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Abstract. MicroRNAs (miRNAs) represent a vital category of endogenous non-

coding RNAs that influence essential biological functions, including cell differ-

entiation, proliferation, and apoptosis, by means of post-transcriptional pro-

cesses. Recent studies have shown that atypical levels of miRNA expressions are 

strongly linked to the progression of intricate conditions, including cancers and 

neurodegenerative disorders. This research presents an innovative prediction 

model, MGACMDA, which combines multi-view contrastive learning and resid-

ual graph attention to overcome several limitations of existing miRNA-disease 

association prediction methods, such as limited robustness to data sparsity, high 

sensitivity to network noise, and insufficient extraction of deep topological infor-

mation. We propose three data enhancement methods to construct global, local 

and topological views, and design a graph attention encoder with residual con-

nection to fuse shallow topological features with deep representations through 

residual mechanism. Finally, a momentum-driven multi-view contrastive learn-

ing module is designed, and momentum encoder is used to maintain the global 

negative sample queue, which significantly improves the discrimination ability 

of sparse association. MGACMDA was evaluated on HMDD v2.0 and HMDD 

v3.2 datasets with 5 - fold cross - validation. Using F1 score, AUC, and AUPR 

as metrics, along with case studies, results showed that MGACMDA is an effi-

cient and robust approach for predicting miRNA - disease associations. 

Keywords: miRNA-disease association prediction, Multi-view similarity net-
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1 INTRODUCTION 

MicroRNAs (miRNAs) are endogenous, non-coding RNA molecules that consist of 
roughly 22 nucleotides and are encoded by genes within the organism. These molecules 
are essential for the regulation of gene expression following transcription in both plants 
and animals. In humans and mammals, miRNAs play a crucial role in shaping RNA 
expression. Recent research has revealed the presence of miRNAs across diverse 
organisms, where they play roles in a variety of biological functions[1]. 



 

Following the identification of Caenorhabditis elegans lin-4[2], there has been a 
significant upsurge in the number of scientists delving into the functions of microRNAs 
(miRNAs). Through their investigations, they have uncovered that the aberrant 
expression of these molecules is associated with the initiation and advancement of 
numerous intricate human diseases. According to Lin et al. [3] a higher concentration 
of miR-1179 significantly impaired the ability of pancreatic cancer cells to migrate and 
invade. Furthermore, San et al.[4] revealed how miR-155 plays a critical role in 
influencing drug resistance and migration in sensitized cells via exosomal transfer. 
Hence, it is of utmost importance to provide support to researchers in the domain of 
disease studies to enable them to identify potential associations between miRNAs and 
diseases. 

Over the past decade, the investigation into computational methods aimed at forecasting 
relationships between miRNAs and various diseases has become a notable field of 
research. These methodologies are typically classified into two distinct categories: 
those that rely on similarity measures and those that are founded on machine learning 
principles. Similarity-based approaches utilize biological networks and association 
graphs, indicating that miRNAs sharing analogous functions are frequently linked to 
diseases that display similar phenotypic characteristics. As the volume of available 
experimental data has grown, machine learning-based methodologies have increasingly 
gained prominence. These approaches combine classification algorithms with feature 
extraction techniques to predict associations, setting themselves apart from 
conventional similarity-based methods. Zheng et al.[5] introduced the MLMDA model, 
which integrates deep self-encoder downscaling along with a random forest classifier. 
Meanwhile, Chen et al.[6] addressed the challenge of only predicting binary 
associations by creating the RBMMMDA model, which leverages a Restricted 
Boltzmann Machine (RBM). 

The increasing prevalence of graph neural networks has spurred researchers to explore 
their effectiveness in predicting the associations between microRNAs (miRNAs) and 
diseases[7]. As proposed by Li et al. [8] , the GAEMDA model leverages a graph neural 
network encoder in conjunction with a bilinear decoder to reconstitute the associations 
between miRNAs and diseases. Ji et al. [9] , in their research, integrated a deep 
autoencoder with a graph neural network encoder and also utilized a bilinear decoder 
for the reconstruction of miRNA-disease relationships. Additionally, Li et 
al. [10]  employed a fully connected graph in combination with a two-layer graph 
convolutional network to forecast potential associations between miRNAs and diseases.  

