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Abstract. Deep Neural Networks (DNNs) are widely used in computer vision, 

speech recognition, and recommender systems but raise privacy concerns due to 

data collection. Federated learning (FL) addresses this by enabling collaborative 

model training without sharing raw data. However, traditional FL is vulnerable 

to malicious attacks and inefficient for resource-constrained clients. This paper 

proposes an efficient and privacy-preserving lightweight federated learning (PL-

FL) scheme combining Differential Privacy (DP) and ring-based Fully Homo-

morphic Encryption (FHE). The approach perturbs local model parameters with 

a Gaussian mechanism and uses FHE to prevent data theft. Formal analysis shows 

the scheme ensures model convergence with lower communication costs and ro-

bust privacy. Experiments confirm competitive performance and efficiency com-

pared to baseline FL, while privacy tests demonstrate strong protection against 

data theft.   

Keywords: Federated Learning, Privacy-preserving, Differential Privacy, Fully 

Homomorphic Encryption. 

1 Introduction 

The constantly developing mobile computing technology has generated huge amounts 

of data, and data-based artificial intelligence (AI) technology is widely used in fields 

such as mobile social networks, smart cities, and so on. The integration of the limited 

and uneven-quality data scattered at the edge of the network faces enormous obstacles, 

and data security and privacy protection have gradually become major global issues.  

To address these challenges, Federated Learning (FL) [1] enables multiple clients to 

collaborate in the training of models, fulfilling the requirement of "data doesn't move, 

the model does". However, as shown in Figure 1, the actual implementation of this 

framework will inevitably face resource and privacy issues on both sides. 

To prevent the privacy of data of clients from being threatened during parameter 

transmission and sharing, several technologies to further improve the privacy protection 



of FL have been proposed. The algorithm proposed by Geyer et al [2] utilize differential 

privacy (DP) to hide user contributions and dataset related information and Agarwal et 

al [3] masked sensitive data for privacy protection by adding binomial noise. However, 

methods used DP fine tunes the gradient that causes precision loss and still suffers from 

data recovery attacks. Fang et al [4] proposed PFMLP based on partially homomorphic 

encryption (HE). The client only transmits encrypted gradients through HE. Park et al 

[5] used HE to construct security analysis protocols to protect privacy. Phong et al [6] 

designed a deep learning system based on additive HE, ensuring data privacy and main-

taining model accuracy. Such methods can only avoid the privacy of data when trans-

mitted to the cloud server, but cannot avoid collusion between clients and malicious 

clients to steal and recover data through means. 

 

Fig. 1. Privacy and resource concerns in federated learning process. 

This article proposes an innovative, secure, and lightweight federated learning pri-

vacy protection mechanism (PL-FL), the main contributions of this work (PL-FL) are 

summarized as follows: 

(1) The innovative integration of dual privacy strategies: This paper is the first to 

combine differential privacy with homomorphic encryption to form a dual privacy pro-

tection mechanism. This fusion strategy significantly increases the strength of privacy 

protection under the federated learning framework. 

(2) To prevent malicious collusion between clients and to effectively prevent the 

overall reduction in training efficiency caused by collusion, differential privacy tech-

nology based on the Gaussian mechanism is used to interfere with the local parameters 

of clients during local training. Differential privacy reduces the risk of data leakage by 

adding random noise to the data. 

(3) In the parameter transfer phase after model training, a FHE CKKS supporting 

floating-point vectors is also used to establish a continuous line of defense. It ensures 

that malicious attackers cannot steal the model parameters transferred to the cloud 

server and stored by the client, effectively controlling the recovery and theft of the cli-

ent's original data by malicious attackers. 

(4) Numerous experiments have shown that our work can achieve competitive per-

formance compared to various baseline FL methods. Privacy analysis proves that our 

method has better privacy protection against parameter attacks compared to the baseline 

FL method. In terms of communication consumption and time, model parameters of 

different sizes can also be trained and transmitted with minimal communication time 

consumption. 
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2 Related Work 

The essence of federated learning is to use shared training model parameters instead of 

sharing raw data, which enhances user privacy protection, but the model may still leak 

sensitive user information from various aspects. Malicious attackers may obtain global 

parameters and control the upload of these parameters, or they may steal model param-

eters by maliciously modifying the input and output values of the model. 

