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Abstract. In steel surface defect detection, accurate identification of various de-

fect types is crucial. However, the diverse morphologies of defects and complex 

backgrounds encountered in real-world industrial production pose significant 

challenges for existing object detection networks. To address these challenges, 

this paper proposes MDTH, a deep learning-based network model built upon 

YOLOv10. MDTH integrates multi-scale deep convolutional feature extraction 

with Swin Transformer encoding through an enhanced Hybrid attention mecha-

nism (Trans-Ham). Firstly, the Multi-Angle Perception and Depth-wise separable 

convolution module (MAPD) captures the edges and texture details of steel sur-

faces, effectively identifying minor defects. Secondly, the Trans-Ham module 

extracts comprehensive and fine-grained feature information, enabling the model 

to focus on both local details and global structures simultaneously. Finally, 

MPDIoU optimizes the overlap and shape matching of bounding boxes, enhanc-

ing the accuracy of defect localization. Experimental results on the NEU-DET 

and PKU-Market-PCB datasets demonstrate that the proposed MDTH model 

achieves mean average precisions of 78.2% and 95.3% at IoU threshold 0.5, re-

spectively. These results significantly surpass those of commonly used models, 

highlighting the effectiveness of the added modules and the superior performance 

of MDTH in defect detection tasks. 

Keywords: Defect detection, Hybrid attention mechanism, MPDIoU loss func-

tion, Swin Transformer, YOLOv10 

1. Introduction 

Steel remains a crucial structural material in various industries like construction, auto-

motive manufacturing, and aerospace engineering due to its exceptional mechanical 

strength and cost efficiency [1]. Despite its benefits, surface imperfections like 

scratches and cracks frequently arise during production, impacting its longevity [2]. 

With the increasing need for top-notch steel, ensuring its reliability is paramount. 

Hence, precise and advanced defect detection techniques are imperative to uphold 

standards and mitigate potential hazards. 

In recent years, deep learning approaches have greatly boosted the ability to detect 

surface defects. Models such as SSD [3], YOLO [4], and DETR [5] have advanced one-



stage detection, while R-CNN variants [6] have improved two-stage detection. How-

ever, achieving high detection accuracy in steel defect detection remains challenging 

due to diverse defect morphologies and complex backgrounds, which often lead to 

missed or misclassified defects. To tackle these challenges, the multi-angle perception 

and depth-wise separable convolution module is incorporated into the YOLOv10 

framework. This module is designed to dynamically capture fine-grained texture details 

across various scales and orientations while maintaining low computational cost. As a 

result, it facilitates robust feature extraction, effectively distinguishing subtle defect 

variations even in complex industrial environments. 

Transformer architectures [7] overcome the constraints of convolutional networks by 

capturing global dependencies. Traditional YOLO detectors, on the other hand, under-

perform due to limited global feature integration. To address this issue, we introduce a 

novel approach by integrating a Trans-Ham module into the YOLO framework, result-

ing in a hierarchical feature fusion architecture. The introduced shifted window atten-

tion mechanism effectively captures multi-scale contextual patterns, thereby improving 

detection accuracy by facilitating cross-scale feature interactions. 

The work’s contribution can be summarized as below: 

1. We propose an advanced MAPD module to accurately extract boundary and tex-

ture information from steel defect images. This module captures both local structures 

and global context, enhancing the model's capacity to analyze fine-grained image de-

tails and thereby significantly improving defect recognition performance. 

2. To effectively extract and emphasize critical positional information, we propose a 

module integrating Swin Transformer and an enhanced hybrid attention mechanism 

into YOLOv10. This integration highlights crucial positional key feature regions, en-

hancing target localization accuracy and the capture of image details. Consequently, it 

improves recognition accuracy and model robustness, elevating overall performance. 

3. The introduction of the MPDIoU loss function enhances the detection of irregular-

shaped defects and improves localization accuracy in complex backgrounds. This re-

sults in higher prediction precision and significantly boosts the overall detection per-

formance. 

4. This paper proposed MDTH model, integrating multi-scale deep convolutional 

feature extraction with Trans-Ham feature fusion, provides a deeper, more re-fined un-

derstanding of the defect images, significantly enhancing image recognition capabili-

ties. 

