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Abstract. Anomaly detection serves a crucial role in large-scale industrial man-

ufacturing. Knowledge distillation (KD)-based approaches have demonstrated 

excellent performance, yet their efficacy is constrained by the identical symmet-

ric structures. In this study, we propose an enhanced KD-based architecture with 

a dual-learning mechanism, called DLKD, to precisely characterize normal sam-

ples and improve detection performance. Specifically, we first introduce a coarse 

decoder into the student network to preliminarily reconstruct the teacher features, 

in which the SSM-based global feature reconstruction block (GFRB) and CNN-

based local feature reconstruction block (LFRB) effectively model global and 

local information. A precise refinement learner is subsequently provided to finely 

tune the coarse reconstructed features. Extensive experiments on two publicly 

available anomaly detection datasets demonstrate the effectiveness and potential 

of the proposed DLKD. This work further explores KD-based methods for anom-

aly detection and provides a unique yet robust baseline for the community. 

Keywords: Anomaly detection, Knowledge distillation, Dual-learning, Feature 

reconstruction. 

1 Introduction 

Visual anomaly detection (AD) is a challenging problem, as fully specifying expected 

defect variations is both costly and complicated. In most real-world scenarios, images 

with anomalies are rare, and formerly unseen defect types may appear at unpredictable 

times. So, constructing the manifold of normal data for out-of-distribution detection has 

become the mainstream approach [11]. Unsupervised learning paradigm, denoted as 

one-class classification, which uses only normal data, achieves promising results on 

this challenging problem but come with a latency trade-off. 



Knowledge distillation (KD)-based frameworks have been extensively explored 

since they enable knowledge to be transferred within a teacher-student (T-S) pair. Since 

the student network has never encountered anomaly samples, it is expected that the 

feature representations it generates for anomalous samples will differ from those pro-

duced by the teacher network. Consequently, the anomalies can be detected in the in-

ference phase. To increase the discriminating capability, US [2] uses an ensemble learn-

ing method to guide training on normal data. STFPM [13] applies KD across various 

levels of the feature pyramid, effectively aggregating differences from multiple levels 

and demonstrating strong performance. In RD [3], a reverse distillation paradigm is 

realized to address the non-distinguishing filter problem in conventional anomaly de-

tection models. The drawback of KD-based models is that they are unable to capture 

long-range dependencies, and as a result, they may miss anomalies in complex patterns 

[6]. Furthermore, since there are no constraints on abnormal samples during the training 

process, the model generalizes well for anomaly reconstruction, resulting in suboptimal 

performance. 

To enhance discrepant representations, pseudo-anomalies [14,17] are incorporated 

into the unsupervised AD prototype. The unsupervised task is converted to a supervised 

learning task. DRAEM [16] superimposes unrelated distributions of texture images 

onto normal images to simulate anomalous images. Subsequently, MemSeg [15] intro-

duces a foreground simulation strategy aimed at avoiding anomalies in the background 

of images. CutPaste [7] presents a method that randomly selects a small rectangular 

region from the original image and pastes this content to different locations on normal 

images to generate synthetic anomalies. The pseudo-anomaly mechanism in [7] does 

not need additional auxiliary datasets, significantly reducing reliance on external da-

tasets and enhancing the flexibility of anomaly simulation. Despite the inherent ran-

domness in both pseudo and real anomalies, the significant differences between them 

make it challenging to effectively generalize the task of locating pseudo anomalies to 

real scenarios. 

In this context, we propose a novel knowledge distillation paradigm for anomaly 

detection, named DLKD, to address the aforementioned problems. DLKD focuses on 

two primary tasks: accurately characterizing normal samples and filtering out anoma-

lous signals. Specifically, leveraging the pseudo-anomaly mechanism, we introduce 

Gaussian noise into the shallow feature space of normal images and employ these as 

pseudo-anomalous data to train the student network. This enables the student network 

to amplify the differences in the T-S network's representations within anomalous re-

gions when making inference. However, the teacher features reconstructed by the de-

convolutional layer fail to accurately represent the true teacher features, leading to the 

significant degradation of detection performance. Therefore, we introduce the coarse-

precise refinement learning mechanism into the student network to enable two-stage 

fine-grained reconstruction of the teacher features. In the coarse decoding stage, we 

combine the global modeling capabilities of the state space model (SSM) [5] with the 

local correlation strengths of CNNs to preliminarily reconstruct the teacher features. 