On this issue, researchers at home and abroad have conducted extensive and in-depth 

studies and proposed diverse types of attacks, such as membership inference attacks 

and attribute inference attacks. Carlini et al [13] discuss privacy leakage in the GPT-2 

language model and find that although the training set of the model is tremendous, it 

still has memory for individual training samples. Song et al [14] conducted a study to 

identify and assess the privacy risks associated with user-level participation in FL. They 

proposed a multi-task generative adversarial network framework as a solution to these 

risks. It can identify the identity of the client, authenticity of the samples and the gen-

erator generates training samples against the attacking client. 

The commonly used methods to protect federated privacy include differential pri-

vacy (DP), homomorphic encryption (HE) and secure multi-party computation. It was 

introduced in the previous section. 

In a secure multi-party computation system, each participant holds its private data 

and cooperates to compute a public function, and the information of other participants 

is not available except for the result of the function computation.  Lin et al [15] pro-

posed FR-FMSS, a federated recommendation framework, which uses pseudo-tagging 

and secret sharing techniques to modify the shared data, and protects the list of items 

rated by the user along with the rated values for the items. Huang et al [16] proposed 

the hybrid federated learning framework, which combines a trusted execution environ-

ment with multi-party secure computing for secure key distribution, encryption, and 

decryption, and provides an authentication mechanism for each participant to ensure 

the security of the participant's data. However, the scalability of the multi-party secure 

computing system is poor, and the communication complexity is greatly increased in 

large-scale end-device scenarios.  

We aim to design a hybrid encryption-based, privacy-preserving FL scheme that can 

resist poisoning attacks, reduce computational costs, and provide privacy protection. 

Meanwhile, our solution should achieve almost the same accuracy as FedAvg. Specif-

ically, we are committed to achieving the goal of robustness. Our scheme should be 

able to resist malicious attacks, which means the accuracy of the global model should 

not be affected by the privacy of malicious clients. Our goal is to protect customer data 

from damage. Neither third-party nor malicious software can obtain or infer the original 

information of customers. Compared to traditional privacy-preserving FL schemes, our 

approach should reduce the computational overhead caused by encryption, while not 

sacrificing accuracy while protecting privacy and resisting malicious attacks. 



3 Method 

As illustrated in Figure 2, the main process of PL-FL is as follows: in each FL commu-

nication round, each client locally updates its model parameters and uses a differential 

privacy protection mechanism to add noise to the local model parameters. After per-

turbing parameters with Gaussian Mechanism, we utilize the FHE mechanism CKKS 

to ensure the successive defense of transmission between the cloud server and clients. 

 

Fig. 2. The process of our work. 

Table 1. Description of the main notations in PL-FL. 

Notation Description 

𝐶𝑖 Resource-limited client i 

𝑁 Number of clients 

𝐷𝑖 Training datasets of the client Ci 

𝜏 Client training iteration rounds 

𝑡 Iteration of adjacent aggregations 

𝐾 Rounds of global aggregation 

𝑊(𝑡) Global model parameters in iteration t 

ε, 𝛿 Privacy budget, possibility of privacy broken 

𝑝, 𝑞, 𝐿 Base integer and modulus, number of levels for HE 

𝑅 The ring for HE 

3.1 Problem Formulation 

In this work, federated learning is set up with an honest cloud server and N clients 

holding their private datasets D1, D2, …, Dn. Considering the setting of horizontal FL, 

these private data have the same feature space but different sample spaces. Table 1 lists 

the main notations. As shown in Figure 3, typical FL is generally a cyclic execution of 

the following steps: 

⚫ Initialize the global model on the cloud server if there is no model pre-saved. 

The global model parameters in iteration t are represented as w(t) and sent to 

a subset of available clients. 

