversarial pool and leveraging a pre-trained BERT 

model. We identify key semantic traits within each sample, which act as the inheritable 



units akin to genes in biology. The crossover then prioritizes exchanging traits with 

higher importance scores, ensuring that dominant elements are recombined.   

Candidate Samples Screening. After generating the candidate samples, the algorithm 

filters them based on their semantic distance from the original text 𝑥𝑡. Samples with a 

semantic distance  𝐷𝑡(𝑥
∗ 𝑥𝑡) above the threshold are retained. The algorithm then 

evaluates the similarity between the generated images and the target image 𝑦𝑡  using 

the CLIP model. Only samples that meet the similarity threshold are added to the final 

set of adversarial samples 𝑆𝑎𝑑𝑣.   
 

Algorithm 1 Boundary Perturbation Backtracking (BPB) 

Input: Original Text 𝑥𝑡 , Adversarial samples 𝑆𝑎𝑑𝑣 , Target Image 𝑦𝑡 , Perturbation 

Records 𝑅, 𝜂, 𝜃, α, 𝑙 
Output: Adversarial sample 𝑥∗ 
 1:  𝑥∗ ← ∅, b   _ co   ← 0 

 2: for each  𝑥∗ ∈ 𝑆𝑎𝑑𝑣 do 

 3:   𝑂 ← 𝑅[ 𝑥∗] 
 4:   for each backtracking path 𝑝 ∈ generate_paths (𝑂) do 

 5:     𝑥𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑
∗  ←  𝑥∗ 

 6:     backtracking_count ← 0 

 7:     for each operation 𝑜𝑖  ∈ 𝑝 do 

 8:       if backtracking_count  ≥ 𝑙 then 

 9:         break 

 10:       end if 

 11:       𝑥𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑
∗  ←        _p   u b   o  (𝑥𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑

∗ , 𝑜𝑖) 

 12:       PPL ← P  p     y (𝑥𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑
∗ ) 

 13:       if PPL > 1200 then 

 14:         continue 

 15:       end if 

 16:       backtracking_count ← backtracking_count + 1 

 17:     end for 

 18:     𝑦∗ ← 𝐺(𝑥𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑
∗ ) 

 19:      co   ← α· 𝑆𝑖(𝑦
∗ 𝑦𝑡) + (1-α) · 𝐷𝑡(𝑥𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑

∗ , 𝑥𝑡) 

 20:     if 𝑆𝑖(𝑦
∗ 𝑦𝑡) ≥ 𝜂 and 𝐷𝑡(𝑥𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑

∗ , 𝑥𝑡)  ≥  𝜃 and score > best_score then 

 21:       𝑥∗ ← 𝑥𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑
∗  

 22:       b   _ co   ←  co   

 23:     end if 

 24:   end for 

 25: end for 

 26: return 𝑥∗ 

3.4   Boundary Perturbation Backtracking (BPB) 

The scoring function evaluates the quality of adversarial samples by balancing the 

tradeoff between image similarity and semantic distance. The modified scoring 

function is defined as: 
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where 𝛼 is a weighting factor that controls the tradeoff between image similarity and 

semantic distance. The workflow of BPB is presented in Algorithm 1. The key steps of 

BPB are as follows:  

Backtracking Perturbation Operations. During the ASSE phase, all perturbation 

operations applied to generate adversarial samples are recorded (𝑂). In the BPB stage, 

these operations are systematically reversed in a controlled manner. For each 

adversarial sample, the algorithm explores multiple backtracking paths by reversing 

subsets of the recorded perturbations. Specifically, perturbations are prioritized based 

on their impact on semantic distance—operations that caused the largest semantic 

deviations are reversed first. This strategy aims to retain necessary modifications for 

attack success while maximizing stealthiness. 

Dynamic Evaluation and Filtering. After each backtracking step, the modified 

text 𝑥𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑
∗  is evaluated for naturalness using perplexity (PPL). If the PPL is greater 

than the threshold, the sample is discarded to ensure text fluency.  The refined text is 

then fed into the target model to generate an image 𝑦∗. 
Multi-Path Optimization. To balance exploration and efficiency, the algorithm adopts 

a multi-path backtracking strategy. It generates diverse paths by reversing different 

combinations of perturbations and retains only those samples that satisfy predefined 

thresholds (𝜂 for similarity and 𝜃 for semantic distance). The number of cycles of this 

process is controlled by the maximum backtracking step 𝑙  The final adversarial 

sample 𝑥∗ is selected based on the highest weighted score, which harmonizes attack 

effectiveness (𝑆𝑖) and stealthiness (𝐷𝑡). 
 

