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Abstract. Aerial object detection in drone-based imagery presents unique chal-

lenges including sub-20px targets, motion blur, dense occlusions, and complex 

backgrounds. Existing methods struggle to harmonize spectral sensitivity with 

spatial precision while maintaining real-time efficiency. This paper proposes FE-

DETR, an optimized end-to-end framework integrating Fourier-enhanced pro-

cessing, adaptive attention, and edge-aware fusion. First, the Fourier-Enhanced 

Feature Fusion (FFF) module synergizes global frequency analysis with multi-

scale dilated convolutions, amplifying faint object signatures while preserving 

structural integrity under motion blur. Second, the Adaptive WL-GH Atten-

tion dynamically allocates computation between local window attention and 

global cross-window reasoning via learnable feature statistics. Third, the Edge-

Enhanced Multi-Scale Fusion neck (E²MF) embeds physics-inspired Sobel oper-

ators to maintain structural coherence in occlusion-heavy scenes. Evaluated on 

VisDrone2019, FE-DETR achieves state-of-the-art 50.4% mAP50 and 31.1% 

mAP50-95 with 17.3M parameters and 54.9G FLOPs. Ablation studies confirm 

the complementary benefits of spectral-spatial fusion and edge-aware processing. 

The framework demonstrates robust performance across illumination variations 

and scale disparities, offering practical efficiency for UAV deployment. Code 

will be released at https://github.com/Avery5233/FE-DETR. 

Keywords: Aerial Object Detection, RT-DETR, Fourier-Enhanced Feature Fu-

sion, Edge-Aware Neck. 

1 Introduction 

Remote sensing object detection, a critical branch of computer vision, focuses on auto-

matically identifying and localizing targets (e.g., vehicles, pedestrian) in aerial imagery 

captured by satellites or unmanned aerial vehicles (UAVs). This technology has be-

come indispensable in urban planning, environmental monitoring, agricultural manage-

ment, and disaster response due to its unique aerial perspective. While deep learning 
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approaches have gradually replaced traditional methods relying on handcrafted features 

[1,2], four persistent challenges in aerial imagery remain inadequately addressed: de-

tection of numerous sub-20px small targets under low resolutions; severe occlusions in 

crowded scenarios; interference from complex background textures, and motion blur 

caused by UAV platform vibrations - as evidenced by the VisDrone2019 benchmark 

[3]. 

Current CNN architectures struggle with these aerial-specific challenges due to in-

herent limitations. While multi-scale fusion designs like FPN [4] and specialized loss 

functions [5] have improved small object detection, two-stage detectors suffer prohib-

itive computational costs for real-time UAV deployment. Single-stage models (YOLO 

[6], SSD [7]) introduce anchor bias and NMS-induced latency, particularly problematic 

in dense target scenarios. Recent Transformer-based approaches like RT-DETR [8] 

eliminate anchor dependencies through self-attention but still underperform on sub-

20px targets due to inadequate high-frequency feature preservation and edge smearing 

in occlusion scenarios. 

Recent UAV detection research reveals persistent challenges in harmonizing spec-

tral sensitivity and spatial coherence. UAV-DETR [9] pioneers' frequency-domain pro-

cessing but struggles with parameter redundancy from decoupled spectral-spatial 

branches, limiting real-time deployment. ARFP [10] advances adaptive feature pyra-

mids yet encounters gradient decay in deep recursion layers, impairing small object 

discernment. HIC-YOLOv5 [11] strengthens dense target detection through hierar-

chical fusion but relies on static receptive fields that inadequately resolve severe occlu-

sions. MSFE-YOLO [12] enhances multi-scale awareness through parallel convolu-

tions at the cost of increased computational complexity, particularly in motion-blurred 

scenarios. While YOLOv12 [13] integrates attention mechanisms, its fixed spectral-

channel interactions prove suboptimal for preserving structural edges under illumina-

tion variations. These approaches collectively face fundamental trade-offs between 

global spectral awareness and local spatial precision, often prioritizing architectural 

complexity over synergistic feature integration. 

Our work addresses these gaps by proposing an optimized RT-DETR framework 

specifically tailored for aerial target detection called FE-DETR. Key innovations in-

clude: 

1. Fourier-Enhanced Feature Fusion (FFF): Combines global frequency analysis 

with multi-scale spatial processing to amplify faint object signatures while suppressing 

background noise. By preserving phase information during FFT reconstruction, we 

overcome motion blur challenges that degrade conventional convolutions. 