⚫ Client i receives global model parameters w(t)from the cloud server to initialize 

the local parameters wi(t). Then it trains the model with local datasets xi by 
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stochastic gradient descent algorithm (SGD) for local iterations 𝜏. The client i 

sends wi(𝜏+t) to the cloud server after updating. 

⚫ The cloud server aggregates w(𝜏+t) from client i and utilizes FedAvg to up-

date global model parameters wi(𝜏+t). This process involves K rounds of global 

aggregation and update so that the total number of iterations is represented by 

I = K× 𝜏. 

 

Fig. 3. Typical federate learning steps. 

3.2 Client Update 

Each client uses its local private dataset for the local training and update phase through 

a federated, collaborative, and distributed pattern. It trains neural network models and 

updates parameters through iterative execution of the stochastic gradient descent algo-

rithm (SGD) while Algorithm 1 describes the detailed procedure. Specifically, client i 
holds the parameter wi(t) of the tt round of global iteration and possesses its local da-

taset Di. Given the loss function L, clients i utilizes SGD to update parameters wi(t) by 

private data Di and obtains wi(𝜏+t).  

                                           𝑤𝑖(𝑡 + 1) ← 𝑤𝑖(𝑡) − 𝜇𝛻𝑤𝐿(𝑏, 𝑤𝑖(𝑡)) (1) 

where 𝜇 is the learning rate, t is the tt round of global iteration, ∇ represents the gradi-

ent, and b is the mini-batch of the private training dataset Di. After performing 𝜏 rounds 

local update, the client gains the updated parameter wi(𝜏+t), but it is not directly trans-

mitted to the cloud server for aggregation. Instead, the parameters will be operated 

through a series of privacy enhancement techniques as follows. 

3.3 DP-Privacy Preservation 

In the differential privacy preservation stage, the updated parameter wi from the client 

i is used as input for the DP noise addition function. After passing through a DP algo-

rithm based on the Gaussian mechanism, we can obtain DP(wi) that is represented as 

parameters disturbed by noise. The DP function will be explained in detail, which can 

improve the availability of data analysis to a certain extent and minimize the possibility 

of personal privacy leakage. 



Algorithm 1 Client Update 

Input: clients’ dataset 𝐷𝑖, learning rate 𝜇, local training epoch 𝜏, batchsize 𝐵 

1: Clients receive 𝑤(𝑡) from the cloud server. 

2: for each client 𝑖 = 1, ..., 𝑁 in parallel do 

3:    Splitting local dataset into multiple datasets 𝐵 

4:    for each batch 𝑏 ∈ 𝐵 do 

5:      Execute gradient descent: 

6:      𝑤𝑖 (𝑡 + 1) ← 𝑤𝑖 (𝑡) − 𝜇∇𝑤 𝐿(𝑏, 𝑤𝑖 (𝑡) 

7:    end for 

8:    Execute Algorithm 2 to encrypt 

9: end for 

Output: Updated parameters 

3.4 Gaussian Mechanism 

To achieve (𝜀, 𝛿)-DP, Gaussian mechanism builds a noised function M which adds the 

original query function fqr and the random noise that follows the normalized distribution 

N(0, 𝑠𝑓
2 × 𝜎2). Sf  is the sensitivity of fqr, which means the maximum difference be-

tween query results on adjacent datasets. In our protocol, Sf can be set to 1. Then, the 

noise addition function DP is shown in the formula: 

               DP(𝑤𝑖
𝑗
) = 𝑤𝑖

𝑗
+ 𝑁(0, 𝜎2)                                             (2) 

where 𝜎 represents the intensity of noise and wij represents the jth layer model parame-

ters of client i. Under this mechanism, 𝑀 ≜ 𝑀𝐺(𝑥, 𝑓(∙), 𝜀) + (𝑌1, 𝑌2, . . . 𝑌𝑘) . The stand-

ard deviation 𝛿 of Gaussian distribution determines the scale of noise; 𝜀 represents pri-

vacy budget, which is negatively correlated with noise;𝛿 represents the relaxation term, 

for example, if set to 10-5, it means that only a probability of 10-5 can be tolerated to 

violate strict differential privacy. The partial proof of the Gaussian mechanism is as 

follows: S1 represents the part that strictly adheres to DP, and S2 represents the part that 

violates strict DP. In relaxed differential privacy, the output is divided into two parts, 

one strictly adhering to DP and the other violating DP. Therefore, it is necessary to 

separate the output set into two parts. The following formula proves that the first part 

is constrained by 𝜀, while the second part is less than 𝛿. 

