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Abstract. Adversarial examples have been proven to be a substantial threat to 

the security applications of deep neural networks. Adversarial detection plays a 

pivotal role in defending against adversarial attacks. While the underlying con-

cept is straightforward, the practical realization of adversarial detection is non-

trivial, frequently encountering challenges of universality and effectiveness. In 

this study, we leverage the powerful capabilities of large vision-language models 

(LVLMs) and develop AdvDetectGPT, a novel adversarial detector based on 

LVLMs. AdvDetectGPT can learn to identify adversarial examples directly from 

clean and adversarial instances, independent of the victim model’s outputs or in-

ternal responses. The extensive experiments show that AdvDetectGPT signifi-

cantly outperforms the state-of-the-art baselines. AdvDetectGPT exhibits robust 

generalization, capable of detecting adversarial examples crafted by novel attacks 

on new models, as well as those with customized perturbations distinct from the 

training set. Code is available at https://github.com/mingcheung/AdvDetectGPT. 

Keywords: Adversarial detection, Adversarial examples, Deep neural networks, 

LVLMs. 

1 Introduction 

Deep neural networks (DNNs), despite their remarkable success, have been demon-

strated to be vulnerable to adversarial examples [14]. The adversarial examples, which 

incorporate carefully crafted perturbations but are virtually indistinguishable from 

clean examples, can successfully deceive DNNs into making incorrect decisions. This 

issue poses a serious challenge to the application of DNNs in safety- and security-crit-

ical domains. To enhance the ability of DNNs to resist adversarial examples, a spectrum 

of strategies has been rigorously investigated by researchers. This includes adversarial 

training that fortifies the learning process [1], structural enhancements that improve the 

model robustness [24], and the basic yet straightforward method of adversarial detec-

tion [2]. 

As one of the most straightforward defense methods, adversarial detection is simple 

in concept but not easy to implement [2]. Adversarial detection detects adversarial ex-

amples based on the intrinsic differences between adversarial and clean examples. 

Nonetheless, extracting discriminative features directly from adversarial and clean 



examples is often difficult. Numerous studies [6,16,27] have harnessed the model’s 

outputs or internal responses to amplify the differences between adversarial and clean 

examples, in order to achieve effective adversarial detection. However, the downside 

of this approach is that the trained detector is generally tailored to protect specific types 

of victim models. 

This is a clean example.

Is this an adversarial example or a 
clean example?
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Fig. 1. AdvDetectGPT’s adversarial detection via a question-and-answer mechanism. 

Large language models (LLMs) have achieved remarkable success in various tasks 

such as translation, summarization, and question-answering. More recently, the advent 

of large vision-language models (LVLMs) has further expanded the horizons of artifi-

cial intelligence by integrating visual perception with linguistic understanding. Moti-

vated by these advances, we explore the use of LVLMs to address the challenge of 

adversarial detection, and develop a novel detector, termed AdvDetectGPT, for identi-

fying adversarial examples targeting image classification models. As depicted in Fig. 

1, AdvDetectGPT can achieve adversarial detection in a question-and-answer style. In 

practice, AdvDetectGPT can be easily implemented by fine-tuning the LVLM. It learns 

to identify adversarial examples directly from clean and adversarial instances, inde-

pendent of the victim model’s outputs or internal responses. The extensive experiments 

on the ImageNet dataset demonstrate that AdvDetectGPT significantly outperforms the 

state-of-the-art baselines. AdvDetectGPT exhibits robust generalization, capable of de-

tecting adversarial examples crafted by novel attacks on new models, as well as those 

with customized perturbations distinct from the training set. 

This paper makes the following contributions: 

• We propose to utilize large vision-language models to achieve adversarial detection 

in a question-and-answer style. 

• We propose an adversarial detector, named AdvDetectGPT, which is based on 

LVLMs. It is designed to be easy to train and can achieve high accuracy in detecting 

adversarial examples targeting image classification models. 
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• We conduct extensive experiments to evaluate the performance of AdvDetectGPT, 

demonstrating its excellent generalization in adversarial detection and its superiority 

over the state-of-the-art baselines. 