Most models extract feature embeddings for miRNA-disease associations but face 
issues such as network noise, loss of local structural information, and difficulty 
preserving deeper associations. To address these, we propose MGACMDA, a new 
computational model using multi-view generation and contrast learning. We fuse 
various similarity kernels via SKF and construct graph attributes with three views: 
global, local, and topology-enhanced. Feature fusion is then performed using a graph 
attention encoder with residual concatenation to preserve critical biosignatures. Next, 
dynamic multi-view contrastive learning is employed with a momentum encoder to 
maintain a negative sample queue, ensuring consistency across views and improving 
the discrimination of sparse associations. Finally, the optimized graph structure is input 
into a deep neural network classifier for association prediction. Specifically, the 
primary contributions of our study include the following components: 
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1. Different data enhancement methods are employed to design the global-local-noise 
three-view generation strategy, where the global view provides a macro-
association framework, the local view complements fine-grained biomodule 
signals, and the noise view enhances generalization capability. This strategy 
improves the model's robustness to sparse data and noise, fine-tunes the capture of 
local functional module information, and ensures global topological integrity. 

2. The design of a graph attention encoder with residual linking is employed to avoid 
information loss by fusing shallow topological features with deep semantic 
representations through a residual mechanism. 

3. A multi-view contrastive Learning module is developed to construct positive-
negative sample pairs, ensuring that the representation of the same node under 
different augmented views is as consistent as possible, while simultaneously 
differentiating the representations of different nodes to obtain feature embeddings 
that capture both local structural information and global discriminative ability. 

Fig. 1. Workflow of MGACMDA. (a) Construct the miRNA and disease similarity kernel module. 

(b) Generate three views through data augmentation. (c) Multi-view contrastive learning module, 

where the encoder is a residual graph attention encoder. (d) Deep neural network prediction module. 



 

2 MATERIALS AND METHODS 

2.1 An Overview of MGACMDA 

In this study, we propose MGACMDA, a predictive model using graph-attention 
contrast learning. The model integrates multi-source similarity data through similarity 
kernel fusion and constructs global, local, and topological views. A graph attention 
encoder with residual connections extracts deep features and improves the distinction 
of sparse associations. A classifier is used to output prediction probabilities. The 
workflow of MGACMDA is illustrated in Fig. 1. 

2.2 Disease semantic similarity 

To measure the semantic similarity between two diseases, we employ their Directed 
Acyclic Graphs (DAGs), which are created by associating disease names with MeSH 
descriptors. 

Let the DAG of disease id  and disease jd be denoted as ( )iDAG d and ( )jDAG d , 
respectively, disease semantic similarity ( ),i jDSS d d can be calculated by their DAGs: 
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Where 
i jd dT T  denotes the collection of common ancestor nodes for id  and jd . 

( )dSV t  indicates the semantic contribution of node dt T  to node d , while

( ) ( )
d

d
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

=  signifies the semantic value associated with the disease. This 

leads to a similarity matrix 1SD  calculated pairwise for every disease, where each 

element, denoted as ( )1 ,i jSD d d  , signifies the functional similarity existing between 

the i-th and j-th diseases. 

2.3 Disease similarity measured by the GIP kernel 

Since the disease semantic similarity matrix (SD) is sparse, several studies [9] have 
shown that reducing its sparsity improves prediction accuracy. To enrich the disease 
similarity information, this paper introduces the use of the Gaussian kernel function to 
calculate the Gaussian kernel interaction spectrum between diseases. 

Should the matrix 2SD  be employed to illustrate the GIP similarity information among 
diseases, its dimensions will also be nd nd . The GIP similarity ( )2 ,i jSD d d  
between disease id  and disease jd  can be computed as indicated in (2). 
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In this context, d  denotes the parameter used to regulate the width of the Gaussian 
kernel, as outlined in equation(3), The variable nd signifies the count of diseases, and 
the value assigned to 

d  is established at 1, in alignment with prior research[11]. 