 
Pr𝑥∼𝒩(0,𝜎2)[𝑓(𝑥) + 𝑥 ∈ 𝑆] = Pr𝑥∼𝒩(0,𝜎2)[𝑓(𝑥) + 𝑥 ∈ 𝑆1]

 +Pr𝑥∼𝒩(0,𝜎2)[𝑓(𝑥) + 𝑥 ∈ 𝑆2]

 ≤ Pr𝑥∼𝒩(0,𝜎2)[𝑓(𝑥) + 𝑥 ∈ 𝑆1] + 𝛿

≤ 𝑒𝜀Pr𝑥∼𝒩(0,𝜎2)[𝑓(𝑦) + 𝑥 ∈ 𝑆1]) + 𝛿

                     (3) 

If 𝜎 is set to be√2log 
5

4𝛿
/𝜀, then each process of adding noise satisfies (𝜀, 𝛿)-DP so 

that we can obtain the perturbed parameters. 
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3.5 CKKS Secure Transmission 

CKKS is an FHE scheme that supports the addition, subtraction, and multiplication of 

floating-point vectors in ciphertext space while maintaining homomorphism. It in-

cludes three basic operations: key generation, encryption, and decryption. 

As shown in Figure 4, the steps of CKKS are as follows. Given safety parameters 𝜆, 

and choose the power N of two integers. Respectively set distribution Xkey, Xerror, and 

Xenc for key, error learning, and encryption on 𝑅 = ℤ[𝑋]/(𝑋𝑁 + 1). 

 

Fig. 4. The process of CKKS encryption algorithm. 

For a base integer p and the number of levels L, as well as a base modulus q0, set the 

modulus of the ciphertext 𝑞𝑙 = 𝑝𝑙 ⋅ 𝑞0(1 ≤ 𝑙 ≤ 𝐿). For the ring R, let k=2 and then 

randomly generate the parameter to output: (𝑁, 𝑋key , 𝑋error , 𝑋enc , 𝐿, 𝑞𝑙). 

⚫ Generate a key pair consisting of the secret key sk, the public key pk, and 
the evaluation key evk, with the public key used for encrypting data and 
the private key used for decrypting data. 

⚫ Encryption operation. The plaintext data is converted into complex form 
and encrypted into ciphertext using the public key. Randomly generate r←
𝑋𝑒𝑛𝑐  and e0 output ciphertext c, where c 𝜖 𝑅𝑞𝐿

𝑘  . 

.               𝑐 = 𝑟 ⋅ 𝑝𝑘 + (𝑚 + 𝑒0, 𝑒1)(𝑚𝑜𝑑𝑞𝐿)                                 (4) 

⚫ Decryption operation. Use the secret key to convert encrypted data into 

plaintext data. For ciphertext of the same level, decrypt to obtain the plaintext 

result. 

𝑚′ = ⟨𝑐, 𝑠𝑘⟩(𝑚𝑜𝑑𝑞𝑙)                                           (5) 

Algorithm 2 Encrypted process 

Input: parameters 𝑤𝑖 , 𝐷𝑃 function, empirical values 𝜃 , intensity 

of noise 𝜎, 𝐶𝐾𝐾𝑆 function 

1: for each network layer j in 𝑤𝑖 do 

2:    𝐷𝑃(𝑤𝑖
𝑗
) = 𝜃

𝑤𝑖
𝑗

‖𝑤𝑖
𝑗
‖

+ 𝑁(0, 𝜃2𝜎2) 

3: end for 

4: Get 𝐷𝑃(𝑤𝑖 ). 

5: Encryption process: 𝐶𝐾𝐾𝑆 (𝐷𝑃 (𝑤𝑖 )). (The detailed process of CKKS is presented in the 3.5 

section) 

 Output: Encrypted parameters 𝐶𝐾𝐾𝑆 (𝐷𝑃 (𝑤𝑖 )). 