Subsequently, to enhance the robustness of knowledge transfer, the anomaly maps gen-

erated by the coarse defect-removal version guide the subsequent precise refinement 
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learning for final reconstruction.  Compared to the existing KD-based approaches, the 

key contributions of DLKD are as follows: 

 

 

Fig. 1. (a) is the overall architecture of the dual learning knowledge distillation network (DLKD) 

for industrial defect anomaly detection; (b) is the architecture of the feature reconstruction mod-

ule (FRM); (c) is the architecture of the feature refinement feed-forward network (FRFN); (d) is 

the pipeline of the global feature reconstruction block (GFRB); (e) is the details of the local 

feature reconstruction block (LFRB).   

1. We introduce a novel knowledge distillation network with pseudo-anomaly mecha-

nism for anomaly detection, effectively enhancing the differentiation of anomalous 

regions when making inference on anomalous samples. 

2. A coarse-precise refinement learning mechanism is incorporated into the student 

network to accurately characterize normal samples. First, the coarse decoder is in-

troduced to restore the defect-free feature both globally and locally, while the precise 

refinement learner (PRL) is designed to enable fine-grained feature reconstruction. 

3. We also integrate the SSM-based global feature reconstruction block (GFRB) with 

the CNN-based local feature reconstruction block (LFRB) to facilitate the modeling 

and interaction between global and local information. Extensive experiments on the 

two publicly available datasets demonstrate the competitive performance of the pro-

posed DLKD, both quantitatively and qualitatively. 

2 PROPOSED METHOD 

2.1 Overview 

In this section, we provide a detailed introduction to the proposed DLKD framework 

for anomaly detection. Fig. 1 (a) illustrates the overall architecture of the DLKD, which 

consists of two main components: a pre-trained ResNet-based teacher encoder for ex-

tracting shallow and pseudo-anomalous features at different scales, and a student 
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network for integrating multi-scale features and performing coarse-precise feature re-

finement to learn the teacher features. 

Our method is based on the assumption that the decoder will ignore the abnormal 

information when performing inference on anomalous samples, provided it utilizes the 

pseudo-anomalous features as input for feature reconstruction. This enables the T-S 

network to maximize the differential representation of anomalous regions during infer-

ence. Unlike image-level abnormal simulation, we add Gaussian noise to the shallow 

features of input images, to generate pseudo-anomalous features. This pseudo-anoma-

lies mechanism effectively minimizes visual interference and better simulates potential 

anomalies, further enhancing the model's ability to recognize anomalous information. 

2.2 Coarse-Precise Refinement Learning 

Coarse Learning. The large perceptual field of the model focuses more attention on 

the normal information while suppressing the representation of abnormal information 

[3]. To enhance our method's ability to capture normal information, we introduce the 

MFFM to integrate pseudo-abnormal features as input for coarse decoding learning. 

Moreover, we introduce the feature reconstruction module (FRM) in the decoder, con-

sisting of a global feature reconstruction block (GFRB) based on SSM and a local fea-

ture reconstruction block (LFRB) based on CNNs. Through integrating both general 

and local features, the model's sensitivity to anomalous patterns is further improved. 

Motivated by [10], we design the GFRB to model features globally using a hybrid 

scanning mechanism. Additionally, to enhance anomaly filtering, we introduce the fea-

ture refinement feed-forward network (FRFN) [19] and a low-dimensional embedding 

block to suppress anomalous information. 

The low-dimensional embedding block consists of several convolutional layers. The 

computational process of the GFRB can be expressed as follows: 

𝑋𝑖+1 = Embed (FRFN(GFM(𝑋𝑖))) + 𝑋𝑖 (1) 

where 𝑋𝑖  represents the input feature, and GFM denotes the global feature modeling 

based on SSM. 