2. Related Work 

2.1 Defect Detection on Steel Surface 

Traditional defect detection methods on steel often utilize manual operations like sur-

face visual inspection [8] and assess the degree of defects, whose results are easily in-

fluenced by human factors, leading to low detection accuracy and speed. Then, machine 

learning methodologies emerged as powerful tools to substantially elevate defect de-

tection capabilities, drastically reducing manufacturers' workload and bolstering the 
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efficiency of identifying and classifying surface defects through automation. Notable 

examples include thresholding methods [9], SVMs [10], and decision trees [11]. How-

ever, these techniques are constrained by external factors such as lighting conditions 

and necessitate manual extraction of feature information, posing challenges to meet the 

rigorous demands of real-world steel production environments. 

Steel surface defect detection has seen a significant improvement in accuracy and 

speed with the help of deep learning. However, detecting tiny or irregular defects, 

which are difficult to locate with traditional methods. Therefore, more research is 

needed to achieve robust and effective defect detection that can handle multiple com-

plex types of defects. To address multi-scale feature extraction in steel surface defect 

detection, Liu et al. [12] developed MSC-DNet, which employs parallel dilated convo-

lutions with varying dilation rates and an adaptive feature enhancement module to 

strengthen characteristic defect pattern representation. Demir et al. [13] proposed a 

dual-path architecture integrating residual connections with attention mechanisms, ef-

fectively learning discriminative feature representations for surface defect classifica-

tion through coordinated spatial-channel interactions. For detecting atypical defect pat-

terns, Sharma et al. [14] designed a multi-task framework incorporating cascaded bi-

nary classification with hybrid detection-segmentation modules, demonstrating im-

proved robustness against irregular defect morphologies through hierarchical feature 

verification. 

2.2 Transformer Architecture 

Recent work shows that convolutional neural networks employing the encoder-decoder 

framework have achieved significant advancements in defect detection applications. 

The Vision Transformer (ViT) proposed by Dosovitskiy et al. [15] was one of the first 

to treat images as sequences, demonstrating the potential of Transformer architectures 

in image classification tasks. This work highlighted the ability of Transformer-based 

models to capture long-range dependencies in images, leading to improved classifica-

tion performance. Lin et al. [16] introduced a hierarchical structure and sliding window 

mechanism to enhance the processing of high-resolution images using Transformers. 

This advancement enabled Transformers to handle larger input sizes more effectively. 

In the realm of object detection, DETR simplified traditional detection frameworks by 

applying Transformer architecture. DETR improved detection accuracy and reduced 

computational complexity by replacing region proposal networks with its self-attention 

mechanism. Wang et al. [17] proposed Defect Transformer to refine defect localization, 

enhancing the model's capacity to capture both local and global relationships, thereby 

improving defect detection precision. ETDNet, a lightweight ViT-based detection net-

work introduced by Zhou et al. [18], decouples local and global feature extraction to 

enhance defect detection. By integrating local feature representation with global feature 

aggregation, ETDNet demonstrated a significant performance enhancement. These 

studies collectively underscore the increasing significance and efficacy of Transformer-

based models in defect detection, showcasing their potential to enhance detection ac-

curacy and efficiency by capturing intricate spatial relationships in images. 



3. Method 

3.1 The overall architecture 

This study introduces MDTH, a novel framework developed to improve steel defect 

detection based on YOLOv10. As illustrated in Figure 1, MDTH analyzes steel defect 

images using a sequence of purposefully crafted components. Initially, low-level fea-

tures are extracted from the input images and fed into the backbone that expands the 

receptive field to encompass extensive high-level features. The enhanced features are 

then directed to two key modules: Trans-Ham and MAPD. Trans-Ham combines hybrid 

attention with a transformer architecture to model spatial and contextual relationships, 

improving defect detection accuracy. The MAPD module focuses on capturing local 

structures and global information through its Multi-Angle Perception mechanism. This 

module processes features through parallel branches, using channel compression and 

spatial feature extraction to enhance detail capture for small defects. Finally, the 

MPDIoU loss function is employed to further optimize the detection process. 

 

Fig. 1. The diagram illustrates the proposed MDTH structure, which consists of, from left to 

right, the YOLOv10 backbone, MAPD module, Trans-Ham module, and Detect Head. 

