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Abstract. This paper focuses on the zero-shot Composed Image Retrieval (ZS-

CIR) task, which only requires unlabeled images or image-title pairs for model 

training. Previous work has utilized textual inversion networks to form queries 

by combining “a photo of” fixed templates with pseudo-words projected from 

reference image features into the text embedding space. However, fixed prompt 

templates offer limited performance improvement for the model and can affect 

the learning of instance-specific contextual information in open-domain tasks. To 

address these issues, we propose a zero-shot composed image retrieval frame-

work based on contextual enhancement and adaptive prompting (CAP), which 

consists of a Contextual Enhancement Module (CEM) and an Adaptive Prompt-

ing module (APM). CEM introduces bi-directional LSTM re-parameterized 

learnable prompts, and APM decouples the retrieval instances and maps the dif-

ferent features to the corresponding prompt parameters. These two modules co-

operate to construct the optimal prompts adapted to the retrieval instances. Ex-

tensive qualitative and quantitative experiments on three datasets show that our 

model has a good generalization and better performance compared to state-of-the 

art methods. 

Keywords: Composed image retrieval · Zero-shot · Contrastive learning. 

1 Introduction 

Composed Image Retrieval (CIR) refers to the task of retrieving a target image given a 

reference image and modified text as a query [1]. Existing approaches to Composed 

Image Retrieval, which fall into the supervised learning paradigm, train models on la-

beled triplets of the <reference image, modified text, target image> designed specifi-

cally for this task. However, constructing such a triple dataset requires the collection of 

pairs of images (i.e., distinct but similar images), followed by the manual construction 

of descriptions that reflect the differences between the two images [2], thus requiring 

high cost. If the CIR model is applied to a new domain, the triplets for  
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Fig. 1. An illustration of our improvement. (a) Existing framework for ZS-CIR. (b) Ours CAP 

framework for ZS-CIR 

that domain should be constructed, and the model should be retrained. These factors 

limit the scalability of supervised methods into broader open-domains. To address these 

constraints and enhance the generalization capabilities of CIR models, researchers have 

proposed the Zero Shot Composed Image Retrieval (ZS-CIR) [3] task, which requires 

only unlabeled images or image-title pairs to train the model. ZS-CIR can utilize pub-

licly available datasets covering a wide range of domains and semantic categories. As 

shown in Fig. 1(a), the main idea of the ZS-CIR is to train a textual inversion network, 

which serves as a function that transforms image features into the text embedding space 

to generate pseudo-words. The manually designed prompt template “a photo of” com-

bined with the pseudo-word mapped into the text embedding vector constitutes the text, 

which is then fed into a text encoder (e.g.,CLIP [4]) to obtain text features. The weights 

of the textual inversion network are updated through contrastive learning of the text 

features with the image features. This process aims to achieve close alignment of text 

and image semantics, even in cases where only image data is available. The manually 

crafted prompts in existing methods are designed to provide the text encoder with com-

prehensive contextual information about the reference image. However, these manually 

designed prompt templates are not optimal, and a single pseudo-word fails to ade-

quately decouple the attributes and other information within the retrieved image in-

stance, which hinders the provision of adaptive prompts for retrieval instances. 

To address the above two issues, we propose a novel zero-shot composed image re-

trieval framework named CAP, which is based on contextual enhancement and adaptive 

prompting. Compared to conventional ZS-CIR methods and inspired by prompt learn-

ing, our work focuses on learning adaptive prompts instead of using fixed prompts, as 

depicted in Fig. 1(b). We propose the Contextual Enhancement Module (CEM) to learn 

the most effective templates for the training dataset. It introduces learnable parameters 

in place of fixed manual prompts and employs the Bidirectional long short-term 

memory network (BiLSTM) to reparameterize the learnable parameters. The BiLSTM 

is capable of handling both forward and reverse data inputs, enabling the prompt em-

beddings to consider contextual information and form interdependencies. To prevent 

the model from forgetting the features learned during the CLIP encoding phase when 

updating its weights, we further employ residual connections for the BiLSTM. The 

CEM can learn effective prompts for the training dataset. However, once training is 

completed, during the inference phase, the learned prompts are loaded from the saved 

model for each query instance. When extending retrieval instances to an open-domain 
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unseen by the model, these prompts exhibit certain limitations. To address this, we pro-

pose the Adaptive Prompting Module (APM), which generates unique prompts for each 

retrieval instance by decoupling and mapping different aspects of image feature infor-

mation and generating prompt offsets for each prompt embedding. By combining these 

prompt offsets with the learnable parameters of the CEM, we can generate specific 

prompts 

for retrieval instances, thereby enhancing the generalization and transferability of the 

CIR model across unseen open-domains. The major contributions can be summarized 

as follows: 

• We propose a novel zero-shot network CAP, a framework that focuses on providing 

text encoders with more complete contextual information about the reference image by 

learning context-dependent prompt. 

