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Abstract. In the field of medical imaging, polyp segmentation is a crucial task 

as it enables doctors to accurately identify and segment polyps in endoscopic 

images and other medical images. Currently, numerous deep learning-based 

polyp segmentation models mainly rely on multi-scale feature fusion techniques 

to delineate the boundaries of polyps. However, these existing methods often fail 

to consider the interconnection between the model's localization and segmenta-

tion processes. Generally, when searching for polyps, people first determine the 

approximate location of the polyps and then gradually obtain detailed feature in-

formation of the polyps. In view of this, we propose a hierarchical refinement 

multi-scale feature fusion Model named HRFFNet. First, we design a hierarchical 

refinement feature extraction method to precisely optimize the initially located 

polyp regions. Then, we develop a feature fusion block named FB, which relies 

on the overall lesion information to form multi-scale feature representations. 

Through extensive experiments on four commonly used benchmark datasets, we 

find that HRFFNet performs outstandingly in polyp segmentation, and its perfor-

mance significantly surpasses that of existing top-notch models. 

Keywords: Polyp Segmentation, Hierarchical Refinement, Bilateral Attention, 

Feature Fusion. 

1 Introduction 

In the field of medical image analysis, polyp detection [1,2] is of utmost significance 

for the early detection of colorectal cancer, prevention of disease progression, and alle-

viation of symptoms and complications associated with polyps. When there is abnormal 

hyperplasia in parts of the patient's body, such as the gastrointestinal tract, clinicians 

will determine whether precise polyp segmentation is required based on the patient's 

specific condition and professional judgment. Therefore, the use of automated tech-

niques to achieve accurate polyp recognition can provide doctors with more powerful 

diagnostic support, thereby improving the accuracy and efficiency of diagnosis. With 

the rapid development of artificial intelligence and image recognition technologies, au-

mailto:MengHe2csmhiy@imu.edu.cn
mailto:anpusheng1@163.com


tomated recognition systems have been widely applied in various fields, such as indus-

trial defect detection [3-5], crop pest [6] and disease monitoring [7], greatly enhancing 

work efficiency and accuracy. In the medical field, numerous researchers are commit-

ted to developing efficient polyp segmentation models [8-14]. These models have 

demonstrated excellent performance on multiple public datasets, providing strong tech-

nical support for clinical diagnosis [15-19]. 

 

Fig. 1. Deep and shallow visual perception. 

Current polyp segmentation models primarily rely on feature extraction and en-

hancement techniques to achieve segmentation. However, these models often fail to 

consider the visual processing mechanisms humans employ when observing polyps. As 

illustrated in Fig. 1, the deepest prediction map of a deep segmentation model can ac-

curately identify the target region, and then progressively refine the edge details from 

layer4 to layer1. Based on these considerations, we aim to emulate the way humans 

observe polyps to enhance the segmentation accuracy of the target in tumor segmenta-

tion models. We hope to achieve a transition from initial localization of the polyp region 

to detailed segmentation through the gradual fusion of multi-scale features. However, 

in this process, we face two major challenges. First, how to effectively integrate deep 

and shallow information [20] during the multi-layer feature extraction process. Sec-

ondly, the existing feature fusion methods often ignore the transmission of background 

information, which will bring noise interference to the positive sample information. 

This requires suppression during the fusion process. 

In summary, to effectively address the aforementioned challenges, this paper pro-

poses a hierarchical multi-scale feature fusion model for polyp segmentation called 

HRFFNet. We first perform layer by layer fusion of the decoding layers to simulate the 

process of human observation of polyps. Subsequently, we design a feature fusion block 

to capture global lesion information, thereby further enhancing segmentation accuracy. 

As shown in Fig. 1, in the four feature output layers, the deepest feature map of the 

decoder primarily focuses on the overall localization area of the polyp. As the feature 
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extraction process progresses layer by layer, the boundary details of the polyp will grad-

ually be refined. Finally, we conducted experiments on the publicly available datasets 

Kvasir-SEG, ClinicDB, ColonDB, and ETIS. Compared with existing state-of-the-art 

(SOTA) polyp segmentation methods, our approach achieves better accuracy. 