To filter out anomalies and reconstruct a multi-scale normal representation during 

knowledge transfer of the decoder, we introduce the LFRB to capture detailed and sub-

tle anomalies. Therefore, we first divide the input feature into several patches, and then 

separately transfer them into the CNNs with the FRFN, to focus more on minor anom-

alies. The overall process of LFRB can be formulated as follows: 

𝑌𝑖
𝑛′

= FRFN (Conv (DWConv3×3(Conv(𝑌𝑖
𝑛)))) (2) 

𝐹𝐿 = Embed (Concat(𝑌𝑖
1′

, 𝑌𝑖
2′

, … 𝑌𝑖
𝑠′

)) (3) 

where 𝑌𝑖
𝑛′

 represents the output of the 𝑛𝑡ℎ feature map 𝑌𝑖
𝑛. 𝐹𝐿 denotes the output of the 

LFRB, and Conv is a 1×1 convolutional layer. 
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Subsequently, we concatenate the local and global features along the channel dimen-

sion for feature aggregation. At end, a channel-wise convolutional layer with a skip 

connection is employed to restore the channel number, matching the input dimension. 

𝐹𝑜𝑢𝑡 = Conv(Concat(𝐹𝐺 , 𝐹𝐿)) + 𝐹𝑖𝑛 (4) 

 

where 𝐹𝐺 represents the global feature, 𝐹𝑖𝑛 denotes the input of FRM. A skip connec-

tion is also introduced to prevent the loss of multi-scale information during coarse de-

coder learning [20]. 

 

Precise Refinement Learning. In order to further refine the coarse multi-scale fea-

tures, we introduce the precise refinement learner (PRL) to enhance feature representa-

tion. The multi-scale anomaly map 𝑀𝑖 is obtained through calculating the cosine simi-

larity between the multi-scale features of the coarse decoder and the teacher network. 

The PRL selectively refines the anomalous regions of the anomaly map to obtain 

higher-fidelity features. Since PRL focuses on local features regions for detailed learn-

ing, we maintain design simplicity and effectiveness by making it identical to the 

LFRB. The process of the PRL is expressed as follows: 

𝐹𝑃𝑆
𝑖 = 𝑃𝑟𝑒𝑐𝑖𝑠𝑒 (𝐹𝐶𝑆

𝑖 ∙ (1 − 𝑀𝑖)) ∙ 𝑀𝑖 + 𝐹𝐶𝑆
𝑖 ∙ (1 − 𝑀𝑖) (5) 

where 𝐹𝐶𝑆
𝑖  represents the output of the coarse decoder at the 𝑖𝑡ℎ scale, and 𝐹𝑃𝑆

𝑖  denotes 

the final output processed by the PRL. 

 

 

Fig. 2. The computational details of the anomaly similarity loss function. 

2.3 Training objectives 

Anomaly detection training is conducted under the following three loss functions: (i) 

the knowledge distillation-based loss ℒ𝐶𝐾𝐷 and ℒ𝑃𝐾𝐷  for filtering preliminary anoma-

lies and restoring multi-scale features in the coarse decoder and the precise refinement 

learner; (ii) the contrast loss ℒ𝐶𝑜𝑛 for further learning to remove anomalies; (iii) the 

anomaly similarity-based loss ℒ𝐴𝑆 to constrain the output of the student network to be 
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more consistent with the teacher network's output. In summary, the total loss function 

can be formulated as follows: 

ℒ =  ℒ𝐶𝐾𝐷 + ℒ𝑃𝐾𝐷 + 𝛼ℒ𝐶𝑜𝑛 + 𝛽ℒ𝐴𝑆 (6) 

where 𝛼 and 𝛽 are the weighting parameters. 

Table 1. Anomaly detection results in terms of AUROC at image-level on the MVTec dataset. 

Class STFPM DRAEM RD MB-PFM Destseg Noco Ours 

Carpet 95.59 95.39 98.80 99.92 99.16 99.36 99.88 

Grid 99.58 100 100 98.33 100 98.58 100 

Leather 94.02 100 100 100 100 100 100 

Tile 98.63 100 99.20 99.57 99.96 99.46 99.24 

Wood 99.39 99.74 99.30 99.30 97.63 99.65 99.12 

Bottle 100 97.78 100 100 100 100 100 

Cable 93.59 92.45 96.60 99.06 97.58 91.66 99.68 

Capsule 87.16 96.33 98.40 93.66 97.69 93.78 98.88 

Hazelnut 100 100 100 100 100 100 100 

Metal nut 99.90 99.80 100 100 99.56 99.71 99.95 

Pill 95.72 98.17 96.30 96.94 91.16 96.48 97.95 

Screw 92.15 97.91 98.30 91.76 90.67 87.70 98.20 

Toothbrush 85.56 99.44 99.70 88.06 99.44 100 99.44 

Transistor 94.42 87.75 96.00 97.46 99.17 95.25 100 

Zipper 95.19 99.89 98.60 96.93 100 98.50 99.82 

Average 95.39 97.63 98.72 97.40 98.13 97.34 99.48 

Distillation loss: Firstly, we obtain the coarse 2D anomaly map 𝑀𝐶
𝐾 following by 

the below formula: 