Due to the homomorphic properties of the CKKS encryption algorithm, the computa-

tion of ciphertext by the cloud server in the FL scheme is equivalent to computation on 

plaintext, ensuring clients’ privacy and security to a certain extent. Specifically, client 

i first rescales the DP-processed parameters and then encodes them to obtain plaintext 

in the complex field. After the above CKKS-FHE operation, we package the above 

encryption process as the function CKKS, and the ciphertext CKKS (DP (wi)) is ob-

tained. The client i transmits the ciphertext to the cloud server for aggregation. The 

overall privacy protection process is shown in Algorithm 2. 

3.6 Cloud Server Aggregation 

After receiving encrypted parameters from multiple clients, the honest cloud server ag-

gregates the encrypted model parameters globally using the FedAvg algorithm. Algo-

rithm 3 describes the detail procedure of cloud server aggregation. 

Algorithm 3 Cloud Server Aggregation 

Input: size of clients’ data 𝑋𝑖, global training iteration 𝑇 

1: cloud server receives updated 𝑤𝑖 (𝜏 + 𝑡) from clients. 

2:    for 𝑡 ∈ 𝑇 do 

3:       Do FedAvg aggregation: 

4:        𝑤(𝑡 + 1) ← ∑  𝑁
𝑖=1

𝑋𝑖

𝑋
𝑤𝑖(𝑡 + 𝜏) 

5: end for 

Output: Global parameters 𝑤 (𝑡 + 1) 

6: cloud server sends 𝑤 (𝑡 + 1) to all clients 

By utilizing the properties of CKKS-FHE, the result obtained by homomorphic ad-

dition and multiplication of parameters in the ciphertext space and decryption it to 

plaintext data is equivalent to the result obtained by performing the same calculation 

on the original plaintext data. Among them, homomorphic addition Add (c,c′) to cadd, 

for ciphertext c, 𝑐′, the ciphertext addition result is  

                                                              𝑐𝑎𝑑𝑑 = 𝑐 + 𝑐′(𝑚𝑜𝑑𝑞𝑙) (6) 

Homomorphic multiplication 𝑀𝑢𝑙𝑡𝑒𝑣𝑘 (c,𝑐′)→ 𝑐𝑚𝑢𝑙𝑡, for ciphertext c, 𝑐′, 

                                                       𝑐 = (𝑐0, 𝑐1), 𝑐′ = (𝑐0
′ , 𝑐1

′ ) ∈ 𝑅𝑞𝑙
2  (7) 

                                       (𝑑0, 𝑑1, 𝑑2) = (𝑐0𝑐0
′ , 𝑐0𝑐1

′ + 𝑐‾0
′ 𝑐1, 𝑐1𝑐1

′ )(𝑚𝑜𝑑𝑞𝑙)                  (8) 

and the result of multiplying its ciphertext is 

                                     𝑐𝑚𝑢𝑙𝑡 = (𝑑0, 𝑑1) + ⌊𝑃−1 ⋅ 𝑑2 ⋅ 𝑠𝑘⌉(𝑚𝑜𝑑𝑞𝑙)                        (9) 

Due to the homomorphic property of CKKS, when the cloud server receives parameters 

𝐶𝐾𝐾𝑆 (𝐷𝑃(𝑤𝑖)) uploaded by 𝑁 clients, it performs a weighted average calculation as 

shown in the following formula: 

                                       𝑤𝑡+1 ← ∑  𝐾
𝑘=1

𝑛𝑘

𝑛
𝑤𝑡                                                                         

𝑘 (10) 
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which is equivalent to the same computation on plaintext 𝐷𝑃 (𝑤𝑖). To some extent, this 

process prevents client data from being stolen and restored through parameters. The 

clients use the private key to decrypt the received global encryption parameters based 

on the decryption function in the CKKS algorithm, and continue with local training 

updates. Ultimately, after repeating the FL scheme for a certain number of iterations, 

end the training. 