2.4 miRNA functional similarity 

Let the set of diseases corresponding to miRNA u  be ( )DG u and the set of diseases 
corresponding to miRNA v  be ( )DG v ; if a disease ( )ud DG u , its similarity to 

( )DG v  can be taken to be the maximum of semantic similarity between this disease 
and all diseases in the set: 

 ( )( )
( )

( )S , max ,u u
d DG v

d DG v DSS d d


=  (4) 

 ( )( )
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Similarly, for ( )vd DG v , ( )( )v ,  S d DG u  can be calculated. Next, the similarity 
between two disease groups is defined as (5).Finally, the miRNA functional similarity 
between u and v is defined as (6). 
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After calculating all miRNAs two by two, a similarity matrix 1SM  of m mn n is 
summarized, and each element ( )1 ,i jSM m m in this matrix means the functional 
similarity of the i-th miRNA to the j-th miRNA. 

2.5 GIP kernel similarity for miRNA 

To enhance the richness of miRNA similarity information, this paper also introduces 
Gaussian nuclear interaction similarity data for miRNAs. Specifically, the Gaussian 
nuclear function is employed to compute the Gaussian nuclear interaction spectrum 
among miRNAs. In a manner analogous to the computation of disease GIP similarity 
outlined in (2), miRNA GIP similarity ( )2 ,i jSM m m is defined in this way: 

 ( ) ( ) ( )( )
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Where m  is the parameter that can control the Gaussian kernel width, which is defined 
by (8), nm represents the number of miRNA, with the value of 

m   established at 1 , 
following the findings of earlier research [11]. 

2.6 Integrating similarity for miRNA and disease 

The algorithm for fusion of similarity kernels[12] was utilized to combine two different 
miRNA similarity kernels into a unified and all-encompassing miRNA similarity kernel. 
Analogously, two disease similarity kernels were amalgamated to form a single, 
comprehensive disease similarity kernel. To provide clarity, we will use miRNA 
similarity kernels as a case study to illustrate this fusion methodology, using the HMDD 



 

v3.2 dataset as a reference to explain our approach while maintaining its general 
applicability. 

First, we normalized the above two miRNA similarity kernels ( , 1,2x yM =，y ), and the 
normalized matrix is denoted as ,x y , the formula is as follows: 
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To further suppress noise, we introduce neighborhood constraints for each similarity 
kernel. For each miRNA ix , we select the previous most similar k  miRNA to form 
the neighborhood set ( )x, ,yN i k , and apply the neighborhood constraint to the 
similarity kernel: 

 ( ) ( ) ( ), , , ,, , ,x y x y x y ki j M i j I i j =  (10) 

Where ( ), , ,x y kI i j is the indicator function, indicating whether miRNA jx belongs to 
the miRNA ix neighborhood. 

Finally, through the following iterative process, multiple similarity kernels are fused: 
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In this context, t  denotes the number of iterations, a signifies the fusion weight, and

( ), 0x y   indicates the initialized similarity kernel. This method can efficiently 
combine the information from various similarity kernels. Ultimately, we derive the 
miRNA similarity matrix, denoted as SM , along with the disease similarity matrix, 
referred to as SD . 

2.7 Data Augmentations 

Thresholding 

In order to retain the stronger association information while initially filtering the noise, 
we perform a thresholding operation on the similarity matrix. Next, using the miRNA 
similarity matrix SM  as an example, specifically, given a threshold mth  , if the 
similarity ijSM mth  is considered to be a potentially strong association between 
miRNA i  and miRNA j  , otherwise it is considered to be a weak association and is set 
to 0. This can be formally written as: 

 1   SM ,

0  .
ijif mth

ij otherwiseSM
 =  (12) 

Where SM denotes the thresholded adjacency matrix. A selection grid search for the 
threshold mth  determines the optimal value. 

KNN-based Local Enhancement 

Although thresholding removes some noise, it fails to capture local structure. Therefore, 
we use a KNN strategy to construct a locally enhanced view that preserves relevant 
neighbors. Formally it can be expressed as: 
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 1      if  j  KNN ( ),

0      otherwise.
k i

ijKM


=  (13) 

The KNN method retains the most similar neighbors for each node, emphasizing local 
structure and reducing global noise. We combine this with the miRNA-disease 
association matrix to obtain a locally enhanced view, which better focuses on the "local 
tightness" relationship for improved learning of local node representations. 