𝑀𝐶
𝐾(ℎ, 𝑤) = 1 −  

(𝑇𝐸
𝑘(ℎ, 𝑤))

𝑇

∙ 𝐹𝐶𝑆
𝑘 (ℎ, 𝑤)

∥ 𝑇𝐸
𝑘(ℎ, 𝑤) ∥ ∥ 𝐹𝐶𝑆

𝑘 (ℎ, 𝑤) ∥
(7) 

where 𝑇𝐸
𝑘 and 𝐹𝐶𝑆

𝑘  represent the outputs of the teacher network and coarse decoder, re-

spectively. (ℎ, 𝑤) is the location of the 𝑘𝑡ℎ feature map. 

Through combining it with multi-scale knowledge distillation, taking the coarse de-

coder as an example, the loss function can be expressed as follows: 

ℒ𝐶𝐾𝐷 = ∑ {
1

𝐻𝑘𝑊𝑘

∑ ∑ 𝑀𝐶
𝐾(ℎ, 𝑤)

𝑊𝑘

𝑤=1

𝐻𝑘

ℎ=1

}

𝐾

𝑘=1

(8) 

where 𝐾 is the number of layers. Theℒ𝑃𝐾𝐷  is consistent with ℒ𝐶𝐾𝐷. 

Contrast loss: We employ the cosine embedding-based loss with margin 𝑓 to serve 

as the contrast loss for exploring deeper representation of normal features. It can be 

expressed as follows: 
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ℒ𝐶𝑜𝑛 =
1

𝐾
∑ 𝑚𝑎𝑥(0, cos(𝐹𝐸

𝑘, 𝐹𝑃𝑆
𝑘 ) − 𝑓)

𝐾

𝑘=1

(9) 

where 𝐹𝐸
𝑘 represents the multi-scale output extracted from the encoding of the pseudo-

anomaly features. 𝐹𝑃𝑆
𝑘  denotes the output of the precise learner. 

Anomaly similarity loss: As shown in the Fig. 2, we utilize bilinear interpolation 

to up-sample the small-scale anomaly map to match the size of the large-scale anomaly 

map. We compute the similarity loss ℒ𝑆𝐿 through calculating the differences between 

maps for multi-scale feature refinement, which can be expressed as follows: 

ℒ𝑆𝐿 =
1

𝐻𝑊
∑ ∑(𝑀𝑖

𝑗
− 𝑀𝑗)

2
𝐻

ℎ=1

𝑊

𝑤=1

(10) 

where 𝑀𝑖
𝑗
 represents the anomaly map 𝑀𝑖 up-sampled to the same size as 𝑀𝑗. The final 

ℒ𝐴𝑆 is the sum of all the similarity loss ℒ𝑆𝐿. 

 

 

Fig. 3. Qualitative results of different methods for pixel-level anomaly segmentation on the 

MVTec AD dataset. (a) Anomaly image. (b) Ground truth. (c) Segmentation results of RD. (d) 

Segmentation results of Destseg. (e) Segmentation results of our proposed method. (f) Heat map 

of RD. (g) Heat map of Destseg. (h) Heat map of our proposed method. 

Table 2. Quantitative results of various pixel-level anomaly detection methods on the MVTec 

AD dataset. 

 Pixel-AUROC PRO 

Method Textures 

Avg. 

Objects 

Avg. 

Total 

Avg. 

Textures 

Avg. 

Objects 

Avg. 

Total 

Avg. 

