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Abstract. Image super-resolution (SR) aims to reconstruct high-resolution im-

ages from low-resolution inputs, addressing challenges like sensor noise, optical 

distortions, and compression artifacts. Traditional SR methods often struggle 

with preserving fine details, particularly in regions with sharp transitions or com-

plex textures. In this work, we propose a novel Local Wavelet Transformer 

(LWT) framework that leverages the Discrete Wavelet Transform (DWT) to cap-

ture both local textures and global structures, improving the accuracy of fine-

grained detail restoration. By introducing a magnification factor decomposition 

strategy, our method enables super-resolution at arbitrary scaling levels, ensuring 

flexibility and precise detail preservation across different magnifications. We 

demonstrate the effectiveness of our approach through extensive experiments on 

multiple benchmark datasets, showing superior performance and achieving state-

of-the-art results in high-resolution image reconstruction under diverse condi-

tions. Our results highlight the potential of wavelet-based analysis for enhancing 

SR tasks, particularly in scenarios requiring fine detail recovery and sharp tran-

sitions. 

Keywords: Single image super resolution, Discrete wavelet transformation, Lo-

cal attention mechanism. 

1 Introduction 

There is a growing demand for clear, realistic, and high-quality images to enhance vis-

ual experiences. However, image formation and transmission processes are often hin-

dered by imaging systems' limitations, leading to degraded image quality. Factors such 

as sensor noise, optical distortions, and compression artifacts collectively contribute to 

this degradation, posing significant challenges across various domains [17, 23]. Ad-

dressing these challenges has fueled extensive research into image super-resolution 



(SR) techniques—methods designed to reconstruct high-resolution images from low-

resolution inputs—which offer a promising solution to improve image quality and us-

ability.  

 

Fig. 1. Local texture details are represented as global features in the frequency domain by FFT 

 

Among the various SR approaches, single image super-resolution (SISR) [7, 14, 22] 

has gained significant attention due to its potential to recover finer details from a single 

input image. One notable method in this field is LTE [11], which introduces an inno-

vative approach by enhancing the expressiveness of local implicit functions. This is 

achieved by transforming spatial coordinates into the Fourier domain, which enables 

LTE to achieve precise, seamless image reconstruction across different scales, demon-

strating the potential of frequency-domain techniques for super-resolution tasks.  

While the Fourier Transform (FFT) [17] is a powerful tool for frequency-domain 

analysis, it operates on a global scale. Specifically, it represents the entire image in the 

frequency domain, where each frequency component spans the entire spatial domain. 

As illustrated in Fig. 1, the process requires a comprehensive alignment of features 

across all frequency bands, which can be computationally intensive and less efficient 

in capturing localized variations. To overcome these limitations, the Discrete Wavelet 

Transform (DWT) [15] emerges as a promising alternative. Unlike FFT, DWT inher-

ently supports localized analysis by decomposing an image into multi-resolution sub-

bands, as shown in Fig. 2. Each sub-band captures spatial and frequency information at 

different scales, enabling DWT to simultaneously preserve both global structure and 

localized details.  

Building on the strengths of DWT, we propose a novel framework called the Local 

Wavelet Transformer (LWT). Unlike traditional approaches that operate directly in the 

spatial or Fourier domains, LWT projects image features into the wavelet domain be-

fore performing further processing and upscaling. By leveraging wavelet-based 
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analysis, LWT enhances the network's ability to capture both localized details and 

broader structural features. This approach focuses on processing high-frequency tex-

tures in a way that supports more effective image reconstruction. As a result, LWT 

improves the representational capability of the network, leading to better performance 

in reconstructing high-resolution images, particularly in cases where fine details and 

sharp transitions are crucial. 

 

 
Fig. 2. Local texture details after DWT still behave as local features in the wavelet domain. 