3.2 MAPD module 

Traditional convolutional neural networks, like the VGG network [19], use fixed kernel 

sizes and single-path processing. This limits their ability to capture spatial coordinate 

features and multi-angle information, reducing their effectiveness in precisely detecting 

small, unevenly distributed objects. 

To solve the problem, we propose the MAPD module to capture both local structures 

and global information. Fig. 2 shows its structure. The Multi-Angle Perception (MAP) 
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mechanism is introduced to enhance spatial information capture. C  is the number of 

channels, and H  and W  are the height and width, MAP processes feature map through 

two parallel branches. 

In the first branch, a 1×1 convolution compresses channels by a learnable factor of 
 , reducing the channel dimension to C  while maintaining spatial dimensions. This 

compression helps to reduce computational complexity and focus on the most relevant 

channel information. Subsequently, a 5 5  convolution extracts spatial features, help-

ing capture richer details, particularly for minor defects. The second branch utilizes 

depth-wise separable convolution [20] to separate channel and spatial convolutions, 

thereby enhancing the model’s awareness of spatial dimensions. This multi-path pro-

cess approach fuses integrates multi-angle information from various angles, boosting 

the detection of challenging samples. After the parallel branches, another 5 5  convo-

lution deeply extracts features from fused outputs and expands the feature map's chan-

nels. This step not only integrates multi-angle information but also balances the feature 

representation by adjusting the number of channels. Then, depth-wise separable con-

volution is used again to further extract spatial information and enhance the model’s 

ability to capture more defective features. Finally, a residual connection merges the 

feature map with the concatenated branch features to prevent feature loss and produce 

the final feature map. By strategically compressing and expanding the number of chan-

nels, the MAPD module effectively balances computational efficiency and feature rich-

ness. This design ensures that the module can capture detailed spatial information while 

maintaining a comprehensive understanding of the feature space, leading to improved 

detection accuracy for steel defects. 

 

Fig. 2. The workflow of MAPD module 



3.3 Trans-Ham Module 

Detecting defects in steel is challenging due to variations in their position, shape, and 

size, which can hinder accurate localization by models during training. Additionally, 

the similarity between defect patterns and background textures can lead to missed de-

tections. To address these issues, we incorporated the Swin Transformer and an en-

hanced Hybrid attention module [21] (Trans-Ham) into our model, enhancing its ability 

to precisely localize and classify defects. The structure of Trans-Ham is depicted in Fig. 

3.  

The Trans-Ham module integrates the attention mechanism and the feature expres-

sion capabilities of the Transformer to effectively capture both local details and global 

context in images, thereby enhancing the accuracy of defect localization and classifica-

tion. This module employs an enhanced HAM module to extract key defect information 

from the image. The enhanced HAM module preserves the complementary strengths of 

the Positional Attention Mechanism (PAM) and Channel Attention Mechanism (CAM) 

[22], facilitating dynamic feature interaction through joint positional and channel atten-

tion calculations, followed by merging the outputs through weighted splicing. By in-

corporating positional attention, which captures inter-position correlations in the fea-

ture map, and channel attention, which emphasizes channel importance, the module 

enables a more comprehensive understanding of image features. The introduction of 

weighted splicing further enhances the model’s feature fusion capabilities, ensuring the 

retention of detailed information during feature extraction, capturing global semantic 

information, and providing a richer feature representation for subsequent defect locali-

zation and classification tasks. Here is the formulation of the enhanced HAM module: 

 ( ) oftmax( )V
T

P P

PAM P

k

Q K
H PAM H S H

d
= = +  (1) 

 ( ) oftmax( )V
T

C C

CAM C

K

Q K
H CAM H S H

d
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Fig. 3. The architecture of Trans-Ham module 

Subsequently, the combined feature map undergoes processing within the Swin 

Transformer framework, where it is partitioned into non-overlapping image blocks of 

fixed sizes, with each block treated as a ‘token’. The mathematical representation of 

the Swin Transformer block is depicted by the following equations: 

 
1 1( ( ))

l
l lF W MSA LN F F− −= − +  (4) 

 ( ( ))
l l

lF MLP LN F F= +  (5) 

 
1

( ( ))
l l

lF SW MSA LN F F
+

= − +  (6) 

 
1 1

1 ( ( ))
l L

lF MLP LN F F
+ +

+ = +  (7) 

Where, LN denotes Layer Normalization, which normalizes input features to stabilize 

the training process. W MSA− represents Window-based Multi-Head Self Attention 

(MSA), while SW MSA−  refers to Shifted Window Multi-Head Self Attention. 