STFPM 98.04 96.56 97.05 94.12 92.88 93.30 

DRAEM 98.30 95.11 96.18 94.89 89.21 91.10 

(a)

capert leather gird tile wood bottle cable capsule hazelnut metal_nut pill screw toothbrush transistor zipper

(b)

(c)

(d)

(e)

(f)

(g)

(h)



RD 97.74 97.88 97.83 95.06 93.50 94.02 

MB-PFM 97.83 96.99 97.27 94.57 92.23 93.01 

Destseg 98.37 97.69 97.92 96.37 92.04 93.48 

Noco 97.66 98.01 97.89 92.66 91.80 92.08 

ours 97.61 98.29 98.06 95.14 94.00 94.38 

 

3 Experiments 

3.1 Dataset and Metrics 

Dataset: To evaluate the performance of our method, we conduct comparative experi-

ments on two publicly available industrial datasets: MVTec AD [1] and BTAD [8]. The 

MVTec AD dataset consists of 15 categories, including five texture classes and ten 

object classes. Each category contains approximately 60 to 400 normal samples for 

training, along with a mix of normal and anomalous samples for testing. The anomalous 

images in the test set are annotated with binary labels for pixel-level visual evaluation. 

The BTAD dataset contains three industrial products, with a total of 2,540 samples. The 

training set includes only normal instances, while the test set is a mix of normal and 

anomalous samples. Additionally, the test set also has pixel-level annotated images for 

visual evaluation. 

Metrics: The area under the receiver operator curve (AUROC) [1] is utilized to quan-

titatively evaluate the performance of our proposed DLKD and other state-of-the-art 

approaches. Specifically, the image-level AUROC is employed to evaluate the general 

anomaly detection performance, while both the pixel-level AUROC and Per-Region-

Overlap (PRO) [2] curves are utilized to evaluate anomaly localization performance. 

3.2 Implementation Details 

In this study, all methods are implemented on a Linux operating system with an Nvidia 

RTX 3090Ti GPU, utilizing Python 3.9 and PyTorch 2.1.1. The Adam optimizer is 

utilized for parameter optimization with a weight decay of 0.0001, and the batch size is 

set to 8. The learning rate is set to 0.005 for the MFFM and coarse decoder, and 0.002 

for the precise refinement learner. All input images are resized to 256 ×  256 without 

additional augmentation to maintain consistency. The pre-trained ResNet18 is em-

ployed to serve as the teacher encoder for feature extraction.  The precise refinement 

learner consists of three parallel branches, each built by stacking two LFRBs with skip 

connections, to refine the outputs from the coarse decoder. The Gaussian noise intensity 

is 0.2. The weight parameters 𝛼 and 𝛽 are empirically set to 0.02 and 0.05, respectively. 

Table 3. Quantitative results of different methods for image-level and pixel-level anomaly de-

tection on the BTAD dataset. 

Method 01 02 03 Avg 
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VT-DAL 95.82/84.26/43.53 70.83/86.31/22.93 66.49/84.14/27.18 77.71/84.90/31.21 

DRAEM 95.14/83.01/46.90 76.72/78.65/45.56 99.62/95.20/44.90 90.49/85.62/45.79 

PatchCore 97.90/97.00/73.50 82.10/95.90/44.10 99.90/99.20/72.60 93.30/97.37/63.40 

DLKD 94.56/95.77/68.39 86.11/96.41/66.23 99.59/99.64/86.33 93.42/97.27/73.65 

 

 

 

Fig. 4. Qualitative results of our method for pixel-level anomaly segmentation on the BTAD 

dataset. 

3.3 Comparisons with State-of-the-Art Methods 

To demonstrate the superior performance of our DLKD, we conduct comparative ex-

periments with state-of-the-art methods, including STFPM [13], RD [3], DRAEM [16], 

MB-PFM [12], Destseg [18], and NOCO [4]. 

Results on the MVTec AD dateset. As shown in Table 1, the proposed DLKD out-

performs other state-of-the-art methods in most categories, particularly in grid, leather, 

bottle, hazelnut, and transistor, where DLKD achieves 100% AUROC in image-level 

anomaly detection. It is noteworthy that our approach achieves best average AUROC 

in both texture and object class anomaly detection, highlighting the competitive capa-

bility of DLKD in capturing anomalous details for detection. Compared to other 

knowledge distillation-based methods, such as STPFM, RD, and Dsetseg, our DLKD 

outperforms them with average AUROCs of 4.09%, 0.76%, and 1.35% respectively. 

This further demonstrates the promising generalization of our method in detecting dif-

ferent anomaly samples. 