• To overcome the challenge that fixed templates trained on a specific dataset cannot 

be adapted to retrieved instances, we propose the APM to facilitate the mapping of 

different features of an image to distinct prompts. 

• Extensive experimental results demonstrate that our proposed method outperforms 

state-of-the-art methods across three different datasets. 

2 Related Work 

2.1 Zero-shot Composed Image Retrieval 

The rapid expansion of vision-language pre-trained (VLP) models has significantly im-

proved the performance of supervised CIR tasks, attributed to their advanced cross-

modal alignment and feature extraction capabilities. Nonetheless, the conventional su-

pervised learning framework necessitates the need for costly annotated image-text tri-

ples for model training. To address these issues, researchers have proposed ZS-CIR. 

The goal of ZS-CIR is to train models using unlabeled images or image-text pairs. Dur-

ing the inference phase, ZS-CIR leverages a reference image and an adapted text de-

scription to automatically retrieve the target image. For instance, Pic2Word [3] utilizes 

a text inversion method to transform image features into individual pseudo-words in 

the CLIP text embedding space. iSEARLE [5] with the same text inversion method uses 

GPT-driven regularization loss and distillation loss for pre-training to process image 

features in a more fine-grained way. LinCIR [6] trains exclusively on text datasets by 

projecting latent embeddings into token space and replacing keywords to create new 

texts. All of these models utilize text inversion and fixed manual templates as prompts, 

overlooking the role that prompts play in pre-trained models. By fine-tuning the 

prompt, we can craft the most effective prompts to provide contextual information that 

is most relevant to the image, thereby enabling the constructed text to more accurately 

express the content of the image. 



 
Fig. 2. (a) The Architecture of our proposed CAP. m feature decoupling functions (𝑓𝑖) are com-

bined to form the APM. (b) The specific structure of CEM. 

2.2 Prompt Learning 

Prompt learning has been widely used in VLP models and Large Language Models 

(LLMs). It originated in the field of Natuarl Language Processing(NLP), where it 

served to improve practical utility by using pre-trained language models as a  

knowledge base [7]. Recent research has transformed the approach of prompt into using 

a set of continuous vectors for direct end-to-end optimization [8], and has introduced 

prompting learning to adapt VLP models in the visual domain. CoOp [9] introduces 

sequential prompt learning into the visual domain, facilitating the adaptation of VLP 

models, Furthermore, CoCoOp [10] addresses the generalization issue of CoOp by em-

ploying image instances as prompts. PRE [11] leverages a prompt encoder to re-param-

eterize the prompt embeddings, thereby enhancing the exploration of domain-specific 

knowledge. Inspired by the concept of prompt learning, in this work, we harness the 

idea of prompt learning to enhance the generalization capability of ZS-CIR. 

3 Proposed Method 

The overall architecture of our proposed CAP is shown in Fig. 2(a). In the training 

phase, image features are mapped to the text embedding space to form pseudo-words 

using the textual inversion network, while prompts are generated collaboratively using 

CEM and APM. The prompt and pseudo-words form a pseudo-phrase describing the 

contextual information of the image and are fed into the text encoder. Finally, contras-

tive learning is employed to minimize the distance between image and text features, 

thus updating the model parameters. In the inference phase, the learned prompts, 

pseudo-words mapped from image features, and modified text are combined to generate 

composite query features, which are compared with the image features in the database 

for effective retrieval. 

3.1 Contextual Enhancement Module 

Inspired by prompt learning, CEM is designed to construct a prompt that encapsulate 

contextual information, with the aim of finding a more appropriate prompt than the 
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manual template “a photo of ”. To construct the prompt, initially𝑚learnable parameters 

are introduced into the text embedding space, which can be denoted as, 

 𝐗 = [𝒙1, 𝒙2, … , 𝒙𝑚] ∈ ℝ𝑚×𝑑𝑡 , (1) 

where the dimension of 𝑑𝑡 corresponds to the dimension of the textual embedding of 

CLIP, being 768. Since the prompt embeddings are supposed to be interdependent, we 

employ a BiLSTM network to handle both forward and reverse sequences of data in-

puts. This approach allows the network to capture contextual information effectively. 