2 Related Work 

In the realm of adversarial detection, prior research primarily utilizes statistical metrics 

such as kernel density [6], local intrinsic dimensionality (LID) [16] and Mahalanobis 

distance [15] to capture discriminative features from the model’s outputs or internal 

responses. These methods are limited by their sensitivity to high-dimensional data and 

noise, which can significantly impact the performance and reliability. Meng and Chen 

proposed MagNet [17], which includes several detector networks and a reformer net-

work. The detector networks are trained to distinguish adversarial examples from nor-

mal ones by modeling the manifold of normal examples. However, MagNet is only 

validated to be effective on small datasets like MNIST and CIFAR-10. Xu et al. [26] 

proposed feature squeezing, a technique to detect adversarial examples by reducing the 

input’s feature space and comparing model predictions on original and squeezed inputs. 

They explored two feature squeezing methods: reducing the color bit depth of each 

pixel and spatial smoothing. These methods have also only been tested on small datasets 

like MNIST and CIFAR-10. 

Recent advancements employ more sophisticated mechanisms to detect adversarial 

examples across diverse datasets and models. For example, Yang et al. [27] designed 

an innovative framework known as ML-LOO, which leverages multi-layer feature at-

tributions to detect adversarial examples. ML-LOO utilizes the leave-one-out (LOO) 

method and the statistical measures such as the inter-quartile range (IQR) to quantify 

the dispersion of feature attribution maps. Argos [13] employs a generative model to 

create multiple views from the input image and the victim DNN’s assigned label, and 

then exploits the inconsistencies between the generated images (i.e., views) and the 

input image to detect adversarial images. Deng et al. [4] proposed a practical approach 

called Lightweight Bayesian Refinement (LiBRe), which fortifies deep neural networks 

with uncertainty quantification by leveraging Bayesian neural networks, thereby 

achieving robust detection of adversarial examples across different scenarios. Wang 

and Gong [23] introduced a method for detecting adversarial examples by leveraging 

multi-layer saliency features. Their method focuses on the distinct evolution of saliency 

features between clean and adversarial examples across the hidden layers of a model. 

By analyzing these differences, their method provides an effective way to identify ad-

versarial examples. Yang et al. [28] proposed ContraNet, a novel adversarial example 

detection framework that leverages the intrinsic contradiction between the semantic in-

formation of input samples and the discriminative features extracted by the target 

model. This framework comprises an encoder, a generator, and a similarity measure-

ment model, which work together to identify adversarial examples by comparing syn-

thetic outputs with original inputs. The authors demonstrated through comprehensive 

evaluations that ContraNet outperforms existing solutions, particularly under adaptive 



attacks, by effectively capturing the semantic inconsistencies that are indicative of ad-

versarial examples. 

3 Methodology 

3.1 Model Architecture 

As shown in Fig. 2, AdvDetectGPT is composed of an image encoder, a text encoder, 

and an LLM. In this setup, both the image encoder and the text encoder are frozen, 

while the LLM is fine-tuned using the Low-Rank Adaptation (LoRA) [10] technique. 

The query image and the human’s textual input (i.e., inquiring if the image is adversar-

ial or clean) are processed by the image encoder and the text encoder, respectively, to 

generate corresponding image and text embeddings. The resulting image and text em-

beddings are concatenated and subsequently fed into the LLM to yield the final dis-

crimination result. Notably, the image encoder and LLM constitute the core compo-

nents of AdvDetectGPT, where the former generates preliminary discriminative encod-

ing for adversarial and clean images, while the latter meticulously identifies nuanced 

discrepancies between their respective encodings. 

Is this an adversarial 
example or a clean example?

LoRA

This is a clean 
example.LLM

Query image

ConcatenateFrozenTrainable

Image Encoder

Text Encoder

 

Fig. 2. The architecture of AdvDetectGPT. 

3.2 Training Data 

To fine-tune the LLM, we need to craft query images along with their respective ques-

tions. The query images include clean images and their corresponding adversarial var-

iants, which can be generated using the iterative fast gradient sign method (I-FGSM) 

[14]. The accompanying question is straightforward and uniform, phrased as “Is this an 

adversarial example or a clean example?”. The LLM’s responses are programmed as 

follows: if the query image is clean, it answers with “This is a clean example.”; if it is 

adversarial, it responds with “This is an adversarial example.”. 