3.7 Security Analysis 

According to the description of the above methods, our PL-FL mainly focuses on DP 

and CKKS-FHE methods to protect user data privacy and security, which can effec-

tively prevent the leakage of local parameters on the client side and attacks during trans-

mission to a certain extent. In each local training iteration, the clients interfere with the 

intermediate features of each data batch with noise intensity 𝜀. The maximum differ-

ence in the intermediate features between the two data samples remains within the sen-

sitivity Sf in DP. It also strictly follows the Gaussian mechanism. Due to each batch 

being independent and satisfying the same DP, based on the parallel combination the-

orem in [7], the entire dataset is protected by the same DP protection strength. 

In the entire FL scheme, the client stores the secret key, while the public is shared 

between the client and the cloud server. The parameters transmitted between the cloud 

server and the client are operated by the CKKS encryption algorithm, and their security 

can be attributed to the CKKS. It is impossible to recover the key and original data from 

the intermediate encrypted results for a third-party attacker. 

Assuming a malicious client colludes with other honest clients to obtain their private 

key and DP encrypted parameters. In the description of the above method, when 𝜎 is 

set to be √2log 
5

4𝛿
/𝜀, Gaussian mechanism satisfies (𝜀, 𝛿) − 𝐷𝑃. The Gaussian mech-

anism in DP can effectively prevent parameter leakage and provide security guarantees 

for the data privacy of honest clients. 

3.8 Communication Cost Analysis  

In terms of communication consumption, let the weight matrix of a neural network be 

p×q, with a bias term of 1×p. E(x) is a function that maps the size x of the list to the 

corresponding ——expansion factor, size(x) is a function that calculates the storage 

space of a list of size x, O is the other communication cost. The maximum expansion 

factor of communication cost, Gbiggest, is shown in the following formula. 

 

𝐺biggest  =
size(𝑝(𝑞+1))(

𝑝𝑞

𝑝(𝑞+1)
𝐸(𝑞)+

𝑝

𝑝(𝑞+1)
𝐸(𝑝))+𝑂

size(𝑝(𝑞+1))+𝑂

 ≤
𝑝𝑞

𝑝(𝑞+1)
𝐸(𝑞) +

𝑝

𝑝(𝑞+1)
𝐸(𝑝)

                            (11) 

 

We compared the time and number of homomorphic operations on BFV [8], TFHE 

[9], and the CKKS homomorphic encryption method used in this paper, as shown in 



Table 2. It can be seen that in terms of time, the ciphertext generated by the PL-FL 

method in this article is more than twice as small as the ciphertext generated by BFV, 

which can be much faster than BFV operation. Although using TFHE, due to the small 

parameters used in the password system, the preparation and encryption steps are swift. 

However, compared to the method in this article, it consumes more time in the process 

of weight encryption and network inference. 

Table 2. Number of homomorphic operations and Time Usage 

 BFV CKKS TFHE  BFV CKKS TFHE 

Additions 21 26 - KeyGen 4.5s 1.96s 0.16s 

Multiplications 10 16 - Weights encryption 0.24 s 0.35s 16 s 

Bootstrappings - - 25000000 Network evaluation 2.16 s 0.5s > 3days 

Although there is an increase in communication consumption after CKKS encryp-

tion of parameters, subsequent experiments have shown that their computational effi-

ciency is still relatively high. 

4 Evaluation 

4.1 Experiments Settings 

Dataset and Model Settings. We use CIFAR-10, the original MNIST dataset and non-

independent identically distributed cases of MNIST in our experiments and evaluation. 

We use LeNet5, a simple CNN, and 2NN as the backbone network for image classifi-

cation tasks in the FL scheme. LeNet5 has one input layer, two convolutional layers, 

two pooling layers, and three fully connected layers, and the Sigmoid activation func-

tion. The 2NN only has two fully connected layers and CNN has the same structure as 

LeNet5 but different internal parameters. 