W MSA−  focuses on local context extraction by restricting attention computation 

within non-overlapping windows, while SW MSA−  expands the receptive field 

through a window-shifting strategy, enabling the capture of broader spatial relation-

ships. This combination enhances the model's ability to understand complex patterns in 

defect detection tasks. MLP  denotes Multi-Layer Perceptron, which consists of two 

fully connected layers with a GELU  activation function [23], facilitating further fea-

ture transformation and enhancement. The inclusion of MLP  increases the model’s ex-

pressive power. 

The operation of the Shifted Window mechanism is illustrated in Fig. 4. As shown 

in Fig. 4.(b), the input image is initially partitioned into non-overlapping windows using 



W MSA− . In the subsequent step, the yellow and red regions which highlighted in Fig. 

4.(c). are reassigned to the lower-right position, as depicted in Fig. 4.(d). The strategic 

re-positioning of the regions enriches the interaction between different parts of the im-

age. This shifting process enables the model to capture a broader range of spatial de-

pendencies. 

 

Fig. 4. Flowchart of the operation of the Shifted Window mechanism 

3.4 MPDIoU loss function 

In real-world industrial production, bounding box prediction is prone to be affected by 

the irregular shapes and various sizes of different defect categories. To address this issue, 

we employ MPDIoU [24], a groundbreaking loss function that enhances bounding box 

regression by considering multiple points on the bounding boxes rather than just the cen-

ter points. The MPDIoU loss provides a more comprehensive metric for objects with ir-

regular shapes and varying sizes, leading to improved accuracy in defect detection tasks. 

The MPDIoU loss function is shown below: 

 2 2 2

1 min min min min( ) ( )A B A Bd x x y y= − + −  (8) 

 2 2 2

2 max max max max( ) ( )A B A Bd x x y y= − + −  (9) 

 

2 2

1 2

2 2
1MPDIoU

d d
L IoU

h w

+
= − +

+
 (10) 

For the bounding boxes A and B , the terms 2

1d  and 
2

2d  measure the squared Euclid-

ean distances between the corresponding corners of the two bounding boxes. The coor-

dinates min min( , )A Ax y  and max max( , )A Ax y  represent the top-left and bottom-right corners of 

bounding box A , respectively. Similarly, the coordinates min min( , )B Bx y  and max max( , )B Bx y  

correspond to the top-left and bottom-right corners of bounding box B . The dimen-

sions w  and h  denote the width and height of the smallest enclosing box that com-

pletely covers both bounding boxes A  and B . 

When the predicted box is distant from the groundtruth box's center without overlap-

ping, as illustrated in Fig. 5(a), the MPDIoU loss accounts for both factors. In this 
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scenario, the DIoU [25] and CIoU [26] losses are 1.29, whereas the MPDIoU loss no-

tably increases to 1.58. This holistic consideration yields more informative gradients, 

facilitating quicker and more accurate convergence in bounding box regression. In 

cases where the predicted box overlaps with the real box, as depicted in Fig. 5(b), the 

MPDIoU loss integrates IoU overlap and a corner distance penalty. Here, the DIoU and 

CIoU losses measure 0.97, while the MPDIoU loss is 1.08. Unlike CIoU, which em-

phasizes differences in center distance and aspect ratio, MPDIoU also incorporates cor-

ner distances, making it particularly suitable for targets with substantial spatial misa-

lignment or irregular shapes. This balanced integration of geometric factors enables 

MPDIoU to effectively capture positional and shape disparities between bounding 

boxes, enhancing regression precision and furnishing detailed gradient insights for op-

timization. 

 

Fig. 5. Two cases with different boxes of regression results. The green boxes represent the 

groundtruth boxes and blue boxes represent predicted boxes. (a) The result of non-overlapping 

bounding box; (b) The result of overlapping bounding box. 