The aforementioned question-answer pairs constitute the essential data for fine-tun-

ing the LLM, while the prompts fed into the LLM are slightly more complex and typi-

cally follow the format: 



 

 

 

2025 International Conference on Intelligent Computing 

July 26-29, Ningbo, China 

https://www.ic-icc.cn/2025/index.php 

 

<BOS> ### Human: <Img> Eimg </Img> Is this an adversarial 

example or a clean example? ### Assistant: 

“<BOS>” indicates the start of the input sequence. “### Human:” denotes the 

portion of the human’s input. “### Assistant:” indicates that the model should 

start responding. 
1

 model×d

imgE  represents the image embeddings, where dmodel is the 

embedding dimension. In the prompt, all elements except for Eimg are input to the text 

encoder to generate word embeddings, which are then concatenated with Eimg to form 

the complete input for the LLM. 

3.3 Image and Text Encoders 

To achieve the adversarial detection var a question-and-answer mechanism, AdvDe-

tectGPT integrates an image encoder and a text encoder to effectively process multi-

modal inputs. The image encoder transforms the query image into image embeddings. 

In practice, this can be accomplished using multi-modal encoders like ImageBind [7], 

or by employing pre-trained image recognition models, such as the Vision Transformer 

(ViT) [5]. Concurrently, the text encoder processes the textual component of the query, 

translating the human’s question into a sequence of word embeddings. In practice, the 

text encoder can be realized through the embedding layer of the LLM, or by utilizing 

pre-trained word embedding models, such as Word2Vec [18] or GloVe [19]. 

3.4 LLM and LoRA Fine-tuning 

The LLM within AdvDetectGPT is tasked with interpreting the query image and the 

accompanying human’s question, providing a definitive response to clarify whether the 

query image is adversarial or clean. The LLM is fine-tuned using the LoRA method. 

LoRA introduces low-rank matrices to the existing weight layers, allowing for efficient 

and effective parameter updates without the need for extensive retraining. In the fine-

tuning stage, each training instance consists of an image I  and a conversation data 

( , )x y , where x  and y  are the human’s question and the expected response of the 

system. The training objective of AdvDetectGPT is defined as minimizing the follow-

ing loss function: 

 
1

log ,| ,( ) 

=

= − IL
T

t t

t

p ey y x    (1) 

where 
Ie  is the image embeddings; T is the length of the target sequence y; y<t denotes 

the sequence of tokens in y that precede the current timestep t; { , }  = f l , where  f  

and l
 correspond to the frozen and the learnable parameters of the model; 

t( | , , )  Itp ey y x  represents the likelihood of predicting the token yt at time step t 

given x, Ie and y<t. Through LoRA-based fine-tuning of the LLM, AdvDetectGPT can 

efficiently adapt to the adversarial detection task while maintaining the generalization 

ability of the base language model. This lightweight parameter updating mechanism 

not only greatly reduces the training cost but also enables the model to accurately cap-

ture the semantic differences between adversarial and clean examples in the multi-

modal embedding space. 



4 Experiments 

4.1 Experimental Settings 

To verify the performance of AdvDetectGPT in detecting adversarial examples, we 

conduct extensive experiments in various scenarios. Table 1 provides an overview of 

the general experimental settings. 

Table 1. The overview of the general experimental settings. 

Training Clean (10,000); Adversarial (10,000): ResNet-50 + I-FGSM (ϵ=16). 

Testing 

Scenario 1: novel attacks 

Adversarial (1,000 each): ResNet-50 + I-FGSM (ϵ=16)/DI-I-FGSM 

(ϵ=16)/ILA (ϵ=16)/LinBP (ϵ=16)/RAP (ϵ=16). 

Scenario 2: novel attacks + new models 

Adversarial (1,000 each): Inception-v3/DenseNet-121/VGG16 + DI-

IFGSM (ϵ=16)/RAP (ϵ=16). 

Scenario 3: novel attacks + new models + customized perturbations 

Adversarial (1,000 each): Inception-v3/DenseNet-121/VGG16 + DI-

IFGSM (ϵ=8, 32)/RAP (ϵ=8, 32). 