Gaussian Noise Based Topology Enhanced View Generation 

In order to further simulate the random perturbations that may exist in real biological 
networks, as well as to improve the robustness of comparative learning, we add 
Gaussian noise to the similarity matrix SM  to construct topology-enhanced views. The 
specific treatment is as follows: 

 𝐺𝑀 = 𝑆𝑀 + 𝜖,  ϵ ∼ 𝑁(0, 𝜎2𝐼), (14) 

where  is the standard deviation hyperparameter that controls the noise intensity and
I  is the unit array. For the GM  after the addition of noise is combined with the 
correlation matrix to obtain the final topologically enhanced view. 

2.8 Graphical Attention network 

Graph attention networks aggregate information more effectively by learning the 
importance of neighboring nodes. A multi-head graph attention layer, incorporating 
residual connections, was utilized by us to extract features associated with miRNAs and 
diseases. Below, we outline the detailed principles and derivations of the formulas. 

First, for each node in the graph, let its input feature be
d

ix R  , which we transform 
to a higher dimensional representation space using linear mapping: 

 ,   i=1,...,M,i ih Wx=  (15) 

where d dW R   represents the weight matrix that can be learned, and d   indicates the 
dimension of the mapped features. In the single-head graph attention layer, for each 
neighboring node pair i   and j  (where ( )j i  ), ( )i  refers to the collection of 
neighbors associated with node i  , meaning all nodes that are directly linked to node 
i  (where edges are present). We splice their transformed features and compute the 
attention score using the parameter vector 2da R


  : 

 ( )Re ||T

ij i je Leaky LU a h h =    (16) 

The notation " ||  " represents the vector splicing operation, while the LeakyReLU 
activation function, with a negative slope of 0.2, is employed to improve nonlinear 
representation[13] . Subsequently, the scores of all neighboring nodes are softmax 
normalized to obtain the attention coefficients: 
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Leveraging attention coefficients, the features adjacent to the node i  are weighted and 
aggregated, subsequently generating a new representation via the ELU activation 
function. To thoroughly capture the varied local structural information present in the 



 

graph, this research incorporates a multi-head attention mechanism that builds upon 
single-head attention. As illustrated in Fig. 2, by executing M  single-head attention 
layers concurrently, the individual node representations are calculated and 
subsequently merged along the feature dimension: 
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This is followed by fusion of the information from each head by linear mapping and 
ELU activation: 

 ( ) ,i c i

concath ELU W h =  (19) 

where cW  represents the weight matrix allocated to the target dimension following the 
splicing process. 

To address the issue of information loss and gradient vanishing potentially arising from 
deep stacking, while maintaining the original feature information, we integrate residual 
connections across several head-attention layers[14]. The final output consists of the 
fused attention result summed with the residuals and activated by ReLU: 

 ( )Rei i r iz LU h W h= +  (20) 

The entire graph attention encoder consists of multiple layers stacked with residuals 
from multiple graph attention layers. Let there be a total of L  layers in the encoder, and 
the input of the l  th layer is ( )1l

H
−  , which is obtained after processing in this layer: 

 
1( ) ( )( ( ,,( )( )))l lH Dropout ReLU GATLayer l H A−=  (21) 

In this context, A  represents the graph's adjacency matrix, and the Dropout technique 
aids in enhancing the model's generalization capabilities. 

Fig. 2. The feature extraction architecture of MGACMDA 
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2.9 Multi-view Contrastive Learning Model 

Utilizing the MoCo framework, we present a module for self-supervised contrastive 
learning. The fundamental concept is to create pairs of positive and negative samples, 
maintaining consistency for identical nodes across different views, while differentiating 
between distinct nodes. This enables the extraction of feature embeddings that capture 
both local structure and global discrimination[15]. We construct a dynamically updated 
queue at C MN  for negative samples in contrast learning, enabling the model to 
leverage historical negative samples and enhance feature discrimination in miRNA-
disease association prediction. 

The query encoder and key encoder are represented as ( )qf •  and ( )kf •  respectively, 
both of which utilize a GAT-based approach. The ReLU activation function is widely 
employed in this context. With the notation established, where Z  indicates the feature 
representations of the original view and Z    represents the feature representations of 
the augmented views (which include locally and topologically augmented views), and 
the graph attention encoder, which is denoted by GATEK and incorporates K attention 
heads, can be articulated in our representation learning approach as follows: 

 ( ) ( )K KGATE , ,   Z =GATE ,Z Y A Y A =  (22) 

After obtaining the latent representations of the query and the key, we first normalize 
them to ensure that all vectors are distributed on the unit sphere so that the dot product 
operation can better reflect the cosine similarity. For each sample i  : 

The positive sample score is calculated as: 

 
( )

,i i il Z Z
+ =  (23) 

The negative sample score is calculated as 

 ( )
, ,   1,..., ,ij i jl Z q j MN

−
= =  (24) 

Where jq  is from the dynamic negative sample queue. 

