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Abstract. Real-time detection models often struggle in resource-constrained en-

vironments due to high computational demands. Inspired by the neural circuitry 

of Caenorhabditis elegans (C. elegans), which efficiently detects and localizes 

aversive odors through a simple yet effective hierarchical structure, we redesign 

the YOLOv8 architecture to enhance its efficiency. The proposed model incor-

porates a biologically inspired neural circuit structure to strengthen feature ex-

traction and edge exploration. Additionally, we introduce an AdaptiveAdd mod-

ule, modeled after synaptic connectivity, which dynamically adjusts feature fu-

sion to emphasize critical information. Evaluated on the frontier and object da-

tasets, our model achieves comparable accuracy to YOLOv8 while reducing pa-

rameters by 13.9%, demonstrating its suitability for real-time applications on 

edge devices. 

Keywords: Caenorhabditis elegans, Neural circuits, Artificial neural networks, 

Object detection, Lightweight network.  

1 Introduction 

In recent years, real-time visual object detection [1,2,3] has become a critical task in 

fields such as autonomous driving [4,5,6], security monitoring [7], and robotics [8, 9, 

10]. However, in resource-constrained environments, particularly on embedded plat-

forms and mobile devices, deep learning models—especially those designed for object 

detection—often face significant computational efficiency bottlenecks. These bottle-



 

necks lead to high computational costs and excessive resource consumption. Conse-

quently, reducing computational requirements while maintaining high performance has 

become a core challenge for these applications. 

Traditional object detection frameworks, such as the YOLO (You Only Look Once) 

family [11], perform well in real-time tasks but are often difficult to deploy in resource-

constrained embedded systems due to their high computational cost and heavy memory 

and processing demands. To address this issue, researchers have proposed various light-

weight methods, including model pruning [12], quantization [13], knowledge distilla-

tion [14], and low-rank decomposition [15]. These methods improve efficiency by re-

ducing the number of model parameters, optimizing computational processes, or sim-

plifying the network structure. However, they often suffer from instability, reliance on 

empirical expertise, and limitations in generalization and interpretability. In contrast to 

the manual and experience-dependent design of network architectures, an approach 

known as neural architecture search (NAS) [16,17] and evolutionary algorithms offer 

new ways to automate the design of efficient network architectures. These methods 

identify optimal structures within the architecture space via search mechanisms, alt-

hough they typically incur high computational costs. 

In nature, biological systems are capable of accomplishing complex tasks with re-

markable efficiency in resource utilization. Neurons and their connections in biological 

neural networks are formed through chemical synapses or gap junctions, enabling effi-

cient computation despite limited resources. In recent years, there has been growing 

interest in enhancing the computational efficiency of deep learning models by simulat-

ing the structure of biological neural networks [18,19,20,21]. For instance, Changjoo 

Park et al. [22] constructed a directed acyclic graph (DAG) based on the connectome 

of the Caenorhabditis elegans nematode to perform image classification. Another study 

[23] improved deep learning systems by modeling the connectome topology of the Hid-

radius crypticus nematode. Additionally, research has demonstrated that a neural con-

troller with 19 control neurons and 253 synapses can effectively map high-dimensional 

inputs to outputs such as steering commands. This compact system provides an efficient 

solution for self-driving cars performing specific tasks. 

While most existing studies have focused on image classification tasks, the applica-

tion of biological connectome topology to target detection tasks remains unexplored. 

At the same time, research by [24] has shown that neural connectivity rules in the Dro-

sophila optic lobe are crucial for understanding its visual processing mechanisms. This 

insight led the hypothesis that neural structure from other animal model, such as C. 

elegans, can be applied for inspiring AI architecture for visual tasks such as imaging 

detection, etc. Further studies have demonstrated the topological similarity of neural 

circuits across different species, providing a foundation for applying neural network 

principles across species. Furthermore, [25] investigates how the multilayer structure 

of the C. elegans connectome, including the connectivity between neurons within the 

same layer, impacts the overall behavior of the network. Inspired by these findings, we 

propose to apply the Olfactory Learning Circuit of C. elegans to the object detection 

model. 

The proposed C. elegans YOLOv8 (CEYOLOv8) framework is illustrated in Fig. 1. 