To ensure that the prompt retains the features learned during the CLIP encoding phase, 

we integrate residual connectivity into the BiLSTM. This integration helps in preserv-

ing the learned features while enabling the model to adapt and learn from new data. The 

process can be mathematically represented as follows: 

 𝒄𝑖 = 𝐵𝑖𝐿𝑆𝑇𝑀(𝒙𝑖) + 𝒙𝑖 , 𝑖 = 1, … , 𝑚. (2) 

 𝑪 = [𝒄1, 𝒄2, … , 𝒄𝑚] ∈ ℝ𝑚×𝑑𝑡 , (3) 

where 𝐵𝑖𝐿𝑆𝑇𝑀(⋅) denotes BiLSTM network. 𝑪 is the prompt embeddings after repa-

rameterization. In addition, the module introduces a pseudo-word 𝑺∗  into the text 

branch, which contains the main information in the image as mapped by the textual 

reverse network.  𝑺∗ is obtained in accordance with the baseline model Pic2Word [3] 

through a textual inversion network 𝑓𝑀, 

 𝑺∗ = 𝑓𝑀(𝑽), (4) 

where 𝑉denotes the image feature extracted by the image encoder of CLIP. The module 

has two additional parameters, 𝒕𝑠 and 𝒕𝑒, which denote the embeddings of the start and 

end of the sentence in the CLIP text branch, respectively. The purpose of 𝒕s and 𝒕𝑒 is 

to enable the model to recognize the length of a given text segment. During the training 

process, these two parameters remain fixed along with the gradient updates. The input 

to the text encoder can be represented as: 

 𝑻𝑐 = [𝒕𝑠, 𝒄1, 𝒄2, … , 𝒄𝑚 , 𝑺∗, 𝒕𝑒]. (5) 

3.2 Adaptive Prompting Module 

CEM is able to learn optimal prompt but cannot adapt to open-domain images. When 

different query image instances are input, we further decouple the information in 𝑺∗, 

which contains the image information. We introduce 𝑚 feature decoupling functions 

{𝑓𝑗}𝑗=1
𝑚  to map the different features in 𝑺∗ to prompt offsets 𝑩 = [𝒃1, 𝒃2, … , 𝒃𝑚] ∈

ℝ𝑚×𝑑𝑡 , 

 𝒃𝑗 = 𝑓𝑗(𝒊), 𝑗 = 1, … , 𝑚, (6) 

where 𝑓(⋅) is a multilayer perceptron (MLP) with four linear layers. The 𝑚 feature de-

couple functions have non-shared parameters. The decoupled prompt offset 𝑩 is then 



combined with the prompts 𝑻𝑐 learned by the CEM to obtain the final prompts. The 

final text feature 𝑻 can be represented as, 

 𝒑𝑘 = 𝒄𝑘 + 𝒃𝑘 , 𝑘 = 1, … , 𝑚, (7) 

 𝑻 = [𝒕𝑠, 𝒑1, 𝒑2, … , 𝒑𝑚, 𝑺∗, 𝒕𝑒]. (8) 

Finally, we align the constructed text features 𝑻 with the image features 𝑽 . 

3.3 Loss Function 

We normalize the obtained text features 𝑻 and image features 𝑽, respectively, 

 𝑻 =
𝑻

 ∥ 𝑻 ∥ 
, (9) 

 𝑽 =
𝑽

∥ 𝑽 ∥
. (10) 

We aim to minimize the distance between an image feature and its corresponding text 

feature, while maximizing the distances to other text features, and vice versa. To 

achieve this, we apply a contrastive function as follows: 

 ℒ𝑡2𝑣(𝒕̄, 𝒗̄) = −
1

𝐵
∑ log

exp(𝜅(𝒕̄𝑗,𝒗̄𝑗)/𝜏)

∑ exp(𝜅(𝒕̄𝑗,𝒗̄𝑘)/𝜏)𝐵
𝑘=1

𝐵
𝑗=1 , (11) 

 ℒ𝑣2𝑡(𝒗̄, 𝒕̄) = −
1

𝐵
∑ log

exp(𝜅(𝒗̄𝑗,𝒕̄𝑗)/𝜏)

∑ exp(𝜅(𝒗̄𝑗,𝒕̄𝑘)/𝜏)𝐵
𝑘=1

𝐵
𝑗=1 , (12) 

where 𝜅 is a function computing the cosine distance using the vector dot product. 𝐵 

represents the batch size, and 𝜏 is a temperature coefficient, which controls the strength 

of the penalty for negative samples. The final loss function is the sum of the losses of 

the two comparisons, as follows, 

 ℒ𝑐𝑜𝑛𝑣 = ℒ𝑡2𝑣(𝒕̄, 𝒗̄) + ℒ𝑣2𝑡(𝒗̄, 𝒕̄) (13) 