The scores derived from both positive and negative samples were aggregated into a 
logit vector. Subsequently, this vector was adjusted by applying the temperature 
parameter T : 

 ( ) ( ) ( )
1, ,...,   i

i i i iMN i

I
I l l l I

T

+ − − = 
 

且  (25) 

Finally, we optimized the model using InfoNCE loss: 
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The key encoder inputs are considered to come from different views (local augmented 
view and topological augmented view) so as to obtain feature embeddings with both 
local structural information and global discriminative power. We construct two 



 

independent contrast learning branches to compute the losses
1
L  and

2
L  , respectively, 

and weight the fusion with the weighting parameter   : 

 1 21 .( )  = + −L L L  (27) 

The swift evolution of encoder networks may diminish the consistency of embeddings, 
resulting in subpar performance. To address this issue, we implement a momentum 
update approach. Denote the parameters of qf  as q  , and those of kf  as k . The 
parameters of the query encoder are optimized through the application of 
backpropagation. In contrast, the parameters of the key encoder are updated using a 
momentum-based approach. This momentum-based update mechanism effectively 
manages and rectifies the model's discrepancies in an appropriate manner. 
Subsequently, a linear combination operation is carried out on the parameters obtained 
from both the key encoder and the query encoder: 

 ,(1 )k k qm m    + −   (28) 

The momentum factor  )0,1m  controls the update speed. A larger m value 
makes k  update more slowly. The slow - growing property of the key encoder is 
crucial. It stabilizes the model's feature extraction and enables more effective use of 
historical negative samples in contrast learning. As the key encoder's inputs come from 
different views, it can better capture cross - view consistent features, enhancing the 
model's node - discrimination ability. A small m may cause rapid key encoder updates, 
disrupting the utilization of historical negative samples and view - consistency. In brief, 
a slow - growing key encoder is essential for fully leveraging the queue. 

2.10 miRNA-Disease Prediction Module 

After obtaining node representations with strong discriminative power after the 
comparative learning module, it is necessary for us to further develop classifiers that 
can be utilized to predict the existence of associations between microRNAs (miRNAs) 
and diseases. For each miRNA-disease pair to be predicted, we extract its final 
embedding from the vector representations of miRNA and disease obtained by 
comparative learning, denoted as

( )m
h  and

( )d
h  , respectively. These two vectors are 

then spliced to obtain a composite representation z  : 

 
( ) ( )( ),
m d

z Concat h h= ， (29) 

This comprehensive representation contains both miRNA and disease information, 
providing sufficient contextual features for the classifier. 

The representation is subsequently input into a neural network composed of four fully 
connected layers, allowing it to learn the inherent nonlinear mapping and produce the 
final predicted value. During the training process, we make use of the binary cross-
entropy loss function to reduce the difference between the predicted value, denoted as
ˆ

iy  and the actual label, represented by iy : 

 ( ) ( ) ( )
1

1
log 1 l 1ogˆ ˆ

N

iB

i

iCE i iy yy y
N =

= −  + −   −L  (30) 
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Where N  the number of samples involved in the loss calculation. 

3 EXPERIMENTAL 

3.1 Human miRNA-disease associations 

In this research, we combined multiple types of data—associations between miRNAs 
and diseases, sequences of miRNAs, and vocabulary related to diseases—to train and 
assess our approach. Data was obtained from the HMDDv2.0 and HMDDv3.2 
databases, which include 5,430 and 35,547 validated associations of miRNA with 
diseases, respectively. We gathered miRNA sequence features from miRBase  and 
excluded entries that had missing or misaligned sequences. The disease information 
was retrieved from MeSH, where each disease is designated with a unique name and 
organized in a hierarchical structure as a directed acyclic graph (DAG). After 
eliminating duplicates, we preserved 495 miRNAs in HMDDv2.0 and 1,126 miRNAs 
in HMDDv3.2, leading to a total of 5,430 and 18,629 associations between miRNAs 
and diseases, respectively. 