 
 

Fig. 4. Part of the target image and the adversarial image 

4   Experiments 

4.1 Experiments Settings 

Datasets and target models. We choose the COCO 2014 dataset [3] with 82,783 

training and 40,504 validation images, each having five text descriptions and belonging 

to 80 categories. To ensure reliable and comprehensive results in sampling, we 

randomly selected one image-text pair per category as the target and another text as the 

original. This formed 80 experimental sample groups; we target models with various 



architectures: GAN-based AttnGAN, DFGAN, DMGAN; Transformer-based DALL·E 

1; diffusion-based Imagen; and DALL·E 2 (Transformer-diffusion hybrid). Part of the 

target image and the adversarial image obtained is shown in Figure 4. 

Baselines. To assess BDTIAG's black-box performance, we chose baseline methods 

for targeted and untargeted attacks. For targeted attacks, RIATIG (designed for Text-

to-Image models) allows direct comparison with BDTIAG in creating adversarial 

samples like specific images, highlighting BDTIAG's advantages. For untargeted 

attacks, we included MacPromp [6], EvoPromp [6], and TextFooler [4]. 

Parameter Analysis. According to the parameter analysis results in Table 1, We set 

the maximum cross-sample number (M) and the weight factor (α) to 50 and 0.7. 

 

Table 1. (a) Maximum cross-sample number (M) and corresponding ASR in ASSE 

step (b) Weight factor(α)and corresponding ASR in BPB step 

 

M 30 35 40 45 50 55 60 65 70 

DALL·E 1/10 2/10 4/10 8/10 9/10 9/10 9/10 9/10 9/10 

DALL·E 2 1/10 3/10 3/10 5/10 7/10 8/10 8/10 8/10 8/10 

Imagen 0/10 2/10 3/10 5/10 8/10 8/10 8/10 8/10 8/10 

AttnGAN 2/10 4/10 5/10 7/10 9/10 9/10 9/10 9/10 10/10 

(a) 

 

𝛂 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 

DALL·E 5/10 5/10 7/10 8/10 8/10 8/10 9/10 9/10 9/10 9/10 9/10 

DALL·E 2 3/10 3/10 4/10 5/10 5/10 7/10 7/10 8/10 8/10 8/10 8/10 

Imagen 3/10 5/10 6/10 6/10 7/10 7/10 8/10 8/10 8/10 8/10 8/10 

AttnGAN 3/10 3/10 4/10 5/10 6/10 6/10 7/10 8/10 8/10 8/10 8/10 

(b) 

Note: The notation (e.g., 9/10) indicates the number of successful adversarial samples 

generated out of 10 total experiments, where the numerator represents successes and 

the denominator represents total trials. 

 

 
 

Fig. 5. The adversarial text "a big pi zza on a tray with peppers as a rhinos zebras"  

from AttnGAN is input to other models, DFGAN, DMGAN, like AttnGAN, outputs a 

picture of rhinos, while DALL·E, DALL·E 2, and Imagen outputs a picture of pizza 
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4.2 Evaluation Metrics 

As indicated by references, we utilize R-precision, a prevalent metric in this field. This 

metric assesses the semantic alignment between the generated image and the provided 

text description. We specifically focus on the case when R is one and define a result of 

True for R-1 as a successful attack. We use Perplexity (PPL) to measure the naturalness 

of text. The lower the PPL, the higher the concealment of the attack. We use cosine 

similarity score (Dist) to measure semantic distance [10], and the lower the value, the 

more similar the semantics of the text. The Average Number of Queries (NoQ) 

measures the efficiency of the adversarial attack by calculating the average number of 

queries required to generate a successful adversarial text. 

 

 
 

Fig. 6. Tradeoff between Number of Queries (NoQ) and Attack Success Rate (ASR) 

for BDTIAG and RIATIG across Multiple Target Models 

4.3   Experimental Results 

Evaluation of Attack Performance. This study evaluates BDTIAG’s attack 

performance against Text-to-Image models (DALL·E, DALL·E 2, AttnGAN, DFGAN, 

DMGAN, Imagen) compared to baselines (TextFooler, MacPromp, EvoPromp, 

RIATIG). Table 7 shows BDTIAG excels in ASR (e.g., 86.25% on DALL·E, 82.50% 

on DALL·E 2, 90.00% on AttnGAN), with low Dist (e.g., 0.26 on DFGAN vs. 