4. Experiments 

4.1 Data Description 

To demonstrate the validity of MDTH, we performed experiments on two distinct da-

tasets: NEU-DET dataset [27] and PKU-Market-PCB dataset [28]. The dataset contains 

1,800 grayscale images in total, organized into six defect types: Crazing, Inclusion, 

Patches, Pitted Surface, Rolled-in Scale and Scratches, which is shown in Fig. 6. Each 

defect category has 300 annotated images, with labels indicating defect type and loca-

tion. To manage data efficiently, we randomly selected 1620 for the training sets, with 

180 images for the test sets. To further assess the generalization ability and robustness 

of MDTH, we conducted additional experiments on the PKU-Market-PCB dataset. This 

dataset comprises 693 defect images with an average resolution of 2046 2016  pixels 



and is also categorized into six defect types: Missing Hole, Mouse Bite, Open Circuits, 

Short, Spur, and Spurious Copper. The defect types of PKU-Market-PCB are illustrated 

in Fig. 7. The dataset was split at an 8:1:1 ratio for training, validation, and testing. 

 

Fig. 6. Defect types of NEU-DET dataset 

 

Fig. 7. Defect types of PKU-Market-PCB dataset 
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4.2 Experimental platform and hyperparameter setting 

To validate the effectiveness of the proposed MDTH model, all experiments were con-

ducted on an NVIDIA GeForce RTX 3090 GPU (24GB) in a Pytorch 2.0.1 environment. 

The hyperparameter settings for the models are presented in Table 1. 

Table 1. The experiment settings 

Hyperparameters NEU-DET PKU-Market-PCB 

Optimizer SGD SGD 

Learning rate 0.01 0.01 

Weight decay 0.0005 0.0005 

Batch size 16 16 

epochs 300 300 

Image size 640 640  640 640  

4.3 Evaluation metrics 

The common and wide used indicators for evaluating defect detection model are the 

precision (P), recall (R), parameters and mAP@0.5. Mean average precision is often 

considered a comprehensive metric across all defect types for evaluating defect detection 

models. Here is definition of P, R and mAP@0.5:  

 
TP

precision
TP FP

=
+

 (11) 

 
TP

recall
TP FN

=
+

 (12) 

 
1

1 n

i

i

mAP AP
n =

=   (13) 

In the formula, TP (True Positive) denotes the number of cases where defects have 

been accurately detected, FP (False Positive) denotes the number of cases where de-

fects have been inaccurately detected. FN (False Negative) denotes the number of 

cases that have been falsely judged as non-defective. 

4.4 Ablation Experiment 

To evaluate the effectiveness of the proposed modules, we conducted a series of abla-

tion experiments on the NEU-DET dataset, systematically comparing the impact of dif-

ferent enhancement strategies on model performance. The detailed evaluation metrics 

are presented in Table 2. First, we evaluated the precision, recall, and mAP@0.5 met-

rics of the original YOLOv10n model, with results of 67.0%, 66.9%, and 72.6%, re-

spectively. Next, we introduced the MAPD module, which improved the model's 

mailto:mAP@0.5
mailto:mAP@0.5


Precision by 7.2% and mAP@0.5 by 1.9%. We then introduced the Trans-Ham module, 

which reached 75.6%, 67.3%, and 75.2% on the precision, recall and mAP@0.5 met-

rics, respectively. In addition, by replacing the original loss function with MPDIoU, the 

precision, recall and mAP@0.5 metrics were improved by 2.6%, 3.8%, and 1.7% on 

the original model, respectively. Ultimately, our model improved by 13.9%, 1.6%, and 

5.6% on the Precision, Recall, and mAP@0.5 metrics compared to the original 

YOLOv10 model, respectively. These results fully demonstrate the effectiveness of the 

modules we added and the superior performance of the baseline model in defect detec-

tion tasks. 

Table 2. Ablation results on NEU-DET 

MAPD Trans-

Ham 

MPDIoU Precision 

(%) 

Recall 

(%) 

mAP@0.5 

(%) 

   67.0 66.9 72.6 

√   74.2 66.3  74.5 

 √  75.6 67.3 75.2 

  √ 69.6 70.7 74.3 

√ √  78.8 67.6 77.6 

√  √ 75.1 67.9 75.4 

 √ √ 78.2 68.2 77.1 

√ √ √ 80.9 68.5 78.2 

Fig. 8 shows the comparison of the P-R results before and after the improvement, from 

which it can be seen that the proposed MDTH model has different degrees of improve-

ment for each class, the AP value of the crazing class is improved from 36.5% to 53.1%, 

which is 16.6 percentage points; the AP value of the inclusion class is improved from 

79.6% to 84.1%, which is 4.5 percentage points; the AP value of the patches class AP 

value from 81.0% to 85.4%, an improvement of 4.4 percentage points, etc. The AP 

values of many different defective target detections are all improved, reflecting the 

good generalization ability of the model. 