 

Dataset. We randomly selected 10,000 images from the validation set of ImageNet*, 

along with their corresponding adversarial examples, as the training set for adversarial 

detectors. The ImageNet-compatible dataset† (containing 1,000 samples), along with 

the diverse adversarial examples crafted from it, constitute the testing set. The testing 

data used in each scenario are listed in Table 1. Here, “ResNet-50 + I-FGSM (ϵ=16)” 

denotes adversarial examples generated by applying I-FGSM on the ResNet-50 model 

with a maximum perturbation magnitude of ϵ=16. 

Models. We selected four models with different architectures as the basis for gener-

ating adversarial examples, which are ResNet-50 [9], Inception-v3 [22], DenseNet-121 

[11], and VGG16 [21]. 

Attacks. As for adversarial example generation methods, in addition to considering 

the basic I-FGSM [14] method, we also take into account methods such as DI-I-FGSM 

[25], ILA [12], LinBP [8] and RAP [20], which are capable of generating high trans-

ferable adversarial examples in black-box scenarios. All attacks utilize l∞ as the metric 

for measuring the perturbation distance. 

Baselines. We compare our AdvDetectGPT with three adversarial detection meth-

ods, i.e., ML-LOO [27], Argos [13], and LiBRe [4]. These methods have achieved 

state-of-the-art results in ImageNet-level adversarial detection, making them suitable 

as baselines for comparison. 

Metrics. Adversarial detection is essentially a binary classification problem. We 

designate adversarial examples as positive instances and clean examples as negative 

 
*  https://image-net.org/download.php 
†  https://www.kaggle.com/c/nips-2017-non-targeted-adversarial-attack/data 
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instances. In experiments, we adopt the true positive rate (TPR, for adversarial exam-

ples) and the true negative rate (TNR, for clean examples) as the evaluation metrics. 

Implementation details. We employ ImageBind [7] as the image encoder, Vicuna-

7B [3] as the LLM, and the embedding layer of LLM as the text encoder. The size of 

the query image is set to 299×299×3. Training is conducted on two NVIDIA RTX 

A5000 GPUs over 50 epochs, with a learning rate of 5e-4 and a batch size of 16. 

4.2 Detection Results: Novel Attacks 

AdvDetectGPT and the comparative baseline methods are all trained with 10,000 clean 

examples and their corresponding adversarial examples (generated on ResNet-50 using 

I-FGSM with perturbations of ϵ=16/255). We first test their discrimination capabilities 

on clean examples and various types of adversarial examples (generated using I-FGSM 

and several novel attacks). The results, as shown in Table 2, indicate that on clean ex-

amples, AdvDetectGPT’s TNR is 94.3%, slightly lower than LiBRe’s 98.4%, but sig-

nificantly higher than that of ML-LOO and Argos. On adversarial examples, AdvDe-

tectGPT’s detection ability is either superior to or on par with LiBRe, with TPR always 

approaching 100%, which is significantly higher than that of ML-LOO and Argos. 

4.3 Detection Results: Novel Attacks + New Models 

We next test the performance of various detection methods on adversarial examples 

generated by novel attacks on the new models. Specifically, the detectors, initially 

trained on adversarial examples generated by I-FGSM on ResNet-50, will now be tested 

against adversarial examples generated by DI-I-FGSM and RAP across three different 

models, i.e., Inception-v3, DenseNet-121, and VGG16. The results are shown in Table 

3. It can be observed that AdvDetectGPT still maintains a TPR that is superior to or on 

par with LiBRe’s on new types of adversarial examples, and significantly outperforms 

ML-LOO and Argos. This demonstrates AdvDetectGPT’s excellent generalization 

ability in detecting new types of adversarial examples. 

4.4 Detection Results: Novel Attacks + New Models + Customized 

Perturbations 

We further evaluate the performance of AdvDetectGPT on detecting adversarial exam-

ples with customized perturbations. Specifically, we evaluate the performance of de-

tectors using adversarial examples generated on new models with novel attacks and 

customized perturbations (ϵ =8/255, 32/255), deviating from the original training per-

turbations (ϵ =16/255). The results are shown in Table 4. It can be observed that when 

the maximum perturbation is increased to ϵ =32/255, AdvDetectGPT consistently main-

tains a TPR of 100%, outperforming all baseline methods. When the ϵ is reduced to 

8/255, except for one special case (i.e., detecting adversarial examples generated using 

RAP on VGG16), AdvDetectGPT is still superior to all baselines. This further demon-

strates the robust generalization of AdvDetectGPT. 