This model addresses computational challenges in resource-constrained environments 
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while introducing a biologically inspired attention mechanism. By leveraging the sim-

ple yet efficient neural architecture of Caenorhabditis elegans, it reduces parameter 

count without sacrificing detection accuracy.The main contributions are summarized 

as follows: 

─ Our contribution is inspired by the hierarchical neural Olfactory Learning Circuit of 

Caenorhabditis elegans, which enables rapid and efficient integration, computation, 

and execution of neural information. By mimicking thisunique neural connectivity 

structure, we propose a lightweight object detection backbone that reduces the pa-

rameter count of the YOLOv8 model. This results in enhanced computational effi-

ciency, making the model more suitable for deployment in resource-constrained en-

vironments. 

─ We propose the AdaptiveAdd module, a biologically inspired feature fusion mecha-

nism that mimics synaptic weight dynamics in biological neural networks. This mod-

ule dynamically adjusts fusion weights between neuron outputs during training, en-

abling context-aware integration of multi-node features. Compared to traditional fu-

sion strategies, it streamlines inter-layer information flow while maintaining detec-

tion accuracy, offering a principled approach to bridge biological neural efficiency 

with deep learning model design. 

─ Through extensive experiments on frontier and object datasets, we demonstrate 

CEYOLOv8’s robustness under computational constraints. Ablation studies further 

validate that our bio-inspired design reduces reliance on empirical architecture tun-

ing, offering a scalable solution for real-time applications such as autonomous sys-

tems and edge devices. 

Fig. 1.  General framework of this work. Inspired by the functional neural circuits of aversive 

olfactory learning in C. elegans,a new lightweight YOLO architecture is designed by obtaining 

its Olfactory LearningCircuit.  



 

2 Related Work 

2.1 LightWeight YOLOv8 Framework 

Significant progress has been made in target detection models, with a focus on improv-

ing accuracy while reducing computational costs. Among them, the YOLO series 

stands out for its real-time performance and has been widely adopted across various 

domains due to its speed and precision. 

With the rise of embedded and mobile platforms, recent research has prioritized op-

timizing YOLO for resource-constrained devices by minimizing model size and en-

hancing computational efficiency without sacrificing accuracy. A variety of techniques 

have emerged to support edge deployment, among which Neural Architecture Search 

(NAS) [26,27] has gained traction. NAS automates the search for optimal network 

structures, improving both design efficiency and model performance. For example, 

YOLO-NAS [28] integrates NAS into the YOLOv8 framework to discover suitable 

architectures. While its accuracy is slightly lower than standard YOLOv8, it signifi-

cantly reduces model parameters, improving runtime efficiency. 

However, NAS also presents challenges, including high computational cost, expan-

sive search space, slow convergence, and susceptibility to overfitting, limiting its prac-

tical deployment. Thus, efficient and lightweight architecture design remains an ongo-

ing challenge. Beyond NAS, other efforts have targeted YOLO optimization. Lai et al. 

[29] proposed YOLOv8-lite, an interpretable lightweight model for UAV-based detec-

tion, which integrates depthwise separable convolutions and a P2 layer in the neck to 

reduce computational overhead while improving performance. Similarly, Di et al. [30] 

introduced an attention-enhanced lightweight model for small pest detection, signifi-

cantly boosting small-target accuracy through improved feature extraction. Nonethe-

less, effective lightweighting of the backbone network remains an unresolved issue. 

2.2 C.elegans Neural Network Developmental Olfactory Learning Circuit 

In the field of biologically inspired neural network design [31, 32], researchers have 

sought to develop more streamlined and efficient architectures by mimicking the neural 

connectivity patterns of biological systems, particularly for complex tasks. Beyond 

modeling information processing, these efforts aim to optimize artificial intelligence 

models by leveraging biological insights. For instance, Manglani et al. [33] applied 

brain connectome-based models to predict cognitive impairments, while Bardozzo et 

al. [34] utilized the linker topology of Caenorhabditis elegans to design deep learning 

and reservoir structures for classification tasks. 

These studies demonstrate that mimicking the connectivity of simple biological net-

works can significantly enhance deep learning efficiency while maintaining high accu-

racy, particularly in resource-constrained environments. However, complex tasks often 

require more neurons, leading to increased network size and computational demands. 

To address this, Roberts et al. [35] combined real-world neural topologies with convo-

lutional neural networks (CNNs) to reduce model complexity without sacrificing com-

puting power. Similarly, Su et al. [36] proposed network structures based on biological 
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connectivity groups, further validating the potential of biologically inspired architec-

tures in optimizing convolution operations. 