2 Related Work 

2.1 Semantic Segmentation 

Semantic segmentation [21-23] is a crucial task in the field of computer vision. It aims 

to classify each pixel in an image into different semantic categories, thus enabling in 

depth understanding of the image content. Since 2012, several important semantic seg-

mentation models have been proposed one after another, each with its unique ad-

vantages and disadvantages.In 2012, the FCN [24] model first applied the Convolu-

tional Neural Network (CNN) to the semantic segmentation task. It achieved end to end 

pixel-level classification through fully convolutional layers. Its advantage lies in its 

ability to process input images of any size and output segmentation results of the same 

size as the input image. However, FCN does not adequately consider the relationships 

between pixels, lacks spatial consistency, produces relatively rough segmentation re-

sults, and is insensitive to details in the image. Subsequently, in 2014, the DeepLab 

[25] series of models introduced dilated convolutions and fully connected conditional 

random fields, significantly enhancing the ability to capture multi-scale contextual in-

formation. Its advantage is that the dilated convolutions expand the receptive field, and 

at the same time, the conditional random fields are used to optimize the segmentation 

boundaries, resulting in excellent performance in complex scenes. Nevertheless, this 

series of models has a high computational complexity and requires a large amount of 

hardware resources.In 2015, the SegNet [26] model adopted an encoder decoder struc-

ture and restored boundary details by retaining pooling indices. The advantage of Se-

gNet lies in its efficient memory usage and lightweight model design, making it well 

suited for embedded devices. However, SegNet performs poorly when dealing with 

multi-scale objects, and the restoration of boundary details depends on pooling indices, 

resulting in limited detail richness.In 2017, RefineNet [27] improved the decoder struc-

ture. By fusing low-level and high-level features through long distance residual con-

nections, it further enhanced the segmentation accuracy. RefineNet demonstrated high 

accuracy and flexibility on multiple datasets and could adjust the network structure ac-

cording to specific requirements. But it has a high computational complexity and rela-

tively high requirements for hardware resources. In the same year, PSPNet [28] pro-

posed a pyramid pooling module, which effectively captured global contextual infor-

mation through multi-scale feature fusion. PSPNet performed outstandingly in scene 

parsing tasks and significantly improved the segmentation performance. However, this 

model has a large number of parameters and consumes a lot of computational re-

sources.In 2019, DFANet [29] mined high-level features through a deep multi-layer 

aggregation structure and used a lightweight encoder to aggregate information, effec-

tively reducing the computational load. DFANet performs well in scenarios with high 



real time requirements, but its performance in handling extremely small targets may be 

inferior to some more complex models.To address the insufficient ability to represent 

global information, SegFormer [30] was proposed in 2021. It is built based on the 

Transformer architecture, removes position encoding, and designs a lightweight de-

coder. Through multi-scale feature representation and efficient feature fusion, Seg-

Former achieves a simple and efficient design and demonstrates strong generalization 

ability in various tasks. However, SegFormer may face challenges when dealing with 

smaller objects and has a high demand for the amount of data. 

2.2 Polyp Segmentation 

In 2015, U-Net [10] proposed a U-shaped structure and achieved remarkable results in 

the field of biomedical image segmentation for the first time. Its advantage lies in the 

preservation of the image's spatial information through skip connections, which leads 

to excellent performance in segmentation accuracy and boundary details, especially 

suitable for small scale datasets. However, U-Net may face the problem of overfitting 

when dealing with large scale datasets, and its relatively simple network structure 

makes it difficult to handle complex multi-scale features. The following year, SFANet 

[31] designed a new selective feature aggregation network, which includes region and 

boundary constraints. The network predicts the region and boundary of polyps through 

a shared encoder and two mutually constrained decoders. The main advantage of 

SFANet is its ability to optimize both region segmentation and boundary detection sim-

ultaneously, significantly improving the segmentation accuracy. Nevertheless, its com-

plex network structure may result in longer training times and higher requirements for 

hardware resources. In 2020, PraNet [11] introduced a global inverse attention mecha-

nism, which further refined the edge information of polyp segmentation. PraNet effec-

tively suppressed background noise through the inverse attention mechanism and im-

proved the accuracy of edge details. However, this mechanism may reduce the segmen-

tation efficiency when dealing with complex multi target scenarios. In 2021, HarDNet-