Table 1. Benchmark Databases Description 

3.2 Evaluation indicators 

In order to assess the effectiveness of the suggested miRNA-disease association 
prediction model (MGACMDA) utilizing graph-attention contrastive learning, we 
performed an experimental analysis through five-fold cross-validation and chose 
various well-established evaluation metrics, such as AUC, AUPR, and F1-score.  

In order to calculate the Area Under the Curve (AUC), multiple threshold values are 
applied to compute both the True Positive Rate (TPR) and the False Positive Rate (FPR). 
Subsequently, the ROC curve is generated, and the area beneath this curve is computed. 
It is important to note that both AUPR and AUC values span from 0 to 1, with higher 
values signifying improved predictive effectiveness of the method.  

3.3 Parametric Analysis 

 The MGACMDA model was developed and executed in Python. It made use of 
PyTorch 1.13 and DGL libraries, and the implementation took place on an Ubuntu 
20.04 operating system. We optimized the model by employing the Adam optimizer 
with a learning rate of 310− . The batch size was configured as 64, and the training 
process consisted of a total of 200 iterations. For the classifier, training was conducted 
over 50 iterations, incorporating 8 attention heads within the encoder.  

In the construction stages of the original and augmented views, key parameters such as 
miRNA and disease similarity thresholds mth , dth  , and the number of neighbors 1k  ,

Dataset Disease miRNA associations 

HMDD v2 383 495 5430 

HMDD v3.2 893 1126 18629 



 

2k  in the K-nearest neighbor algorithm affect model performance. We employed the 
control variable method to identify optimal settings. First, we fix 1k  and 2k  as 10, and 
varied mth  and dth  as 0.1 to 0.9, with an interval of 0.1 to train the model, and the 
outcomes are presented in Fig. 3. Finally, we found that the model has the best 
prediction performance when mth  , dth  are set to 0.6 and 0.7 respectively, in order to 
find out the optimal value of 1k  , 2k  , then we fixed mth  , dth  to 0.6 and 0.7, and set 1k  ,

2k  to 0 to 100, with an interval of 10 to train the model, and the model has the optimal 
prediction performance when 1k  , 2k  are set to 30, 50, and the predictive performance 
of the model reaches to 0.9448.and the outcomes are presented in Fig. 4.  

3.4 Comparison with other methods 

The evaluation of MGACMDA involved a comparison with four sophisticated methods: 
NIMCGCN, DBMDA, MuCoMiD, and PMDAGS, utilizing AUC values for this 
analysis. We conducted 5-fold cross-validation on the HMDD v2.0 and HMDD v3.2 
datasets. To assess the performance of the models employed during this process, we 
utilized the Area Under the Curve (AUC) metric.  

NIMCGCN employs a graph convolutional network (GCN) along with the NIMC 
model to forecast miRNA-disease associations[16]. DBMDA transforms sequence 
similarity into Euclidean features and applies a rotated forest classifier[17]. MuCoMiD 
is a multi-task GCN model that consolidates various biological data sources to predict 
associations between miRNAs and diseases[18]. PMDAGS, on the other hand, derives 
feature embedding vectors by leveraging a nonlinear diffusion graph convolutional 
network, which are then used as input for a multi-layer perceptron to facilitate 
prediction[19].  

Under identical testing conditions, the outcomes of the comparisons for the balanced 
test set are presented in Table 2. The MGACMDA approach exhibits better 
performance than alternative methods, attaining AUC values of 0.9223 for the HMDD 
v2.0 dataset and 0.9436 for the v3.2 dataset. The model’s predictive effectiveness is 
illustrated by the ROC and Precision-Recall (P-R) curves shown Fig. 5. An increased 
area beneath the ROC curve signifies enhanced performance. 

Fig. 4. AUC with Different Thresholds Fig. 3. AUC Heatmap with different k1 and k2 values 
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Table 2. Performance Comparison With Other Methods Using AUC Based On 5-CV On HMDD 

V2.0 And HMDD V3.2 Datasets 

3.5 Ablation Study  

Graph Attention Encoder Performance Analysis Using Residual Connections 

Deep graph neural networks encounter challenges such as feature fading and gradient 
vanishing, which result in the loss of shallow topological information. To tackle this 
issue, we incorporate residual connectivity in the encoder to facilitate cross-layer 
feature fusion. To assess its effectiveness, we create MGACMDA-NR by eliminating 
all residual connections. Subsequently, we conduct five-fold cross-validation on the 
HMDD v3.2 dataset. 