More recent work has shown that neural networks inspired by the structure of C. 

elegans can perform complex tasks with fewer neurons without compromising perfor-

mance. Lechner et al. [37] demonstrated efficient real-time decision-making under lim-

ited computational resources, while Razzaq et al. [38] proposed a hybrid architecture 

combining biological neural circuits with CNNs, achieving high-risk decision-making 

using only a small number of neurons. These findings underscore the potential of light-

weight, bio-inspired networks for efficient, high-performance applications. 

Building on this foundation, our work proposes a novel lightweight YOLOv8 archi-

tecture inspired by biological neural circuits, focusing on optimizing the backbone to 

better balance accuracy and efficiency. This approach offers a promising direction for 

enhancing YOLOv8 deployment in resource-constrained environments without com-

promising detection performance. 

3 Methodology 

This section provides an overview of the proposed CEYOLOv8 model, inspired by the 

Olfactory Learning Circuit of C. elegans. The network architecture is designed to lev-

erage the efficient neural circuits observed in C. elegans, focusing on minimizing re-

dundant connections and improving computational efficiency for real-time detection 

tasks. The construction of the network can be broken down into three main components: 

Backbone, Neck, and Head, as depicted in Fig.2. 

3.1 Olfactory Learning Circuit of C. elegans 

 

Fig. 2.  The network of CEYOLOv8. Each CBS module simulates the neuron nodes in the ol-

factory learning Circuit of Caenorhabditis elegans. The network improves feature extraction 

through the Olfactory Learning Circuit derived from C. elegans. 

The C. elegans has a simplified nervous system consisting of 302 neurons and their 

synaptic connections. The nervous system consists of three main types of neurons: sen-

sory neurons, interneurons, and motor neurons, which are interconnected through syn-

apses to form a highly optimized information processing network. 



 

In this neural network, the neural information flow starts from sensory neurons, 

passes through intermediate neurons for processing, and finally reaches motor neurons. 

This efficient neural circuit enables C. elegans to exhibit various behavioral mecha-

nisms, including olfactory learning, tactile response, and foraging behavior, relying on 

its concise and efficient neural network structure, making it an important model for 

functional research and biomimetic design of neural circuits. However, modern neural 

network models often face problems of redundant parameters and inefficient structures, 

which limit their learning and reasoning abilities. F Bardozzo's research [23] suggests 

that the design of network architecture has a significant impact on the learning ability 

of models, and complex or redundant structures may hinder the effective learning of 

networks. Therefore, drawing on the efficient neural connection structure of C. elegans, 

optimizing neural networks is a path worth exploring. 

The neural circuits of C. elegans have been optimized under long-term evolutionary 

pressure, demonstrating high functionality and information processing efficiency. The 

neural connectivity group has been extensively studied and mapped, fully revealing the 

ways in which neurons are connected. In previous study [39], the hierarchical structure 

of the nematode nervous system was clarified: sensory neurons are located in the upper 

layer, interneurons are located in the middle layer, and motor neurons are located in the 

lower layer. The study also suggests that in the context of aversive olfactory learning, 

strongly connected neurons play a crucial role, while neurons with weaker synaptic 

connections are ignored. Through this method, the neural circuit responsible for odor 

aversion learning in the nematode neural network was identified. This circuit consists 

of 22 functional neurons, including 10 sensory neurons, 5 interneurons, and 7 motor 

neurons, which interact with each other through 21 synaptic connections, as shown in 

Fig. 1. 

3.2 YOLOv8 Architecture 

YOLOv8 is a fast and accurate single-stage object detector that directly outputs bound-

ing boxes and class probabilities in a single forward pass. Its architecture comprises 

three modules: Backbone, Neck, and Head. The Backbone extracts multi-scale features 

from 640×640 input images using convolutional layers and C2f (Cross-Stage Feature 

Fusion) blocks for enhanced cross-stage fusion. The Neck adopts a PANet structure to 

aggregate features across scales, improving spatial and semantic consistency. The Head 

generates final predictions, including object categories, confidence scores, and bound-

ing box coordinates. 