 

Building on the LWT upsampling framework, we adopt a strategy that decomposes 

the magnification factor, enabling super-resolution at arbitrary scaling levels. This ap-

proach not only provides flexibility in scaling but also ensures the preservation of fine-

grained details across a range of magnification factors. To rigorously assess the perfor-

mance and robustness of our method, we conduct extensive experiments on several 

benchmark datasets, including DIV2K, Set5, Set14, B100, and Urban100. The results 

demonstrate the effectiveness of our approach, with peak signal-to-noise ratio (PSNR) 

values reaching 35.26 dB on DIV2K, 38.43 dB on Set5, and 33.93 dB on Urban100 at 

×2 magnification. Our method achieves high-quality image reconstruction across vari-

ous scales, including ×2, ×3, ×4, and up to ×30, and consistently preserves fine details 

and textures under diverse imaging conditions. 

The main contributions of our work are as follows: 

- We propose a novel Local Wavelet Transformer (LWT) that leverages the Discrete 

Wavelet Transform (DWT) to capture local texture details, enhancing the net-

work's ability to reconstruct fine-grained details in high-resolution images.  

- We introduce a magnification factor decomposition strategy within the LWT 

framework, enabling super-resolution at arbitrary scaling levels while maintaining 

fine details across different magnifications.  



- We perform extensive experiments on multiple benchmark datasets, demonstrating 

the effectiveness and robustness of our method in achieving high-quality image 

reconstruction across various scales and imaging conditions. 

2 Related Work 

2.1 Wavelet Transformation 

The Wavelet Transform enables precise localization of image details and features, mak-

ing it particularly effective for handling local characteristics such as edges and textures. 

[2] demonstrates that leveraging CNN representations across wavelet sub-bands can 

effectively enhance image restoration tasks. A multi-level wavelet transform [16] has 

also been employed to expand the receptive field while preserving critical information, 

benefiting image restoration processes. Additionally, Williams et al. [24] apply the 

Wavelet Transform to perform a second-level decomposition of input features, discard-

ing first-level sub-bands to reduce feature dimensions and improve image recognition 

efficiency. 

2.2 Single Image Super-Resolution and Arbitrary Scale Super-Resolution 

Single Image Super-Resolution (SISR) aims to reconstruct high-resolution (HR) im-

ages from low-resolution (LR) counterparts by reversing the degradation process, 

which typically involves blurring, down-sampling, and noise. 

Early deep learning-based SISR methods, like SRCNN [5], used CNNs for feature 

extraction and HR reconstruction. Advances such as VDSR [9] incorporated residual 

learning, and LapSRN [11] used iterative up-sampling with supervised residuals for 

better detail preservation. More recent approaches, including diffusion models like SR3 

[22], employ iterative refinement for improved image-to-image translation. Further re-

finements focus on efficiency through residual [13] or latent spaces [21], reducing com-

putational costs and accelerating convergence. However, many methods still rely on 

fixed degradation models, limiting their real-world applicability. 

A key challenge in SISR is the fixed scaling factor, requiring separate models for 

each upsampling scale. To address this, methods like Meta-SR [7] use meta-networks 

to enable arbitrary upsampling within a training range, though performance drops at 

larger scales. LIIF [4] addresses this by using a Multi-Layer Perceptron (MLP) to pre-

dict RGB values at arbitrary coordinates, enhancing generalization. UltraSR [25] fur-

ther improves this by replacing coordinates with embedded ones to mitigate spectral 

bias, while LTE [12] refines the approach by using a Fourier domain transformation to 

capture high-frequency details, enabling accurate reconstruction across arbitrary scales. 
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3 Method 

In this section, we introduce our super-resolution method, which consists of the Local 

Wavelet Transformer (LWT) upsampling framework and the magnification factor de-

composition strategy for arbitrary scaling.  A detailed description of these components 

is provided below. 

3.1 Local Wavelet Transformer 

The Local Wavelet Transformer (LWT) framework introduces a novel local attention 

mechanism operating in the wavelet domain. By leveraging wavelet-based analysis, 

LWT efficiently captures both localized high-frequency details and global low-fre-

quency structures, ensuring precise and high-quality image reconstruction. 