Table 3. Performance Comparison Using the Residual Graph Attention Encoder under 5-CV 

As shown in Table 3, the full model enhances AUC and AUPR by 13.51% and 15.40%, 
respectively, while the F1-score rises from 0.7452 to 0.8740. These findings suggest 
that the residual mechanism significantly alleviates the problem of information 
degradation in deep networks. 

METHOD 
HMDD V2.0 HMDD V3.2 

AUC AUC 

NIMCGCN 0.8851 0.9387 

DBMDA 0.8438 0.8743 

MUCOMID 0.8374 0.9168 

PMDAGS 0.9222 0.9366 
MGACMDA 0.9223 0.9436 

5-CV 

Method AUC AUPR F1-score 

MGACMDA 0.9448 0.9471 0.8740 

MGACMDA-NR 0.8323 0.8207 0.7452 

Fig. 5. ROC curves and P-R curves of MGACMDA on HMDD v3.2. 



 

Synergistic Enhancement of Multi-View Comparative Learning 

Single-view learning methods have limitations in miRNA-disease prediction, as they 
struggle to capture fine-grained features and are prone to overfitting in sparse scenarios. 
To address this, we propose a global-local-topological three-view-based comparative 
learning framework that enhances the model's ability to mine complementary features 
through cross-view consistency. To verify this, we set up three variant models by 
disabling specific views: MGACMDA-S1 (global view only), MGACMDA-S2 (local 
view only), and MGACMDA-S3 (topological view only). The HMDD v3.2 dataset 
underwent five-fold cross-validation. 

As shown in Fig. 6, the multi-view comparison model shows significant improvements 
in AUC, AUPR, and F1-score, indicating that multi-view learning enhances the model's 
ability to mine heterogeneous features. 

3.6 Predictive performance analysis using different classifiers 

In the suggested MGACMDA framework, we employed a DNN classifier to forecast 
miRNA-disease relationships, and we assessed its effectiveness against MLP and 
LightGBM classifiers to determine its advantages.  

MLP is a type of DNN with input, hidden, and output layers, where neurons perform 
nonlinear transformations using activation functions. LightGBM is an efficient 
Gradient Boosting Tree (GBT) framework that optimizes traditional gradient boosting 
for high training efficiency and low memory usage. 

We named the MGACMDA models with the MLP and LightGBM classifiers as 
MGACMDA-M and MGACMDA-L, respectively. A five-fold cross-validation was 
used to evaluate each classifier's performance in miRNA-disease prediction. The results 
in Fig. 7 show that the DNN classifier significantly outperforms MLP and LightGBM 
in AUC, AUPR, and F1-score. 

Fig. 6. Performance Comparison of MGACMDA under Different Views 
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3.7 Case Studies 

In order to thoroughly assess the true predictive capacity of MGACMDA, we 
performed case studies focusing on three significant human diseases: colon cancer and 
triple-negative breast cancer. Initially, we employed the established connections 
identified in the HMDD v3.2 database to serve as the training dataset for MGACMDA. 
Subsequently, we evaluated the leading 30 candidate miRNAs associated with these 
diseases, referencing both the HMDD v4.0 and dbDEMC databases. 

Table 4. The MGACMDA predicted the top 30 miRNAs associated with colon neoplasms 

Colon cancer ranks as the third most prevalent cancer across the globe, exhibiting 
comparable incidence rates among both genders. According to the HMDD v3.2 
database, Table 4  presents the 30 most notable miRNAs linked to colon tumors. All 
identified molecules received validation in the dataset used for confirmation, with 29 