Baselines. We compare our PL-FL with the following baselines, including FedAvg, 

FedProx [10], FLGDP [11], and individual local training of the model. Specifically, 

FedAvg is the most common FL algorithm that aggregates model parameters through 

weighted averaging. FedProx introduces proximal terms and constraints, which is the 

generalization and reconstruction of FedAvg. FLGDP provides members with infer-

ence resistance by implementing global DP on the aggregation model of universal FL. 

Configurations. For the MNIST dataset, we set the number of clients N=5. During 

model training, we perform 20 global communication rounds and 3 local epochs, and 

each local epoch options a mini-batch of 4, with a learning rate of 𝜂 set to 0.01. For the 

CIFAR-10 dataset, we set N=10 and perform 20 global communication rounds and 15 

local epochs, and each local epoch options a batch size of 100, with 𝜂 set to 0.01. The 
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degree of the cyclotomic polynomial in the CKKS is set to 4096, and the prime factor-

ization of coefficient modulus is set to [22, 20, 20, 22]. 

4.2 Experiment Results 

We first evaluate the performance of our work by comparing the average accuracy of 

clients based on the aforementioned dataset, model, and baseline. 

Performance Evaluation. We first evaluate the performance of our work by compar-

ing the average accuracy of clients based on the above dataset, model, and baseline. 

Table 3 shows the comparison results. It demonstrates that our method can still achieve 

results similar to FedAvg and FedProx even with added noise.  

Table 3. Comparison of our work with baselines in terms of top-1 test accuracy. 

Dataset MNIST CIFAR-10 MNIST-non-IID 

Method 2NN LeNet5 CNN LeNet5 LeNet5 

Local 97.17 97.94 54.84 54.34 68.94 

FedAvg 98.28 99.07 60.10 58.44 74.16 

FedProx 99.03 99.13 60.36 58.92 74.53 

FLGDP 98.15 99.10 55.21 55.42 72.13 

Ours 98.88 99.06 58.82 57.44 73.19 

 

Fig. 5. Figures a-b respectively shows the accuracy trends of independent and identically dis-

tributed MNIST 

Compared with the FLGDP method, our method, with LeNet5, can achieve an accuracy 

of 99.06% on the MNIST dataset and 57.44% on the CIFAR-10, with almost little per-

formance loss. For non-IID datasets, the results are almost similar to those of local 

training, achieving an accuracy of 73.19%. 



 

Fig. 6. The accuracy trends of non-independent and identically distributed MNIST. 

 

Fig. 7. Figures d-e respectively shows the accuracy trends of CIFAR-10 

 

Figure 5 and 7 shows that the proposed method achieved good accuracy in five 

global iteration rounds on both the MNIST and CIFAR-10 datasets during 20 transmis-

sion processes. The MNIST dataset can achieve a training accuracy of 99.02%, mean-

while, CIFAR-10 can achieve 65.78%. For non-IID datasets in Figure 6, although the 

accuracy fluctuation is unstable, the overall improvement continues with iteration 

rounds. It can be seen that our work provides privacy protection, while also ensuring 

the performance of the model. 

Table 4 simulates the results of only a portion of clients participating in federated 

training after being attacked or taken offline. It can be seen that even if some clients do 

not participate in the model aggregation process, it will not affect the model training 

and accuracy of other clients. 

In addition, we encrypted parameters of different sizes, ranging from 10 bytes to 

8000 bytes, using PL-FL and compared and analyzed the storage space before and after 

encryption. By displaying the encrypted multiples in the Figure 8, we can obtain an 

approximate expansion factor of communication cost, which is consistent with the re-

sults obtained from the Equation 16, in the above security analysis. Moreover, it is very 

friendly to clients with limited resources in terms of communication memory and com-

munication time costs, and will not bring too much pressure. 
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Table 4. The training results of the model on the remaining clients on the MNIST and CIFAR-

10 datasets after a certain number of clients are taken offline. 

Model Method Clients Number 
Client-Offline rate 

0% 15% 25% 35% 

MNIST 
2NN 10 97.94 97.91 97.89 97.73 

LeNet5 10 99.06 98.78 98.77 98.91 

CIFAR10 
CNN 20 54.33 54.22 54.81 53.64 

LeNet5 20 56.40 56.33 55.59 56.06 

 

 

Fig. 8. Comparative analysis of storage space. 