RIATIG's 0.25) and competitive PPL, reflecting coherence. It also reduces NoQ 

significantly below RIATIG’s average, proving its superior effectiveness and efficiency 

in black-box adversarial generation. 



Tradeoff Between NoQ and ASR. Figure 6 shows the NoQ-ASR tradeoff. Overall, 

for all target models, both methods' ASR rises with NoQ, and BDTIAG's ASR grows 

faster. For most models at similar ASR, BDTIAG needs fewer NoQ. 

Transferability. We used the adversarial examples generated for one model to attack 

other models. Figure 5 shows the experimental process of one of the example 

adversarial samples. The experimental results in Table 2 demonstrate that BDTIAG's 

ASR is 30.83%, while RIATIG's can only reach 22.50%. Therefore, our method has 

better portability.  

Adversarial Sample Robustness. We fed the exact adversarial text to the target model 

ten times (like Figure 7) and tested the ASR. The experimental results (Table 3) show 

that the success rate reaches 89%, indicating that the adversarial sample exhibits a 

certain level of robustness. 

 

Table 2. Transferability of BDTIAG. Row 𝑖 is the model used to generate adversarial 

samples, and column 𝑗 is the target model. 

  

 DALL·E DALL·E 2 Imagen AttnGAN 

DALL·E - 4/10 1/10 2/10 

DALL·E 2 2/10 - 6/10 1/10 

Imagen 2/10 6/10 - 2/10 

AttnGAN 3/10 4/10 4/10 - 

 

 

Word Importance Ranking Method. As shown in Figure 8, experimental results 

compare an alternative method and ours. The alternative model's score has a single peak 

and is overall flatter. Ours has at least two peaks, making capturing multiple important 

words' contributions better. Thus, our method identifies text key info better. 

 

Table 3. Feed the exact adv text to the target model ten times and calculate the ASR 

 

AttnGAN DFGAN DMGAN DALL·E DALL·E 2 Imagen 

8/10 9/10 9/10 9/10 10/10 10/10 

 

Influence of Datasets. Ten text-image pairs were randomly selected from coco2014, 

2017, and Flickr30k as attack targets to evaluate each index. The experimental data in 

Table 4 shows our method performed stable on different datasets. 

4.4 Ablation Study 

Adversarial Sample Space Expansion. In the ablation study of ASSE (Table 6), single 

character-level perturbation and its combination with the crossover operation have low 

attack success rates and struggle to launch successful attacks. Semantic perturbation  

alone increases the attack success rate to some extent, and combining it with the 

crossover operation can further enhance this rate. Integrating character-level 

perturbation, semantic perturbation, and the crossover operation simultaneously can 
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significantly boost the attack success rates across different models, indicating that the 

synergistic effect of multiple perturbation strategies is crucial for BDTIAG. 

Boundary Perturbation Backtracking. We did an ablation experiment to validate the 

importance of the BPB phase in BDTIAG, removing BPB and using only ASSE-

generated samples for the attack. BPB refines samples by backtracking perturbations to 

boost attack success and stealth. As depicted in Table 5, BPB is crucial for optimizing 

samples, enhancing attack, and ensuring stealth. 

 

Table 4. Impact of Different Datasets on BDTIAG Attack Effect across AttnGAN, 

DALL·E, and DALL·E 2 Based on ASR, PPL, Dist, and NoQ Indicators 

 

Datasets 
AttnGAN DALL·E DALL·E 2 

ASR PPL Dist NoQ ASR PPL Dist NoQ ASR PPL Dist NoQ 

coco2014 9/10 570.35 0.25 1470.1 8/10 663.73 0.29 1598.4 8/10 529.62 0.28 1588.2 

coco2017 9/10 603.28 0.24 1525.9 8/10 547.90 0.25 1677.2 8/10 563.97 0.28 1729.9 

Flickr30r 9/10 584.11 0.22 1503.3 9/10 637.89 0.25 1706.6 8/10 603.97 0.28 1680.5 

 

Table 5. Impact of BPB Phase on Adversarial Attack Performance across 

AttnGAN, DALL·E, and Imagen Models 

 

Ablation 

Study 

AttnGAN DALL·E Imagen 

ASR↑ PPL↓ Dist↓ ASR↑ PPL↓ Dist↓ ASR↑ PPL↓ Dist↓ 

w/o BPB 1/10 1532.63 0.41 0/10 1487.75 0.39 0/10 1579.62 0.44 

w/ BPB 10/10 642.35 0.24 9/10 577.91 0.25 9/10 523.97 0.28 

 