MSEG [32] designed a lightweight backbone network in the field of polyp segmenta-

tion, with a speed of up to 86fps while maintaining good segmentation results. Its ad-

vantages are high efficiency and real time performance, making it suitable for clinical 

scenarios that require rapid processing. However, its lightweight design may perform 

slightly weaker when dealing with complex textures and details.In the same year, EU-

Net [33] used a new semantic feature enhancement module (SFEM) to enhance seman-

tic information to assist feature extraction and introduced an adaptive global context 

module. By enhancing semantic information and global context awareness, EU-Net 

significantly improved the segmentation accuracy. However, its complex module de-

sign may lead to an increase in model training and inference times. Also in 2021, SANet 

designed a color swapping operation to eliminate the impact of color on polyp segmen-

tation and proposed a shallow layer attention module to filter out the background noise 

of shallow layer features. The main advantage of SANet is its ability to effectively 

eliminate color interference and improve the segmentation accuracy. However, its shal-

low layer attention mechanism may have limited effects on the segmentation of ex-

tremely small targets. In 2023, Polyp-PVT [34] used a Transformer based backbone 

network, which has more powerful segmentation capabilities and robustness. Polyp-
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PVT extracts multi-scale long distance dependency features through the Pyramid Vi-

sion Transformer (PVT), significantly improving the segmentation performance. How-

ever, the Transformer architecture has high demands for computational resources, and 

its adaptability to small scale datasets still needs to be improved. 

 

Fig. 2. Structure of HRFFNet. 

3 Method 

Fig.2 shows the polyp segmentation model HRFFNet that we designed. Firstly, the 

model adopts a hierarchical refined feature extraction strategy to mine the information 

of the polyp area from coarse to fine and from shallow to deep. In the first stage, the 

network acquires the global rough feature map for roughly locating the suspicious area. 

Subsequently, in each subsequent layer, these features are gradually refined. Through 

smaller receptive fields and more precise convolution operations, the resolution of the 

polyp edge and morphology is continuously improved, ultimately achieving precise po-

sitioning and description of the target area. This process is equivalent to simulating the 

visual recognition approach of human doctors, which is to "first scan the overall situa-

tion and then gradually focus", ensuring the integrity of positioning while also enhanc-

ing the depiction of details. Secondly, in order to make full use of multi-scale context 

information, HRFFNet introduces Feature Fusion blocks (FB). This module establishes 

multiple information paths among feature maps at different levels, fusing features from 

the shallow layer (high resolution, low semantics) and the deep layer (low resolution, 

high semantics) to obtain a richer multi-scale expression. Specifically, FB organically 

combines the global structure of the entire lesion with local details through adaptive 

weighting and pixel-by-pixel fusion. This not only enhances the semantic coherence of 

the feature map but also improves the robustness of the model to changes in the shape, 

size, and contrast of polyps. Through the synergy of these two core modules, HRFFNet 

can achieve high-precision segmentation of the polyp area while maintaining efficient 

computing. 



3.1 Hierarchical Refinement Feature Extraction Strategy 

Numerous SOTA polyp segmentation networks at present, such as U-Net, PraNet, and 

Polyp-PVT, are founded upon the encoding decoding architecture. These networks 

have already achieved relatively high segmentation accuracy. Inspired by this, our 

model also adheres to this well-validated strategy.Initially, for the baseline model, we 

select PolypNet. In the encoding phase, PVT-v2 is employed as the backbone network. 

Through the enhanced perception module, the dimensions of the feature maps at each 

layer are optimized and adjusted. Specifically, the number of features per layer is 

streamlined to 32, thereby significantly enhancing the model's inference efficiency. 

Subsequently, we obtain four feature maps 𝑇𝑖(𝑖 ∈ [1,2,3,4]) for subsequent decoding 

computations. The detailed model architecture is depicted in Fig.3. As illustrated, we 

perform layer by layer fusion of the feature maps from the bottom-up direction. Ini-

tially, 𝑇4 and 𝑇3 are merged to yield the output of the third layer, and this process is 

repeated accordingly. As a result, we acquire four feature maps𝐿𝑖(𝑖 ∈ [1,2,3,4]). Ulti-

mately, by leveraging the Transformer (G-Trans) to decode both deep level and shallow 

level features, we obtain four mask prediction maps 𝑀𝑖(𝑖 ∈ [1,2,3,4]). 