At its core, LWT adopts a high-level framework rooted in local implicit neural rep-

resentation. This framework relies on a decoding function, 𝑓𝜃 , parameterized by a 

multi-layer perceptron (MLP) with trainable weights 𝜃, which is shared across all im-

ages. The decoder maps latent tensors and spatial coordinates into RGB values, provid-

ing a continuous representation of the image. Mathematically, this mapping is defined 

as: 

 fθ(z, x): (Z, X)→S, (1) 

where z ∈ Z is a latent tensor produced by an encoder Eφ, x ∈ X is represents a 2D co-

ordinate in the continuous image domain, and S denotes the space of predicted RGB 

values. For simplicity, the latent tensor z ∈ R{H ×W ×C} is assumed to have the same spa-

tial dimensions (height H and width W) as the low-resolution input image ILR. 

RGB value predictions s ∈ R3 at a given coordinate x ∈ ℝ2 are calculated using: 

 𝑠(𝑥, 𝐼LR;  𝛩) =  ∑ fθ(zj,x − xj)
{j ∈J}wj

, (2) 

where the latent tensor z is obtained as: 

 z =  Eϕ(𝐼LR),   Θ = [θ; ϕ]. (3) 

Similarly, our proposed method generates a high-resolution (HR) image 

IHR ∈ RrhH ×rwW ×3  from a low-resolution (LR) image ILR ∈ RH ×W ×3 , where r ={rh, 

rw} represents the scaling factors. The workflow can be summarized as follows: an en-

coder Eϕ first extracts feature embeddings z ∈ R{H ×W ×C} from ILR. These embeddings, 

along with the 2D coordinates of ILR, are then passed into the LWT module to compute 

the RGB values of a residual HR image IHR ∈ RrhH ×rwW ×3 pixel by pixel. 

To further enhance this process, we integrate the wavelet prediction network with 

residual networks. The residual networks align well with wavelet coefficients due to 

their sparsity-promoting nature and are further optimized to infer residuals. The result-

ing residual image Ir
HR is combined element-wise with an upsampled version of the LR 

image I
↑
HR ∈RrhH ×rwW ×3 to produce the final HR image: 

 IHR = Ir
HR + I↑

HR. (4) 



This approach ensures that the network effectively utilizes both the residual infor-

mation and the upsampled base image, enabling accurate reconstruction of fine-grained 

textures and high-frequency details. 

 
Fig. 3. Detailed framework of LWT. 

As illustrated in Fig.3, the framework begins with an LR image, which is processed 

by an encoder to extract feature representations capturing its structural and textural de-

tails. LWT first projects the feature map into four sub-bands in wavelet domain through 

DWT: approximation coefficients cA, representing the low-frequency global structure, 

and detail coefficients cH, cV and cD, capturing high-frequency details in horizontal, 

vertical, and diagonal orientations, respectively. Using four separate convolutional lay-

ers, the four coefficients are processed into distinct latent embeddings, and the three 

detail coefficients cH, cV and cD correspond to the query q, key k, and value v in local 

attention block. Alongside this decomposition, local relative coordinates δx are gener-

ated to facilitate spatially aware processing. The detail coefficients and δx are then for-

warded into a local attention block, which will be described in detail in the following 

subsection. 

The output features z̃ are further projected into the same shape as cA using a multi-

layer perceptron (MLP). After concatenating four components, a convolutional layer is 

used to upsample them into certain scale, the upsampled features are then passed to an 

inverse DWT (IDWT) module, which reconstructs the residual HR image structure. 

Finally, the residual HR image is added to directly upsampled LR image (through bi-

linear upsampling) to construct a complete HR image. 

3.2 Local Attention Block 

The Local Attention Block begins by computing the inner product between q and k, 

incorporating the relative positional bias B to yield an intermediate attention score. The 

relative position coordinates is derived by first computing a displacement matrix, which 

represents the offset between neighboring pixels. This matrix is then added to the initial 

pixel coordinates, resulting in a new set of coordinates that account for both the absolute 

position and the relative offset. 