 
Fig. 8. Selecting essential words for the example text 

 

 



Table 6. Results of Ablation Study on ASSE, “char” represents character-level 

perturbation, “w2v” represents semantic perturbation, and “cr” represents crossover 

 

Ablation Study AttnGAN DALL·E Imagen 

char w2v cr ASR↑ PPL↓ Dist↓ ASR↑ PPL↓ Dist↓ ASR↑ PPL↓ Dist↓ 

√   0/10 673.1 0.14 0/10 618.7 0.11 0/10 629.6 0.13 

√  √ 0/10 973.5 0.32 0/10 848.1 0.29 0/10 901.5 0.35 

 √  1/10 227.3 0.19 0/10 263.9 0.15 0/10 244.7 0.16 

 √ √ 3/10 723.1 0.29 2/10 697.2 0.27 1/10 703.6 0.21 

√ √ √ 9/10 582.5 0.25 8/10 627.3 0.24 8/10 524.9 0.26 

 

Influence of Original Text. We conducted 10 training sessions using different original 

texts for the exact target text and image. The results in Table 8 demonstrate that the 

BDTIAG attack exhibits strong robustness against different original text attacks. 

 

Table 7. The results of the BDTIAG’s attack performance 

 

Model Method ASR↑ Dist↓ PPL↓ NoQ↓ 

DALL·E 

TextFooler 0.02% 0.23 1838.09  

MacPromp 66.25% 0.43 5866.41 - 

Evopromp 57.50% 0.16 5527.78 - 

RIATIG 83.75% 0.26 722.36 2843.64 

Ours 86.25% 0.24 647.03 1440.73 

DALL·E 2 

TextFooler 0.00% 0.24 1993.95 - 

MacPromp 68.75% 0.42 4297.33 - 

Evopromp 67.42% 0.14 5183.71 - 

RIATIG 78.75% 0.27 883.09 2652.03 

Ours 82.50% 0.24 787.82 1467.60 

AttnGAN 

TextFooler 0.05% 0.18 1706.86 - 

MacPromp 43.75% 0.50 5267.29 - 

Evopromp 51.25% 0.14 5084.48 - 

RIATIG 86.25% 0.25 562.67 2652.03 

Ours 90.00% 0.24 531.77 1386.24 

DFGAN 

TextFooler 0.75% 0.16 1829.23 - 

MacPromp 55.28% 0.48 5298.17 - 

Evopromp 48.75% 0.17 4397.75 - 

RIATIG 82.50% 0.25 499.13 2826.75 

Ours 88.75% 0.26 492.93 1255.68 

DMGAN 

TextFooler 0.05% 0.17 1757.97 - 

MacPromp 59.03% 0.43 5527.29 - 

Evopromp 44.39% 0.14 5220.18 - 

RIATIG 82.50% 0.24 505.98 2751.99 

Ours 88.75% 0.23 508.27 1295.41 

Imagen 

TextFooler 0.00% 0.18 1807.75 -   

MacPromp 56.25% 0.43 5339.94 - 

Evopromp 47.50% 0.19 5220.18 - 

RIATIG 86.25% 0.26 452.26 2834.96 

Ours 86.25% 0.26 511.32 1643.91 
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Table 8. Evaluation of BDTIAG Attacks' Robustness to Different Original Texts 

 

 ASR↑ Dist↓ PPL↓ NoQ↓ 

AttnGAN 9.1(±0.18)/10 0.24±0.04 596.33±43.75 1414.21±203.68 

DALL·E 8.8(±0.22)/10 0.24±0.03 475.75±53.02 1639.57±180.56 

Imagen 8.4(±0.17)/10 0.26±0.04 470.83±50.53 1501.08±187.76 

 

5   Conclusion 

We propose BDTIAG, a black-box adversarial attack framework for text-to-image 

generation that integrates Adversarial Sample Space Expansion (ASSE) and Boundary 

Perturbation Backtracking (BPB) to enhance attack efficiency and stealth. Extensive 

experiments demonstrate BDTIAG’s superiority, achieving up to 6.25% higher attack 

success rates and 41.02% fewer queries compared to state-of-the-art methods while 

preserving semantic coherence. This work highlights critical security vulnerabilities in 

text-to-image models and calls for robust defense mechanisms. Future research will 

focus on unified defense strategies against multimodal adversarial attacks and 

improving model resilience. 
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