 

Fig. 3. Structure of HRFE. 

3.2 A bilateral attention-based feature fusion block 

Feature fusion is vital for progressive feature extraction. An effective module can en-

hance contextual information extraction, thereby improving feature map predictions 

across layers. Our designed feature fusion module excels at global feature extraction. 

As depicted in Fig.4, given the shallow feature f1 and deep feature f2, we first concat-

enate f1 and f2 along the channel dimension. Then, a volume-based layer processes 

them to yield the preliminary fused feature fp. The formula is as follows: 

 𝑓𝑝 = 𝐶𝑜𝑛𝑣(𝑐𝑎𝑡[𝑓1, 𝑓2]) (1) 

where Conv represents the convolutional layer; cat represents the merging of two fea-

tures along the channel dimension. Then, we perform a concatenated global pooling 
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operation (GCBlock) on 𝑓𝑝 to obtain the feature map 𝑓𝑝
′ containing global attention in-

formation, as shown in the following formula: 

 𝑓𝑝
′ = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑓𝑝1

′ + 𝑓𝑝2
′ ) (2) 

where 𝑓𝑝1
′  is calculated as follows: 

 𝑓𝑝1
′ = 𝑃𝐶𝑜𝑛𝑣(𝑅𝑒𝑙𝑢(𝑃𝐶𝑜𝑛𝑣(𝐺𝐴𝑃(𝑓𝑝)))) (3) 

 

Fig. 4. Structure of FB. 

where PConv stands for point-wise convolution; Relu stands for activation function; 

and GAP stands for global average pooling layer. The corresponding formula for 𝑓𝑝2
′  is 

as follows: 

 𝑓𝑝2
′ = 𝑃𝐶𝑜𝑛𝑣(𝑅𝑒𝑙𝑢(𝑃𝐶𝑜𝑛𝑣(𝑓𝑝))) (4) 

Then, we add 𝑓𝑝
′ with the initial feature map to obtain two feature maps f1' and f2' con-

taining global contextual feature information. We fuse 𝑓𝑝1
′  and 𝑓𝑝2

′  to further extract the 

effective feature point information, and the specific formula is shown below: 

 𝑓 = 𝐶𝑜𝑛𝑣(𝑓𝑝1
′ ⨀𝑓𝑝2

′ ) (5) 

3.3 Loss Function 

Our loss function consists of two parts (𝐿𝑜𝑠𝑠𝐵𝐶𝐸and 𝐿𝑜𝑠𝑠𝐼𝑂𝑈). 𝐿𝑜𝑠𝑠𝐵𝐶𝐸  (Binary Cross-

Entropy Loss) is a special case of cross entropy loss function, and the specific calcula-

tion formula can be formulated as: 

 𝐿𝑜𝑠𝑠𝐵𝐶𝐸 = −[𝑦 ∙ 𝑙𝑜𝑔𝑦̂ + (1 − 𝑦)𝑙𝑜𝑔(1 − 𝑦̂)] (6) 

y represents the true value (0 or 1); 𝑦̂ means the probability value of belonging to this 

class. 𝐿𝑜𝑠𝑠𝐼𝑂𝑈 is an area-related loss function, and its calculation formula is as follows: 

 𝐿𝑜𝑠𝑠𝐼𝑂𝑈 = 1 −
𝑦∩𝑦̂

𝑦∪𝑦̂
 (7) 



Our method will eventually output four forecast images, and the final loss calculation 

formula is as follows: 

 𝐿𝑜𝑠𝑠 = ∑ 𝐿𝑜𝑠𝑠𝐵𝐶𝐸
4
𝑖=1 + ∑ 𝐿𝑜𝑠𝑠𝐼𝑂𝑈

4
𝑖=1  (8) 

4 Experments 

4.1 Experimental Setup 

Our model is implemented in PyTorch and accelerated by an NVIDIA 4060 Ti GPU. 