miRNA(1-15) Evidence miRNA(16-30) Evidence 

h-m-21 V4.0 dEC h-m-125b V4.0 dEC 

h-m-155 V4.0 dEC h-m-210 V4.0 dEC 

h-m-146a V4.0 dEC h-m-31 V4.0 dEC 

h-m-34a V4.0 dEC h-m-19a V4.0 dEC 

h-m-145 V4.0 dEC h-m-15a dEC 

h-m-223 V4.0 dEC h-m-142 V4.0 

h-m-126 V4.0 dEC h-m-203 V4.0 dEC 

h-m-17 V4.0 dEC h-m-182 V4.0 dEC 

h-m-221 V4.0 dEC h-m-214 V4.0 dEC 

h-m-150 dEC h-m-30a dEC 

h-m-20a V4.0 dEC h-m-27a V4.0 dEC 

h-m-29a V4.0 dEC h-m-29b V4.0 dEC 

h-m-143 V4.0 dEC h-m-26a V4.0 dEC 

h-m-16 dEC hsa-let-7a V4.0 dEC 

h-m-222 V4.0 dEC h-m-200b V4.0 dEC 

V4.0 denotes HMDD v4.0,dEC denotes dbDEMC,h-m denotes has-mir. 

Fig. 7. Comparison of evaluation indexes of different classifiers 



 

being corroborated by HMDD v4.0 and 29 by dbDEMC v3.0. This indicates that the 
model demonstrates significant generalization capability. 

Table 5. The MGACMDA predicted the top 30 miRNAs associated with breast cancer 

Triple negative breast cancer (TNBC) represents 15% of breast cancer instances and is 
associated with a dismal prognosis stemming from the absence of targeted treatments. 
in Table 5, we conduct and present a Triple Negative Breast Cancer (TNBC) case study 
utilizing the HMDD v3.2 dataset. The findings of this case study reveal that among the 
top 30 candidate microRNAs (miRNAs), 26 were verified by the HMDD v4.0 dataset, 
and 29 were validated through the dbDEMC v3.0 database. 

4 RESULTS AND DISCUSSION 

Computational approaches aimed at detecting microRNA (miRNA) - disease 
associations play a pivotal role in disease-related research endeavors. We propose 
MGACMDA, a multi - view graph attention contrast - learning - based model for 
predicting such associations. Our model's multi - view contrastive learning outperforms 
single - view methods. Single - view methods capture limited information, while our 
multi - view framework combines global, local, and topological views. The global view 
gives an overall understanding, the local view catches fine - grained signals for accurate 
prediction, and the topological view with added Gaussian noise improves 
generalization. This helps the model extract comprehensive features and reduce 
overfitting in sparse data. Integrating these views with a residual attention encoder and 
dynamic contrast learning, MGACMDA becomes more robust to data sparsity, 
suppresses network noise, and extracts deep - topological information. Experiments on 
HMDD v2.0 and v3.2 datasets show AUCs of 0.9223 and 0.9448. Ablation experiments 
prove the significance of multi - view contrast learning and residual connectivity. Case 
studies on triple - negative breast cancer and colon cancer show that over 92% of the 

miRNA(1-15) Evidence miRNA(16-30) Evidence 

h-m-21 V4.0 dEC h-m-16 V4.0 dEC 

h-m-155 V4.0 dEC h-m-19a V4.0 dEC 

h-m-146a V4.0 dEC h-m-210 V4.0 dEC 

h-m-34a V4.0 dEC h-m-31 V4.0 dEC 

h-m-145 V4.0 dEC h-m-15a V4.0 dEC 

h-m-17 V4.0 dEC h-m-142 V4.0 

h-m-223 V4.0 dEC h-m-182 V4.0 dEC 

h-m-126 V4.0 dEC h-m-203 V4.0 dEC 

h-m-221 V4.0 dEC h-m-200b V4.0 dEC 

h-m-150 V4.0 dEC h-m-29b V4.0 dEC 

h-m-20a V4.0 dEC h-m-30a dEC 

h-m-143 V4.0 dEC h-m-27a V4.0 dEC 

h-m-29a V4.0 dEC h-m-26a V4.0 dEC 

h-m-222 V4.0 dEC hsa-let-7a V4.0 dEC 

h-m-125b V4.0 dEC h-m-122 V4.0 dEC 

V4.0 denotes HMDD v4.0,dEC denotes dbDEMC,h-m denotes has-mir. 
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top 30 predicted miRNAs were validated by independent databases. This study provides 
a new way to understand the miRNA regulatory network, and future applications may 
involve integrating single - cell sequencing and multi - omics data. 

Funding. This work was supported by the National Natural Science Foundation of China under 
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