 

Fig. 3. Qualitative results from our approach CAP on CIRR dataset. The target images are high-

lighted by red boxes. 
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4 Experiment 

4.1 Datasets 

We employ CC3M [12] as a training dataset with the aim of evaluating the performance 

of CAP in downstream CIR tasks. To evaluate the model’s retrieval capabilities and 

generalization abilities in open-domains, we have adopted the CIRR [13] as the stand-

ard CIR benchmarking dataset. Additionally, we conduct domain conversion experi-

ments utilizing ImageNet [14] and object combination experiments with the COCO 

[16]. 

CIRR [13] is a realistic image retrieval dataset that includes a diverse range of com-

mon daily life scenes paired with artificially generated, modified texts. These scenes 

are sourced from the Natural Language Visual Reasoning dataset NLVR2 [15], forming 

36,554 triplets from 21,552 images. 

ImageNet [14], consisting of 200 diverse categories, is used to evaluate model per-

formance via domain conversion tasks. Considering the noise in the annotaions, we 

choose the domains of cartoon, origami, toy, and sculpture to evaluate the model’s 

performance. 

COCO [16] contains images of 91 object categories, reflecting common daily life 

scenarios, and is used for our object combination experiments. In these experiments, 

the reference image is presented without its background while the modified text lists 

additional instances in English. The target image is the original, unprocessed version 

of the reference image. 

 

Table 1. Experiment results on CIRR dataset. "Image only" retrieves the target image using im-

age features alone; "Text only" retrieves the target image using text features alone; "Image+Text" 

retrieves the target image using the average of image and text features. 

Methods R@1 R@5 R@10 R@50 R-s@1 R-s@2 R-s@3 Average 

Image only 7.06 25.02 35.73 59.53 21.05 41.74 61.78 23.04 

Text only 21.31 46.45 57.57 78.93 63.43 81.51 90.65 54.94 

Image+Text 12.84 36.95 50.37 78.23 33.92 58.96 76.56 35.47 

Pic2Word* 23.18 51.52 64.00 86.30 54.08 75.48 86.80 32.80 

Pic2Word [3] 23.90 51.70 65.30 87.80 - - - - 

SEARLE-XL [17] 24.24 52.48 66.29 88.84 53.76 75.01 88.19 53.12 

LinCIR [6] 25.04 53.25 66.68 - 57.11 77.37 88.89 55.18 

CIReVL [18] 24.55 52.31 64.92 86.34 59.54 79.88 89.69 55.93 

CAP 25.86 55.80 68.95 88.47 57.90 78.83 89.43 56.85 



4.2 Implementation Details 

In this work, we utilize CLIP (ViT-L/14 version) as the feature extraction backbone for 

images and a Transformer as the text extraction backbone. Both image and text features 

are projected into a common 768-dimensional embedding space. The number  

Table 2. Experiment results on ImageNet. 

Methods 
Cartoon Origami Toy Sculpture 

Average 
R@10 R@50 R@10 R@50 R@10 R@50 R@10 R@50 

Image only 0.3 4.6 0.2 1.7 0.6 6.0 0.4 4.3 2.3 

Text only 0.2 0.9 0.6 3.2 0.5 1.8 0.2 2.1 1.2 

Image+Text 2.2 13.1 2.5 12.7 1.6 11.2 1.4 10.7 6.9 

Pic2Word 8.0 21.9 13.5 5.6 8.7 21.6 10.0 23.8 16.7 

CAP 9.7 24.9 15.4 27.0 10.1 25.2 10.5 26.7 18.7 

Table 3. Composition experiment results on COCO. 

Methods R@1 R@5 R@10 Average 

Image only 8.2 14.9 19.0 14.0 

Text only 6.0 16.3 23.6 15.3 

Image+Text 10.4 20.4 26.7 19.2 

Pic2Word 11.5 24.8 33.4 29.1 

CAP 12.30 26.51 35.07 30.79 

of learnable parameters introduced in CEM is 3. During training, we apply the AdamW 

optimizer [19] with a batch size of 1024, a learning rate of 1e−4, a learning rate decay 

weight of 0.1, and a learning rate warm-up iteration of 1×104, training for a total of 40 

epochs. All experiments are conducted using the PyTorch neural network framework 

on a single NVIDIA A100 GPU. We measure retrieval performance using Recall@K 

(R@K) [20], which calculates the percentage of evaluation queries that retrieve the tar-

get image within the top-K results. 