All inputs are uniformly resized to 352×352 and trained with a multi-scale strategy of 

(0.75, 1, 1.25). To verify different models' validity, the same training strategy and im-

age preprocessing are applied. We use the Adam optimization algorithm to optimize all 

parameters, setting the learning rate at 0.0001. 

4.2 Comparison with State-of-the-arts 

To evaluate our model's performance, we carried out comparative experiments on two 

test sets, Kvasir-SEG and ClinicDB, that were part of the training set. We selected 10 

SOTA models (U-Net, U-Net++, SFA, MSEG, DCRNet, ACSNet, PraNet, EU-Net, 

SANet, and PolypNet) for comparison. Table 1 below presents the results. 

Table 1. Quantitative Results of the Test Datasets, i.e., KVASIR-SEG AND CLINICDB. 

Model 

Kvasir-SEG ClinicDB 

mDic mIoU F S M MAE mDic mIoU F S M MAE 

U-Net 0.818  0.746  0.794  0.858  0.881  0.055  0.823  0.755  0.811  0.889  0.913  0.019  

U-Net++ 0.821  0.743  0.808  0.862  0.886  0.048  0.794  0.729  0.785  0.873  0.891  0.022  

SFA 0.723  0.611  0.670  0.782  0.834  0.075  0.700  0.607  0.647  0.793  0.840  0.042  

MSEG 0.897  0.839  0.885  0.912  0.942  0.028  0.909  0.864  0.907  0.938  0.961  0.007  

DCRNet 0.886  0.825  0.868  0.911  0.933  0.035  0.896  0.844  0.890  0.933  0.964  0.010  

ACSNet 0.898  0.838  0.882  0.920  0.941  0.032  0.882  0.826  0.873  0.927  0.947  0.011  

PraNet 0.898  0.840  0.885  0.915  0.944  0.030  0.899  0.849  0.896  0.936  0.963  0.009  

EU-Net 0.908  0.854  0.893  0.917  0.951  0.028  0.902  0.846  0.891  0.936  0.959  0.011  

SANet 0.904  0.847  0.892  0.915  0.949  0.028  0.916  0.859  0.909  0.939  0.971  0.012  

PolypNet 0.912  0.862  0.908  0.924  0.956  0.023  0.931  0.883  0.931  0.945  0.977  0.011  

Ours 0.921  0.869  0.911  0.925  0.961  0.023  0.933  0.885  0.931  0.949  0.982  0.007  
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Table 2. Quantitative Results of the Test Datasets, i.e., ColonDB AND ETIS. 

Model 

ColonDB ETIS 

mDic mIoU F S M MAE mDic mIoU F S M MAE 

U-Net 0.512  0.444  0.498  0.712  0.696  0.061  0.398  0.355  0.366  0.684  0.643  0.036  

U-Net++ 0.483  0.410  0.467  0.691  0.680  0.064  0.401  0.344  0.390  0.683  0.629  0.035  

SFA 0.469  0.347  0.379  0.634  0.675  0.094  0.297  0.217  0.231  0.557  0.531  0.109  

MSEG 0.735  0.666  0.724  0.834  0.859  0.038  0.700  0.630  0.671  0.828  0.854  0.015  

DCRNet 0.704  0.631  0.684  0.821  0.840  0.052  0.556  0.496  0.506  0.736  0.742  0.096  

ACSNet 0.716  0.649  0.697  0.829  0.839  0.039  0.578  0.509  0.530  0.754  0.737  0.059  

PraNet 0.712  0.640  0.699  0.820  0.847  0.043  0.628  0.567  0.600  0.794  0.808  0.031  

EU-Net 0.756  0.681  0.730  0.831  0.863  0.045  0.687  0.609  0.636  0.793  0.807  0.067  

SANet 0.753  0.670  0.726  0.837  0.869  0.043  0.750  0.654  0.685  0.849  0.881  0.015  

PolypNet 0.808  0.727  0.795  0.865  0.913  0.031  0.717  0.649  0.687  0.831  0.852  0.024  

Ours 0.813  0.734  0.796  0.867  0.914  0.030  0.769  0.690  0.732  0.861  0.883  0.019  