 

Fig. 8. P-R comparison between YOLOv10 and MDTH on NEU-DET dataset 

mailto:mAP@0.5
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4.5 Comparison and analysis of different object detection models 

To assess the model's generalization capability, we conducted extensive comparative 

experiments on both the NEU-DET and PKU-Market-PCB datasets. We compared our 

model with recent single-stage object detection methods, including RT-DETR, 

YOLOv5, YOLOv8, YOLOv10, and YOLOv11. Table 3 presents a comparative anal-

ysis of the proposed method in terms of mAP@0.5 and parameters (params). Our model 

achieved the highest mAP@0.5 value of 78.2 on NEU-DET dataset and 95.3 on PKU-

Market-PCB dataset with an additional 0.16M parameters. This performance surpasses 

that of other mainstream models, demonstrating a favorable balance between accuracy 

and complexity for industrial defect detection tasks. 

Table 3. Comparison results on NEU-DET dataset and PKU-Market-PCB dataset 

Model NEU-DET PKU-Market-PCB 

Params mAP@ 

0.5  

mAP@ 

0.5-0.95 

mAP@ 

0.5 

mAP@ 

0.5-0.95 

RT-DETR 72.6% 40.7% 90.5% 44.0% 3.19M 

YOLOv5 71.3% 39.4% 90.3% 44.1% 1.76M 

YOLOv8 75.6% 41.5% 90.7% 43.7% 2.25M 

YOLOv10 72.6% 38.5% 90.9% 46.1% 2.69M 

YOLOv11 76.2% 41.2% 91.7% 47.8% 2.60M 

Our model 78.2% 43.1% 95.3% 63.3% 2.85M 

Fig. 9 illustrates the visual comparison of detection results between the proposed 

MDTH algorithm and mainstream methods, including RT-DETR, YOLOv5, YOLOv8, 

YOLOv10, and YOLOv11, across two different datasets. As observed in the figure, the 

MDTH model exhibits superior performance in detecting defects under complex back-

grounds, demonstrating a clear advantage over existing mainstream algorithms. Fur-

thermore, the MDTH algorithm effectively identifies various defect types from multiple 

perspectives with high precision. Regardless of scene complexity or defect diversity, 

the proposed method consistently achieves robust and reliable detection performance, 

further underscoring its effectiveness in practical defect detection applications. 



 

Fig. 9. Comparison of visualization results 

5. Conclusion 

In this paper, we propose MDTH, a multi-scale deep learning network for steel surface 

defect detection, which integrates Trans-Ham feature fusion. To enhance the ability to 

extract fine-grained defect features, we first employ the Multi-Angle Perception and 

Depth-wise separable convolution (MAPD) module to capture the edge and texture de-

tails of the steel surface. Subsequently, the Trans-Ham module is utilized to extract 

richer and more detailed feature information, allowing the model to simultaneously fo-

cus on both local details and global structures. Finally, we introduce MPDIoU to opti-

mize the overlap and shape matching of the bounding boxes, thereby accelerating the 

model's convergence and reducing the loss, which in turn enhances its robustness. 

We conduct experiments on the NEU-DET and PKU-Market-PCB datasets to further 

evaluate the effectiveness of the proposed model. The experimental results demonstrate 
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that the MDTH model achieves mAP@0.5 scores of 78.2% and 95.3%, respectively, 

yielding improvements of 5.6% and 4.8% over the baseline model. When faced with 

minute and irregularly shaped defects, MDTH precisely pinpoints and classifies them, 

representing a major advancement in defect detection algorithms. 

For future research, we plan to focus on three key directions: (1) improving the 

model to reduce computational complexity, (2) exploring various lightweight modules 

to identify the most efficient detection algorithms, and (3) extending the MDTH model 

to accommodate a wider range of application domains. 
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