Table 2. TNR (%) of clean examples and TPR (%) of adversarial examples. 

Method Clean 
ResNet-50 

I-FGSM DI-I-FGSM ILA LinBP RAP 

ML-LOO [27] 77.1 80.4 81.2 80.1 79.4 77.5 

Argos [13] 77.6 79.1 79.4 79.3 76.6 77.8 

LiBRe [4] 98.4 99.5 100.0 99.9 99.6 98.5 

AdvDetectGPT 94.3 99.9 100.0 100.0 99.8 99.8 

Table 3. TPR (%) of adversarial examples generated by novel attacks on new models. 

Method 
Inception-v3 DenseNet-121 VGG16 

DI-I-FGSM RAP DI-I-FGSM RAP DI-I-FGSM RAP 

ML-LOO [27] 78.9 77.4 79.2 78.7 79.9 79.1 

Argos [13] 75.8 74.9 77.3 77.2 78.1 76.9 

LiBRe [4] 99.8 98.1 99.9 98.9 100.0 98.7 

AdvDetectGPT 99.7 99.3 99.9 99.9 100.0 99.1 

*ILA and LinBP are not considered as their implementations [8] only target the ResNet-

50 model. 

Table 4. TPR (%) of adversarial examples with novel attacks, new models and customized per-

turbations. 

Method 

Inception-v3 DenseNet-121 VGG16 

DI-I-FGSM RAP DI-I-FGSM RAP DI-I-FGSM RAP 

ϵ=8 ϵ=32 ϵ=8 ϵ=32 ϵ=8 ϵ=32 ϵ=8 ϵ=32 ϵ=8 ϵ=32 ϵ=8 ϵ=32 

ML-LOO [27] 71.6 80.6 69.5 71.4 70.8 71.7 70.2 72.1 71.6 72.4 68.8 71.5 

Argos [13] 71.7 76.4 70.7 75.9 76.7 77.9 74.1 77.5 76.2 78.8 75.4 77.2 

LiBRe [4] 79.4 98.7 69.1 99.2 84.4 98.9 80.4 97.1 82.5 98.3 64.6 99.7 

AdvDetectGPT 82.0 100.0 74.9 100.0 94.1 100.0 89.1 100.0 91.9 100.0 70.6 100.0 

4.5 Benchmarking Computational Overhead 

During experiments, AdvDetectGPT was deployed on a system with the following 

specifications: an Intel Xeon (R) Bronze 3206R CPU @ 1.90GHz (16 cores), 64GB 

RAM, and an NVIDIA RTX A5000 GPU with 24GB VRAM under CUDA 12.1. Our 

measurements indicate that during inference, the model consumes approximately 

14.9GB of VRAM and 4.8GB of RAM, with an average detection time of 1.037 seconds 

per sample (for one 299×299 ×3 resolution image). The AdvDetectGPT is fine-tuned 

from the Vicuna-7B FP16 model. The actual GPU memory usage matched the theoret-

ical value, while the RAM usage was mainly due to the image encoder of ImageBind. 

Notably, large vision-language models inherently demand substantial computational 
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resources, which is also a potential limitation of AdvDetectGPT in practical applica-

tions. Nevertheless, specialized optimization techniques (e.g., model pruning, quanti-

zation) could reduce the computational overhead. These techniques are beyond the 

scope of this study. 

5 Conclusion 

In this work, we delve into the application of LVLMs to tackle the challenge of adver-

sarial detection. We design an adversarial detector based on LVLMs, named AdvDe-

tectGPT. AdvDetectGPT is trained using the raw adversarial and clean examples, and 

can achieve effective adversarial detection via a question-and-answer mechanism. The 

extensive experiments demonstrate AdvDetectGPT’s excellent performance and robust 

generalization. It is worth noting that in practical applications, AdvDetectGPT needs to 

guard against the impact of adaptive adversarial attacks (i.e., detection-aware attacks), 

which could serve as a future research direction. Additionally, exploring how to lever-

age more compact and low-energy large models for adversarial detection may also con-

stitute a promising area for future investigation. 
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