In the experiments conducted on the Kvasir-SEG and ClinicDB datasets, our pro-

posed HRFFNet demonstrates significant quantitative improvements over a wide range 

of state-of-the-art methods. On Kvasir-SEG, HRFFNet attains a Dice coefficient of 

0.921, which represents an absolute improvement of 0.103 over the U-Net baseline 

(0.818) and an enhancement of 0.009 relative to the best competing method, PolypNet 

(0.912). This advancement is accompanied by a notable increase in the mean Intersec-

tion-over-Union from 0.746 in U-Net to 0.869 in HRFFNet (an absolute gain of 0.123), 

while the F-measure rises from 0.794 to 0.911, reflecting an increase of 0.117. Addi-

tionally, structural similarity (S) and model robustness (M) metrics improve from 0.858 

and 0.881 in U-Net to 0.925 and 0.961 in HRFFNet, respectively, and the mean absolute 

error (MAE) is reduced by more than 50\% compared to U-Net, reaching 0.023. On 

ClinicDB, HRFFNet achieves a Dice coefficient of 0.933, which is 0.110 higher than 

that of U-Net (0.823), and an IoU of 0.885 compared to 0.755, corresponding to a sub-

stantial absolute increase of 0.130. The F-measure remains robust at 0.931, while the S 

and M metrics are elevated to 0.949 and 0.982, respectively. Moreover, the MAE in 

HRFFNet is reduced to 0.007, marking a significant decline in segmentation error rel-

ative to the 0.019 observed in U-Net. These comprehensive numerical evaluations 

across multiple performance indices substantiate that HRFFNet not only achieves su-

perior segmentation accuracy but also offers enhanced model stability and error mini-

mization across both datasets. To further assess generalization capability, we performed 



comparative experiments on two test sets not included in the training set, namely 

ColonDB and ETIS. The experimental results are presented in Table 2 below. 

As shown in Table 2, HRFFNet demonstrates marked improvements on both 

ColonDB and ETIS datasets. On ColonDB, the Dice coefficient reaches 0.813, which 

is a substantial increase over U-Net’s 0.512 and slightly higher than PolypNet’s 0.808. 

The mean IoU is measured at 0.734, representing an absolute improvement of 0.290 

compared to U-Net and a modest gain of 0.007 over PolypNet. In addition, the F-meas-

ure is recorded at 0.796, while the structural similarity and model robustness metrics 

are 0.867 and 0.914, respectively; these values exceed those of U-Net and are margin-

ally higher than those of PolypNet. Notably, the mean absolute error is reduced to 

0.030, nearly half the error observed in U-Net. On the ETIS dataset, HRFFNet contin-

ues to outperform its counterparts. It achieves a Dice coefficient of 0.769, which is 

0.371 higher than U-Net’s 0.398 and 0.052 above PolypNet’s score. The mean IoU 

improves to 0.690, and the F-measure reaches 0.732, both of which signify notable 

advancements. Structural similarity and model robustness are elevated to 0.861 and 

0.883, respectively, and the mean absolute error further decreases to 0.019. Collec-

tively, these diverse performance gains underscore the robustness and superior segmen-

tation capabilities of HRFFNet. 

Overall, these results highlight HRFFNet’s ability to consistently capture both global 

lesion structure and fine-grained boundary details across diverse colonoscopy datasets, 

translating into substantial gains in segmentation accuracy and robustness. Such per-

formance improvements not only demonstrate the model’s practical potential for 

real-time polyp detection in clinical settings but also suggest that the hierarchical re-

finement and multi-scale fusion strategies could be broadly applicable to other chal-

lenging medical imaging tasks. 

4.3 Ablation Studies 

To further validate the effectiveness of our proposed module, we conducted ablation 

experiments. The specific results are shown in Table 3: 

Model 

Kvasir-SEG ClinicDB 

mDic mIoU F S M MAE mDic mIoU F S M MAE 

b 0.890  0.828  0.872  0.908  0.945  0.031  0.908  0.844  0.897  0.936  0.971  0.126  

b+1 0.907  0.852  0.894  0.917  0.951  0.029  0.910  0.852  0.906  0.930  0.969  0.014  

b+1+2 0.921  0.869  0.911  0.925  0.961  0.023  0.933  0.885  0.931  0.949  0.982  0.007  