The attention score is normalized through a Softmax function to generate a local 

attention map. The attention map is then applied to v via element-wise multiplication 

to produce z̃. The entire process can be described mathematically as:   



 

 

 

2025 International Conference on Intelligent Computing 

July 26-29, Ningbo, China 

https://www.ic-icc.cn/2025/index.php 

 

 
z̃= softmax ( 

qkT

√C
+ B ) ×v, 

(5a) 

 B = FC(γ(δx)), (5b) 

 γ(δx)= [sin(20δx), cos(20δx), … ,sin(2L-1δx), cos(2L-1δx)] , (5c) 

where C is the channel dimension of the key embedding k, FC denotes a fully-connected 

layer, γ(•) is the positional encoding function, and L is a hyperparameter set to 10. 

Additionally, the framework leverages a multi-head attention mechanism, which is de-

fined as:   

 

𝑧̃ =  concat

(

 softmax

(

  
qiki

T

√{
C
H
}

+ Bi

)

 × vi

)

 , 

(6) 

where H is the number of attention heads, and 𝑖 ∈ {1, … , 𝐻}.   

3.3 Arbitrary-Scale Super-Resolution Strategy 

In the proposed Local Wavelet Transformer (LWT) framework, we initially implement 

super-resolution upsampling for fixed magnifications of 2x and 3x. For arbitrary mag-

nification factors 𝐴𝑠, we introduce a decomposition strategy to efficiently achieve the 

desired upsampling. 

Given any target magnification factor As, we seek a combination of powers of 2 and 

3, denoted by 𝑘 = 2𝑚 • 3n, that minimizes the absolute difference between k and As. 
Specifically, we find the optimal values of m and n through an exhaustive search: 

 (m, n) =  argminm,n|2
m • 3n

− As| 

(7) 

 

Once the closest k = 2𝑚 • 3n is identified, we apply m iterations of 2x upsampling and 

n iterations of 3x upsampling using the LWT framework. This decomposition ensures 

that the super-resolution process remains computationally efficient while preserving 

fine-grained details. 

Finally, after performing the m and n upsampling steps, the final magnification of  

As is achieved through interpolation. This strategy allows for flexible and precise su-

per-resolution scaling, enabling the LWT framework to handle arbitrary magnification 

factors with high accuracy and computational efficiency. 

4 Experiments 

In this section, we present the experimental results and discuss their implications. 



 
Fig. 4. Qualitative comparison to other arbitrary-scale SR. RDN [27] is used as an encoder for 

all methods. 

 

Table 1. Quantitative comparison with state-of-the-art methods for arbitrary-scale SR 

on DIV2K dataset (PSNR (dB)). 

 

4.1 Experimental Setup 

Dataset We train our network using the DIV2K dataset [1], which was introduced in 

the NTIRE 2017 Challenge. This dataset contains 800 high-quality training images, 

covering a wide variety of scenes, such as natural landscapes, urban environments, and 

indoor settings, making it ideal for training generalizable super-resolution models. For 

evaluation, we report the performance of our model in terms of Peak Signal-to-Noise 

Ratio (PSNR) on several benchmark datasets: the DIV2K validation set [1], Set5 [3], 

Set14 [26], B100 [18], and Urban100 [8]. 

 

Implementation Details For training our network, we use 48 × 48 patches as low-

resolution inputs and perform bicubic resizing to generate high-resolution images for 

down-sampling. The network is optimized using the Mean Squared Error (MSE) loss 

function, which is commonly used for image reconstruction tasks. The optimization 

process is carried out with the Adam optimizer [10], using a learning rate of 1e-4, 𝛽1 =
 0.9 , 𝛽1 =  0.999 , and 𝜀 =  1𝑒 − 8 . These hyperparameters were chosen based on 
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standard practices for image super-resolution tasks, balancing stability and conver-

gence speed. 

To demonstrate the flexibility of our approach, we train the Local Wavelet Trans-

former (LWT) with three different encoder architectures: the EDSR baseline [15], RDN 

[27], and SwinIR [14]. These encoders represent different types of architectures, rang-

ing from traditional residual networks to more recent transformer-based models. Each 

encoder is integrated into the LWT framework to evaluate the impact of different fea-

ture extraction mechanisms on SR performance. 