4.3 Comparison with State-of-the-art Methods 

We compared our method with the baseline. Table 1 shows the results of our method 

on CIRR dataset. It can be observed that our method’s CAP performance significantly 

outperforms the state-of-the-art methods on CIRR benchmark dataset. Notably, the av-

erage recall metric, calculated as (R@5+R-s@1)/2, shows an improvement of 4.05% 

over the Pic2Word on CIRR dataset, demonstrating the generality and effectiveness of 

our model. Additionally, our method performs well in composition experiments on the 

COCO dataset and domain conversion experiments with ImageNet, as illustrated in 

Table 2 and Table 3. Compared with Pic2word, an average recall improvement of 2.0% 

and 1.69%, respectively, indicating the model’s domain generalization capability. 
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These results substantiate the superiority of our approach, which we attribute to the 

enhanced and adaptive prompts that better guide the context. 

4.4 Ablation Study 

Table 4. Ablation study on three datasets. The “*” indicates that the decoupling function param-

eters of APM are not shared, meaning that image information cannot be decoupled. 

Methods CEM APM ImageNet COCO CIRR 

Baseline - - 16.65 29.10 52.80 

CEM √ - 17.61 28.71 53.84 

APM - √ 16.82 28.89 53.38 

CAP* √ √* 18.35 28.82 51.54 

CAP √ √ 18.68 30.79 56.85 

Table 5. Ablation study of prompt numbers on ImageNet, COCO, CIRR 

Num ImageNet COCO CIRR Avg 

1 16.25 28.60 53.41 32.75 

2 16.28 29.60 55.32 33.73 

3 18.68 30.79 56.85 35.44 

4 17.16 27.15 53.80 32.70 

5 12.98 29.83 52.06 31.62 

Table 4 presents the ablation results of CAP on three datasets. It can be observed that 

CEM and APM have a positive effect on the model’s performance. The * indicates 

parameter sharing in the information decoupling function of the APM module, which 

means that image information cannot be decoupled. Experimental results reveal that 

this configuration yields worse performance compared to CAP with decoupled infor-

mation. It demonstrates that decouple image information has a beneficial effect on the 

model. In addition, the collaboration between CEM and APM shows effectiveness in 

the ablation experiments, since it can promote the prompt to obtain more contextual 

information, facilitating the alignment of textual semantics with image semantics. 

Table 5 presents the ablation results of prompt numbers on three datasets. When the 

number of prompts is set to 3, the model achieves optimal performance across three 

datasets. It can be observed that with a smaller number of prompts, the model’s ability 

to represent image information through the context learned by prompts is limited. Con-

versely, when the number of prompts is large, overfitting may occur, leading to a de-

cline in the model’s generalization ability. Therefore, selecting an appropriate amount 

of parameters can maximize the model’s performance. 



4.5 Qualitative Results 

 
Fig. 4. Qualitative results from our approach CAP on COCO and ImageNet datasets. The target 

images are highlighted by red boxes. 

To further evaluate the effectiveness of our method, we visualized the retrieval results 

of our proposed method on CIRR, COCO, and ImageNet, as shown in Fig. 3 and Fig. 

4, respectively. Each row reports the reference image, the modified text, and the top-4 

search results. The retrieval examples demonstrate that our method not only effectively 

guides the text branch to obtain contextual information but also enhances domain gen-

eralization capabilities. For instance, in the CIRR dataset, the search results not only 

capture the main subject of the reference image, which is antelopes, but also meet the 

keywords “three” and “looking at the camera”. In COCO, the main subject of the ref-

erence image, the laptop, is retained, and the keyword “mouse” is also satisfied. In the 

ImageNet domain conversion experiment, our model demonstrated its capability by 

successfully retrieving images and accurately identifying tank images within the ori-

gami domain. It can be clearly seen that our approach excels at converting the domain 

of input image features. 

5 Conclusion 

We propose the CAP framework to handle the challenge of zero-shot CIR task, which 

consists of two models, CEM and APM. The CEM aims to introduce reparameterized 

learnable prompts, while the APM decouples image information by mapping distinct 

information elements to separate prompt parameters. Together, they synergize to ad-

dress the issue of poor generalization of manually designed prompts in open-domains 

by dynamically capturing richer contextual information, thereby enhancing the model’s 

retrieval performance. Through extensive experiments, the superiority of our method is 

demonstrated on three multi-modal datasets. 
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