In Table 3, we present an ablation study conducted on the Kvasir-SEG and ClinicDB 

datasets. Here, "b" denotes the baseline model, "b+1" corresponds to the baseline aug-

mented with the HRFE module, and "b+1+2" represents the baseline further enhanced 

by incorporating the FB module. On the Kvasir-SEG dataset, the baseline achieves a 
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Dice coefficient of 0.890, which increases to 0.907 with the addition of HRFE and fur-

ther to 0.921 when the FB module is integrated. Similar trends are observed for the 

mean IoU, which improves from 0.828 (baseline) to 0.852 with HRFE, and reaches 

0.869 with the FB module; corresponding gains are noted in the F-measure, structural 

similarity, and model robustness metrics, while the mean absolute error is progressively 

reduced from 0.031 to 0.029 and finally to 0.023. On the ClinicDB dataset, the baseline 

model records a Dice coefficient of 0.908, which marginally increases to 0.910 with 

HRFE and then rises to 0.933 after the integration of the FB module. Notably, the mean 

IoU, F-measure, and other performance indicators also exhibit similar improvements, 

with the MAE experiencing a dramatic decline from 0.126 at the baseline to 0.014 with 

HRFE and further to 0.007 upon combining the FB module. These results clearly 

demonstrate that the progressive integration of HRFE and FB modules not only en-

hances segmentation accuracy but also improves overall robustness, thereby validating 

the effectiveness of our proposed modifications. 

4.4 Qualitative analysis 

Furthermore, we have visualized (as shown in Fig~\ref{fig:fig_pre}.) and analyzed five 

authoritative polyp detection datasets: CVC-300, CVC-ClinicDB, CVC-ColonDB, 

ETIS-LaribPolypDB, and Kvasir. We selected typical polyp scene images from each 

dataset to assess the segmentation performance of different models. The prediction re-

sults are displayed in a unified format for intuitive comparison: the first column shows 

original images, the second column shows ground-truth (GT) images, and the third to 

eighth columns show the prediction results of HRFFNet, PolypNet, PraNet, SFA, U-

Net, and U-Net++ models, respectively. HRFFNet excels in the CVC-300 dataset with 

no extra false detections and the most complete polyp shapes, indicating strong feature 

extraction and boundary definition. In the CVC-ClinicDB dataset, HRFFNet accurately 

segments polyps, even those with low contrast, leaving no internal regions undetected. 

It also performs well in the CVC-ColonDB dataset, producing clean and accurate seg-

mentations without false positives, proving its stability across diverse data distribu-

tions. HRFFNet stands out in the ETIS-LaribPolypDB dataset as the only model that 

precisely predicts polyp shapes and sizes, even in challenging cases like irregular 

shapes or poor image quality. In the Kvasir dataset, HRFFNet again demonstrates its 

capability by fully segmenting polyps without missing any internal regions, showing 

its adaptability to complex intestinal environments. Overall, HRFFNet shows signifi-

cant advantages in polyp segmentation across all five datasets, outperforming other 

SOTA methods in shape accuracy, internal region completeness, and adaptability to 

diverse conditions. These strengths make HRFFNet a promising tool for clinical prac-

tice, offering reliable and accurate imaging support for early polyp detection and diag-

nosis, and enhancing the prevention and treatment of colorectal cancer and other intes-

tinal diseases. 



 

Fig. 4. Visualization of the Predictions. 

5 Conclusion 

In summary, to simulate the process of doctors searching for polyps, we propose 

HRFFNet for polyp localization and segmentation. HRFFNet includes two main com-

ponents: firstly, the Hierarchical Refinement Feature Extraction Strategy (HRFE) imi-

tates doctors' gradual polyp search through stepwise thinking. It achieves effective de-

tail segmentation via incremental feature fusion and extraction. Secondly, to minimize 

redundant information during fusion, a Bilateral Attention-based Feature Fusion Block 

(FB) is designed. This block can suppress background information and further refine 

foreground edge information. HRFFNet reaches state-of-the-art performance on four 

image-level datasets. In the future, we plan to apply this method to polyp segmentation, 

providing efficient medical assistance and enhancing model accuracy by integrating 

video feature extraction. 
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