3.3 The Proposed CEYOLOv8 Network 

The overall architecture is shown in Fig.2. Our proposed CEYOLOv8 model largely 

follows the traditional YOLOv8 architecture, with the primary modifications occurring 

in the Backbone, while the Neck and Head networks remain consistent with those in 

YOLOv8.  
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We construct the Backbone of the neural network architecture based on the same 

network topology as prior studies [39]. To facilitate a clearer understanding of the fea-

ture extraction process, we divide the network into three distinct phases: S1, S2, and 

S3. After each phase, the size of the feature map is reduced to one-fourth of its original 

size, while the number of channels is doubled. Inspired by the execution paths of nem-

atode neural networks and the hierarchical structure of convolutional neural networks, 

we define these phases according to their respective functions: S1 corresponds to the 

motor layer, S2 to the intermediate layer, and S3 to the decision layer. This simplified 

and efficient structure informs the design of the Backbone, where each layer’s neuron 

type directly corresponds to a layer in the network. Specifically, the motor layer con-

sists of 10 motor neurons (ADF, AWA, ASJ, PVD, ASER, ADL, AWC, FLP, ASH, 

and PHB); the intermediate layer contains 5 intermediate neurons (AIZ, ALA, AIB, 

AVD, and AVA); and the decision layer is composed of 7 decision neurons (SMB, 

CAN, SMD, SAB, DA, VA, VD). In each layer, neurons are processed through 2D 

convolution with a kernel size of 3, stride of 1, and padding of 1. All nodes in a given 

layer share the same processing unit, which consists of a SILU activation function, 

convolutional operation, followed by batch normalization, collectively forming the 

CBS (Convolution-BatchNorm-SILU) module.  

 

Fig. 3. The structure of AdaptiveAdd module. 

Sequential processing starts at the motor layer. The output of each node is passed to 

the next node via a directed edge, mimicking synaptic connections in biological circuits. 

The intermediate layer receives outputs from the motor layer, combines the information 

from corresponding nodes, and passes the fused results to the next layer. Since some 

nodes receive inputs from multiple other nodes, the features of these nodes must be 

fused. Inspired by biological neural systems, we design a learnable fusion module that 

automatically adjusts the weights of the inputs from different nodes and effectively 

fuses their features. For example, when fusing the features of three nodes, as shown in 

Fig.3, we derive the fused representation. Specifically, the input consists of nodes: 

{Ri|i = 1,2,3}, where i indicates the node number, and Ri is the associated output for 

node r. The output feature Ro is a weighted sum of the three input features, with adap-

tive parameters governing the fusion weights. The mathematical formulation of this 

process is: 



 

 Ro = α ∗  R1 + β ∗  R2  + γ ∗  R3 (1) 

in which α,  β, γ are learnable weights. In the input of the network, we begin by feeding 

the 3-channel image into the model, followed by downsampling using 2D convolutions 

with a kernel size of 3, stride 2, and padding 1. This pre-extends the number of feature 

channels, initially increasing from 3 to 32, and then from 32 to 64 after two downsam-

pling operations. The resulting features are then passed as input F1 to each stage, yield-

ing the final features Fi at each stage.  

 F1 = S1(F0), F2 = S2(F1), F3 = S3(F2) (2) 

We use three consecutive stages to progressively extract features, with the final stage 

incorporating the Spatial Pyramid Pooling Fusion (SPPF) module. The SPPF module 

performs pooling operations at multiple spatial scales, capturing fine and coarse fea-

tures from various image regions. This enhances the model’s ability to learn multi-scale 

features, particularly in handling objects of varying sizes. The specific expression form 

is as follows: 

 F4 = SPPF(Conv(F3)) (3) 

To fuse stage features in object detection, we introduce an additional branch of the 

motion layer at the head of the network, as shown in Fig.2. The motion layer is the first 

layer of the network that is used for the detection of small objects. This layer corre-

sponds to the feature maps generated at the beginning of the network, which contain 

rich local information. By connecting the features of the motion layer with the previ-

ously fused features, CEYOLOv8 is able to utilize fine-grained features effectively and 

organically fuse high-resolution and low-resolution features. This enhances the ability 

of the neck layer to extract multi-scale features by equation (4), thus improving the 

model's integration and utilization of features from all stages of the backbone. 

 Pi
out = C2f(Concat(Up(Pi−1

in ), F4−i), n) (4) 

where Up is upsample operations, F and P correspond to the feature maps at the back-

bone and neck respectively. 