2. Adaptive WL-GH Attention (WL-GH): Introduces dynamic resource allocation 

between local window attention and global cross-window reasoning, automatically 

adapting to scene complexity through learnable feature statistics. 

3. Edge-Enhanced Multi-Scale Fusion neck (E²MF): Embeds physics-inspired Sobel 

operators in the feature pyramid to maintain structural integrity under heavy occlusions, 

with adaptive fusion weights for multi-scale edge preservation. 
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2 Related Work 

2.1 Prior-Based Object Detection Methods 

Two-stage detectors, exemplified by Faster R-CNN [14], generate region proposals be-

fore classification and regression. While effective for multi-class aerial targets, their 

computational complexity limits real-time deployment. Cai et al. [15] introduced Cas-

cade R-CNN to refine detection accuracy through iterative IoU thresholding, yet infer-

ence speed remains impractical for large-scale remote sensing applications. 

Single-stage models like YOLOv9 [16] prioritize speed by unifying localization and 

classification. However, their reliance on predefined anchors and NMS introduces bias 

in cluttered scenes. Yang et al. [17] enhanced YOLOv3 with feature fusion for small 

targets, but performance degrades under low-resolution conditions common in UAV 

imagery. 

2.2 End-to-End Detection Frameworks 

The emergence of Transformer-based detectors has addressed prior dependency issues. 

DETR [18] pioneers set prediction via self-attention, eliminating anchors and NMS. 

Despite superior global modeling, its quadratic computation complexity hinders scala-

bility. Deformable DETR [19] mitigates this through deformable attention mechanisms, 

focusing computation on sparse spatial locations. While efficient, it struggles with sub-

pixel-scale targets due to insufficient feature granularity. 

RT-DETR [8] advances real-time performance via hybrid CNN-Transformer de-

signs and optimized encoder-decoder interactions. By decoupling multi-scale features 

and integrating hybrid channels, it is faster than Deformable DETR on aerial datasets. 

Nevertheless, its fixed-scale attention windows inadequately capture micron-level fea-

tures of distant vehicles or pedestrians in satellite imagery. Recent approaches such as 

Drone-DETR [20] employ enhanced dual-path feature fusion and shallow feature en-

richment to improve small object recognition accuracy. However, the integration of 

deformable convolutions and multi-scale attention mechanisms introduces computa-

tional overhead, escalating model complexity. 

2.3 Small Target Detection in Remote Sensing 

Recent advances in aerial detection address specific challenges through architectural 

refinements. Hu et al. [21] enhanced YOLOv7 with E-ELAN and model scaling, 

achieving 77% mAP on DOTA. However, its fixed receptive fields inadequately re-

solve sub-20px targets in motion-blurred scenes. Zhang et al. [22] proposed FFCA-

YOLO with multiscale fusion (FFM) and spatial context modules (SCAM), yet its com-

putational-heavy FEM struggles with real-time UAV deployment. Li et al. [23] inte-

grated super-resolution with YOLO, boosting small-target precision via Swin Trans-

formers but introducing latency from SR preprocessing. While these methods improve 

specific aspects, they neglect synergistic spectral-spatial integration: [21,22] lack 



motion-blur resilience due to spatial-only convolutions; the SR of [23] induce latency 

conflicts with real-time needs. 

3 FE-DETR 

To address the unique challenges of drone-based aerial imagery—small targets, motion 

blur, occlusions, and illumination variations—we propose Fourier-Edge DETR (FE-

DETR) which integrating global frequency analysis, adaptive attention, and edge-aware 

fusion. The architecture combines Fourier-enhanced spectral processing with multi-

scale spatial convolutions to amplify faint object signatures, dynamically balances local 

precision and global context through adaptive attention, and preserves structural integ-

rity under occlusions via physics-inspired edge enhancement. By harmonizing these 

components through frequency-guided feature recalibration and content-aware re-

source allocation, the framework achieves robust detection across diverse aerial scenar-

ios while maintaining real-time efficiency critical for UAV deployment. The architec-

ture of FE-DETR is shown in Fig. 1. 

 

Fig. 1. The architecture of FE-DETR. The EdgeC3 is improved RepC3 by using SobelConv. 