Table 2 presents the comparison results between the proposed DLKD and other 

methods in anomaly localization. Our method achieves superior average scores across 

all categories, surpassing the well-performing RD by 0.23% and 0.36%, respectively. 

This demonstrates that our DLKD can effectively adapt to diverse anomaly localization 
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tasks through the coarse-precise refinement learning. Destseg excels at detecting tex-

ture anomalies but performs poorly on object anomalies. Furthermore, we provide sev-

eral visualization examples of our method and other methods (RD and Destseg) on the 

MVTec AD dateset for a detailed comparison. As shown in Fig. 3, compared to other 

methods, our approach achieves more accurate anomaly localization and segmentation, 

demonstrating its superiority in perceiving anomaly details. 

Results on the BTAD dataset. Table 3 presents the quantitative results of different 

anomaly detection methods on the BTAD dataset, including VT-ADL [8], DRAEM 

[16], and PatchCore [9]. Compared to other methods, DLKD achieves competitive per-

formance across most metrics, demonstrating its effectiveness in local and global spa-

tial modeling and enhancing the anomaly detection performance. Fig. 4 presents qual-

itative results of the proposed method on the BTAD dataset. It is obvious that our ap-

proach can accurately recognize and locate the anomalous regions, extensively show-

casing its robustness and applicability to various types of anomalies. 

3.4 Ablation Study 

In this section, we conduct a series of ablation experiments on the MVTec AD dataset 

to validate the effectiveness of the functional components and loss functions in our 

method. 

Table 4. Ablation study of module components on the MVTec AD dataset. 

Exp. LFRB GFRB PRL Image-AUROC Pixel-AUROC PRO 

1 √   98.68 97.80 93.65 

2 √ √  98.91 98.00 94.15 

3 √ √ √ 99.48 98.06 94.38 

Ablation Studies on the Module Components. We first utilize only the LFRB-based 

coarse decoder to refine the reconstructed feature, removing the precise refinement 

learner to validate the effectiveness of the LFRB. Results in Table 4 indicate the CNN-

based LFRB can provide effective local feature learning. Building on the aforemen-

tioned architecture, we add the SSM-based GFRB to the coarse decoder to verify the 

necessity of the GFRB in modeling global dependencies. As indicated in Table 4, the 

inclusion of GFRB leads to a notable improvement across all metrics, significantly en-

hancing the capability of our methods to capture long-range spatial features and en-

hance detection performance. When the precise refinement learner is incorporated into 

the coarse decoder, significant improvements are observed across all metrics. It can be 

seen that the injection of the precise refinement learner enables the T-S model to 

achieve superior performance in anomalies detection and localization. 

Table 5. Ablation study of loss functions on the MVTec AD dataset. 

ℒ𝑃𝐾𝐷  ℒ𝐶𝐾𝐷 ℒ𝐶𝑜𝑛 ℒ𝐴𝑆 Image-AUROC Pixel-AUROC PRO 
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√ √   99.42 98.03 94.17 

√ √ √  99.45 98.06 94.24 

√ √ √ √ 99.48 98.06 94.38 

Ablation Study on Loss Functions. To validate the effectiveness of the loss function 

in improving both detection and localization performance, we remove the ℒ𝐶𝑜𝑛 and ℒ𝐴𝑆 

respectively. As reported in Table 5, the inclusion of  ℒ𝐶𝑜𝑛 enhances the model's ability 

to filter abnormal features while focusing more on precise feature refinement. With the 

constraint of ℒ𝐴𝑆, DLKD efficiently reconstructs more consistent multi-scale features, 

enabling precise localization of the anomalous regions.   

4 Conclusion 

In this paper, we propose a novel knowledge distillation framework for anomaly detec-

tion, referred to dual-learning knowledge distillation (DLKD), to effectively filter out 

anomalous signals and precisely characterizes normal samples. We introduce the 

coarse-precise refinement learner into the student network to perform a two-stage 

coarse-to-fine generation of the teacher features, providing a compact representation 

for the student network. The coarse decoder integrates global modeling prowess of 

SMMs with CNN-based local feature correlations, enhancing the student network's 

ability to reconstruct normal features. Our method demonstrates outstanding perfor-

mance in both anomaly detection and real-time inference. We hope that our approach 

will stimulate further advancements in this field. 
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