4 Evaluation Results 

To evaluate our model’s effectiveness, we conducted experiments on frontier and ob-

ject detection tasks in exploration scenarios using two public datasets. A randomly se-

lected labeled subset was used to verify generalization. We compared CEYOLOv8 

model against YOLOv8 variants of different sizes. Training was performed with a batch 

size of 16 and a learning rate of 0.001 using Stochastic Gradient Descent(SGD) and 

cosine annealing. Implementation was based on PyTorch [40] and executed on an 

NVIDIA RTX 4090 (24GB). Deployment tests were conducted on NVIDIA Jetson Orin 

Nano. The results demonstrate that our model achieves a reduction while maintaining 

comparable accuracy and inference speed, particularly under constrained computa-

tional resources. 
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4.1 Evaluation Criteria 

To comprehensively assess performance and generalization, we adopted standard met-

rics including precision (P), recall (R), mAP@50, and mAP@50:95. Precision 

measures the proportion of true positives among predicted positives P, while recall 

measures the proportion of true positives among all actual positives R. mAP@50 eval-

uates mean average precision at an IoU threshold of 0.5, and mAP@50:95 averages AP 

across IoUs from 0.5 to 0.95 in 0.05 increments. Additionally, we report the number of 

learnable parameters and FLOPs to quantify model complexity. 

4.2 Results on Frontier Dataset 

Data and Setups. We used the Frontier dataset, containing 346 training, 40 validation, 

and 40 test samples, with 256×256×3 input size. The model was trained for up to 500 

epochs using SGD (learning rate 0.01). Early stopping was applied if no improvement 

occurred over 10 consecutive epochs, selecting the best model based on validation ac-

curacy. 

Quantitative Evaluation. As shown in the table 1, we present a detailed comparison 

of our model with several novel lightweight algorithms and YOLOv8n. In terms of 

parameter count and performance metrics, our approach offers the best cost-perfor-

mance ratio. Compared to YOLOv8n, our model achieves a 16% reduction in parameter 

count while significantly outperforming YOLOv8n across all metrics. When compared 

to the YOLO-LITE algorithm, our model has only a marginally higher parameter count 

of 0.16M, but it outperforms YOLO-LITE in all evaluated metrics. Although the pa-

rameter count of our model is higher compared to Backbone optimization algorithms 

such as CSCDense, under stringent evaluation criteria (mAP@0.5:0.95), our algorithm 

maintains SOTA performance. This suggests that the optimized C. elegans-inspired 

connection method strikes an effective balance between lower parameter count and 

high performance, making it a reliable choice. 

Table 1. Detection results on Frontier dataset with comparative models. 

Model Params(M) Precision(%) Recall(%) mAP0.5(%) mAP0.5:0.95(%) 

YOLOv8n 2.87 78.1 77.3 78.8 54.3 

YOLO-LITE 2.24 84.5 76.8 83.1 58.9 

CSCDense 2.06 78.7 72.9 82.3 58.1 

EfficientRep 2.65 87.2 72.9 83.9 58.7 

TP-YOLO 4.08 82.7 71.4 82.7 56.4 

OURS 2.4 86.5 82.3 86.9 59.1 

 



 

Fig. 4. The heatmap of different models  

Heatmap analysis. To gain a deeper understanding of the model's perception and at-

tention differences towards boundary data, we compared a YOLO optimization algo-

rithm with three detection heads. As shown in the figure \ref{fig:heatmap}, the model 

receives the raw boundary images as input and outputs the detected boundary boxes, 

while also capturing heatmaps from the outputs of different detection heads at various 

scales. We observed a significant sparsity in the attention maps of the YOLOv8n algo-

rithm's detection heads, with the third detection head losing fine-grained attention to 

details (as shown in the heatmap in part c of the figure). In comparison to other light-

weight algorithms, our method provides more accurate detection results, with finer 

boundary delineation. Additionally, the heatmaps from our three detection heads se-

quentially focused on unexplored regions (as shown in heatmap a), known/unknown 

boundary areas (as shown in heatmap b), and the global boundary regions (as shown in 

heatmap b). Our experiments demonstrate that the inclusion of the C. elegans-inspired 

neural circuit mechanism in our algorithm enhances the interpretability of the model's 

attention and leads to better performance. 

4.3 Results on Objects Dataset 

Data and Setups. The objects dataset consists of one type of target and three types of 

obstacles 640 × 640 color images, divided into 284 training sets, 40 testing sets, and 12 

validation sets. We trained the model using the SGD optimizer with a learning rate of 

0.01 over 500 iteration cycles. Similar to the training method above, when the valida-

tion set cannot be improved, the training will also be stopped in advance. 
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Table 2. Detection results on Objects dataset with comparative models. 