The model is implemented using PyTorch [20] and trained on an NVIDIA Tesla 

A800 GPU, providing sufficient computational power for training large-scale networks. 

We ensure that all experiments are performed with consistent hardware and software 

environments to ensure the reproducibility of results. 

4.2 Quantitative and Qualitative Comparison 

We evaluate the performance of our proposed Local Wavelet Transformer (LWT) on 

the DIV2K dataset, comparing it with state-of-the-art methods for arbitrary-scale SR. 

The results are reported in terms of Peak Signal-to-Noise Ratio (PSNR) at various scal-

ing factors: ×2, ×3, ×4, ×6, ×12, ×18, ×24, and ×30. 

As shown in Tab.1, our method consistently outperforms traditional bicubic interpo-

lation and various other advanced methods across all scaling factors. At the ×2 scale, 

our SwinIR-LWT achieves the highest PSNR of 35.26 dB, surpassing the next best 

method, SwinIR-LTE, by 0.02 dB. This trend is maintained across the other scales, with 

our SwinIR-LWT model achieving the highest PSNR at every scaling factor, including 

29.63 dB at ×4, 27.24 dB at ×6, and 24.16 dB at ×12. 

Additionally, the performance of our method is further confirmed through visual 

comparisons. As shown in Fig.4 and Fig.5, our method excels in preserving fine edge 

details and textures, especially in regions with sharp transitions and intricate patterns. 

The results demonstrate that LWT effectively restores high-frequency components, 

leading to more accurate and visually appealing image reconstructions compared to 

other state-of-the-art techniques. 

In addition to the experiments on the DIV2K dataset, we also evaluate our Local 

Wavelet Transformer (LWT) on several other benchmark datasets: Set5, Set14, B100, 

and Urban100. The results, presented in Fig. 5, further demonstrate the effectiveness of 

our method across different datasets and scaling factors. 

For Set5, our SwinIR-LWT achieves the highest PSNR at all scaling factors, with 

notable improvements, especially at the ×4 scale, where we reach a PSNR of 32.95 dB, 

surpassing the second-best SwinIR-LTE by 0.14 dB. Similarly, on other datasets, our 

method consistently outperforms the others.  

These results indicate that our method outperforms the state-of-the-art across multi-

ple datasets, consistently achieving better PSNR values at various scaling factors, and 

further emphasizes the robustness and adaptability of the LWT framework in handling 

arbitrary-scale super-resolution tasks. 

 



Table 2. Quantitative comparison with state-of-the-art methods for arbitrary-scale SR on 

benchmark datasets (PSNR). 

 
 

Table 3. Comparison of wavelet functions for super-resolution on different datasets. 

 
 

 
Fig. 5. Qualitative comparison to other arbitrary-scale SR. EDSR [7] is used as an encoder for 

all methods. 

4.3 Impact of Wavelet Basis Functions 

To further investigate the impact of wavelet functions on the performance of the Local 

Wavelet Transformer (LWT), we compare several commonly used wavelet bases, in-

cluding Haar, Daubechies (Db2), Symlet, and Morlet. Tab. 3 shows the quantitative 

results of these wavelet functions on various benchmark datasets, including DIV2K, 

Set5, Set14, B100, and Urban100. Our findings indicate that the Haar wavelet performs 

the best across most datasets, achieving the highest PSNR values for both ×2 and ×4 

upscaling factors. 
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5 Conclusion 

We proposed the LWT, a novel framework that uses the DWT to capture both local 

textures and global structures for improved image super-resolution. By introducing a 

magnification factor decomposition strategy, our method enables super-resolution at 

arbitrary scales while preserving fine details. Extensive experiments on benchmark da-

tasets demonstrate its effectiveness and robustness across different magnifications and 

conditions. Future work will focus on optimizing LWT for real-time applications and 

exploring its integration with other vision tasks. 
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