Paillier homomorphic encryption methods are also commonly used in traditional 

federated leading to protect privacy. We also compared the time required for baseline 

including local training, FedAvg, and Paillier-FL [12]. As shown in Table 5, local train-

ing and FedAvg have little time consumption and can complete an iteration in a very 

short time and quickly reach convergence. After setting the same key size, comparing 

Paillier-FL with our work, our scheme consumes approximately one-fourth of Paillier-

FL. The comparison of model parameter quantities in Table 5 is shown in the Figure 9. 

It indirectly demonstrates the efficiency of our method with large parameter quantities. 

Table 5. Comparison of computation time consumption between our work and other baseline 

methods in each iteration. 

Method 
MNIST CIFAR-10 

LeNet5 2NN LeNet5 CNN 

FedAvg 6.60 s/ it 4.12 s/ it 1.17 s/ it 1.15 s/ it 

FLGDP 6.67 s/ it 4.29 s/ it       1.21 s/it 1.17 s/ it 

Paillier-FL 68.5 s/ it 83.14 s/ it       109.48 s/it 106.39 s/ it 

Ours 17.58 s/ it 18.09 s/ it 25.25 s/ it 20.62 s/ it 



 

Fig. 9. The model size of LeNet5, 2NN and CNN on MNIST and CIFAR-10. 

Privacy Evaluation. In terms of privacy protection evaluation, we manipulate the Peak 

Signal to Noise Ratio (PSNR) to quantify the similarity between the original data image 

and the image restored by DLG. PSNR is one of the indicators used to measure image 

quality. Based on the definition of mean square error (MSE), for a given original image 

I of size m×n and a noisy image K with added noise, PSNR can be defined as: 

                         𝑃𝑆𝑁𝑅 = 10 ⋅ log10 (
𝑀𝐴𝑋𝐼

2

𝑀𝑆𝐸
) = 20 ⋅ log10 (

𝑀𝐴𝑋𝐼

√𝑀𝑆𝐸
)                             (12) 

We use three parameters of LeNet5 to calculate the DLG restored images and PSNR 

values, including the original parameters for local training, and the encrypted parame-

ters of FLGDP and our method. 

 

Fig. 10. Comparison of DLG recovery using (a): the original parameters, (b): FLGDP, (c): our 

work processed parameters, as well as the calculated PSNR values. 

Figure 10 shows a comparison of random images and DLG restoration using three 

parameters. It can be seen that our work can prevent DLG from restoring the original 

data, protect data privacy up to a point, and have certain advantages compared to other 

methods. However, a significant restoration effect can be achieved through original 
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parameters. For FLGDP, PSNR reduces an average of 19.53% compared to the original 

parameters. From Figure 10, it can be seen that our work can effectively protect data 

privacy, achieving an average PSNR that is 35.80% lower than the original parameters. 

This also proves the effectiveness of the method proposed in this article for privacy 

protection. 

5 Conclusion 

The privacy-preserving lightweight federated learning (PL-FL) mechanism integrating 

differential privacy and homomorphic encryption proposed in this paper provides a new 

solution for data privacy protection in distributed machine learning. Its unique dual 

privacy protection strategy, lightweight design, comprehensive security and privacy 

analyses, and flexible adaptability demonstrate significant innovation and application 

value. To prevent collusion between clients, a DP technique based on the Gaussian 

mechanism is used to perturb the parameters of local model training of clients. In the 

parameter transmission phase after model training, a fully homomorphic CKKS en-

cryption scheme supporting floating-point vectors is used to further strengthen the de-

fense, ensuring that the model parameters transmitted to the cloud and stored in the 

client are not subject to malicious attacks, and effectively curbing the recovery and theft 

of the original data. Many experiments prove that the scheme has high computational 

efficiency and accuracy. Under the premise of ensuring privacy and security, future 

work will further explore the potential application of this mechanism in more complex 

and practical scenarios focusing on the combination of migration learning and joint 

learning and continuously optimizing its performance and efficiency. 
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