Model Params(M) Precision(%) Recall(%) mAP0.5(%) mAP0.5:0.95(%) 

YOLOv8n 2.87 94.4 73.7 87.2 68 

YOLO-LITE 2.24 82.8 79.5 87.1 68.2 

CSCDense 2.06 90.3 65.1 82.6 63.8 

EfficientRep 2.64 84.9 74.5 89.3 66.5 

TP-YOLO 4.08 95.7 82.1 87.8 67.3 

OURS 2.4 89.3 72.2 88.8 68.5 

 

Quantitative Evaluation. As shown in Table 2, our proposed model achieves a strong 

balance between parameter efficiency and detection performance, demonstrating its ro-

bustness across multiple metrics. Compared to YOLOv8n, our model reduces the pa-

rameter count by 16\% while improving mAP@0.5:0.95, which highlights its ability to 

maintain high accuracy under stringent evaluation. Against YOLO-LITE, our method 

delivers superior performance across all metrics with only a marginal increase in pa-

rameter count (+0.16M), demonstrating a more favorable trade-off between model size 

and effectiveness. Although TP-YOLO achieves slightly higher mAP@0.5, this im-

provement comes at the cost of a significantly larger parameter count (+70\% compared 

to ours), making our approach more efficient for resource-constrained applications. 

Furthermore, our model surpasses CSC-Dense and EfficientRep by a clear margin in 

terms of both recall and mAP, validating the effectiveness of the optimized lightweight 

design. These results collectively confirm that our model strikes an optimal balance 

between parameter size and detection performance, making it a competitive and prac-

tical choice for lightweight object detection. 

4.4 Ablation studies 

In this study, we assessed the effectiveness of our proposed network connectivity 

method by comparing it with the original YOLOv8n model and three distinct feature 

fusion strategies. The experimental results presented in Table 3 demonstrate that, when 

applying our network connection method inspired by the C. elegans circuit, all feature 

fusion strategies outperform YOLOv8n in terms of both parameter count and perfor-

mance metrics, thereby validating the effectiveness of our C. elegans-inspired connec-

tion strategy. Among the three feature fusion strategies—Add, Concat, and our pro-

posed AdaptiveAdd—the AdaptiveAdd module consistently achieves superior perfor-

mance. Compared to the Add method, AdaptiveAdd not only maintains the same pa-

rameter count but also enhances performance. When compared to the Concat method, 

AdaptiveAdd reduces the number of parameters while delivering improved perfor-

mance across key metrics, further solidifying its superiority as the optimal feature fu-

sion strategy within our network. The experimental results further validate the effec-

tiveness of our proposed connectivity method within YOLOv8, showing that the Adap-

tiveAdd module not only boosts performance but also outperforms traditional fusion 



 

methods in terms of both accuracy and computational cost, demonstrating its higher 

efficiency. 

Table 3. Ablation study on our model 

Model Params(M) Precision(%) Recall(%) mAP0.5(%) mAP0.5:0.95(%) 

YOLOv8n 2.87 78.1 77.3 78.8 54.3 

OURS-Add 2.4 82.8 77.8 83.7 57.4 

OURS-Concat 2.47 81.7 84.2 85.6 58.9 

OURS-AdaptiveAdd 2.4 86.5 82.3 86.9 59.1 

 

5 Conclusions 

In this paper, we introduce a novel convolutional neural network architecture, the Nem-

atode Connector Neural Network (CEYOLOv8), inspired by the olfactory learning cir-

cuits of C. elegans. This represents the first instance of integrating biological neural 

circuit principles into detection neural networks. Our key innovation lies in designing 

a backbone network structure directly modeled on the connectivity patterns of biologi-

cal neurons in C. elegans. Detailed implementation steps and structural descriptions of 

CEYOLOv8 demonstrate that this biologically inspired approach substantially reduces 

the number of parameters required by neural networks, significantly lowering both data 

and hardware requirements without sacrificing overall accuracy. 

However, despite its optimized architecture, CEYOLOv8 experiences performance 

limitations, notably reduced detection accuracy, when applied to complex or high-res-

olution scenes. This reduction in parameters can diminish the model's capacity to cap-

ture intricate, fine-grained details necessary for precise detections in such demanding 

scenarios. Potential strategies to mitigate these performance drops include employing 

multi-scale feature extraction, integrating attention mechanisms to enhance feature rep-

resentation, and selectively reintroducing targeted complexity to key network layers to 

maintain efficiency while improving precision. These strategies can help balance model 

efficiency with the accuracy required for high-resolution or detailed object detection 

tasks, highlighting promising avenues for future research. 
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