3.1 Fourier-Enhanced Feature Fusion Module 

Fig. 2 illustrates the architecture of our proposed Fourier-Enhanced Feature Fusion 

(FFF) module, which replaces standard C2f module to build an enhanced backbone 

(UAVBackbone) for specifically addressing the unique challenges in aerial images 

mention in introduction, especially for small targets, motion blur and occlusions. Tra-

ditional convolutional modules struggle with these issues due to their limited receptive 

fields and local feature bias. Our FFF module overcomes these limitations through a 

dual-branch architecture that synergizes frequency-domain global analysis and multi-

scale spatial processing, achieving superior accuracy-speed balance for drone-based 

detection.  
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Fig. 2. The architecture of FFF Module. 

Dual-Branch Feature Decomposition. The input feature map 𝑋 ∈ ℝ𝐶×𝐻×𝑊  under-

goes channel-wise splitting into two complementary processing streams. The frequency 

pathway addresses small target detection and motion blur through spectral analysis. We 

first apply 2D Fast Fourier Transform (FFT) with orthonormal normalization: 

 ℱ(𝑋) = FFT(𝑋) ∈ ℂ𝐶×𝐻×⌊𝑊/2⌋+1. (1) 

This transformation projects spatial features into the frequency domain where high-

frequency components correspond to fine-grained details (critical for sub-20px targets) 

while low-frequency components represent global structures. To handle motion blur 

prevalent in UAV-captured images, we preserve phase information during the inverse 

FFT (iFFT) reconstruction, as phase components contain crucial structural details about 

object boundaries. The real and imaginary parts of the complex tensor are processed 

through parallel 1 × 1 convolutions followed by batch normalization and ReLU acti-

vation: 

 𝑋freq = ReLU (BN (Conv1×1 (Re(ℱ(𝑋)) ⊕ Im(ℱ(𝑋))))), (2) 

where ⊕ denotes element-wise addition. This design enables the network to learn op-

timal combinations of magnitude and phase information, effectively enhancing faint 

edges of small objects while suppressing high-frequency noise from complex back-

grounds. The spatial pathway tackles occlusions and scale variations through asymmet-

ric dilated convolutions. We employ depthwise convolutions (DWConv) with different 

dilation rates to maintain computational efficiency:  



 𝑋local = Concat (DWConv3×3
𝑑=2(𝑋), DWConv5×5

𝑑=3(𝑋)), (3) 

where 𝑑 represents dilation rates. The 3 × 3 convolution with 𝑑 = 2 expands the re-

ceptive field to 7 × 7, helping separate overlapping instances in crowded scenes, while 

the 5 × 5 convolution with 𝑑 = 3 achieves a 13 × 13 effective receptive field to cap-

ture contextual cues around occluded targets. According to statistics, over 40% of tar-

gets in VisDrone's train set are partially occluded. This multi-scale design proves par-

ticularly effective for dense pedestrian scenarios in aerial images. 

Adaptive Feature Fusion. The frequency and spatial features are fused through a novel 

Frequency-Guided Attention (FGA) mechanism that dynamically emphasizes task-crit-

ical components. First, we concatenate the two feature streams along the channel di-

mension and halve the number of channels via CAConv: 

 𝑋cat = CAConv (Concat(𝑋freq, 𝑋local)) ∈ ℝ𝐶×𝐻×𝑊. (4) 

A squeeze-excitation block then generates channel-wise attention weights condi-

tioned on the frequency characteristics: 

 𝛼 = 𝜎 (MLP(GAP(𝑋cat))) ∈ ℝ𝐶×1×1, (5) 

where GAP denotes global average pooling and σ is the sigmoid function. The final 

fused features are computed as: 

 𝑋fused = 𝛼 ⊙ 𝑋cat + 𝑋cat . (6) 

This attention mechanism prioritizes high-frequency components essential for small 

object detection while suppressing irrelevant background textures. For example, in Vis-

Drone's highway scenes, FGA can effectively increase the activation weights for high-

frequency vehicle edges in complex road markings. 

To further enhance robustness against illumination variations common in aerial im-

agery (e.g., shadows under building or sun glare), we incorporate phase-aware feature 

rectification before iFFT reconstruction. By maintaining the consistency between mag-

nitude and phase components during frequency-domain processing, our module pre-

serves structural integrity under low-light conditions where traditional convolutions 

suffer from gradient vanishing.  

The FFF module replaces all C2f blocks in YOLOv8's backbone, forming our effi-

cient UAV-backbone. Implementation leverages PyTorch's native FFT/iFFT operators 

with Hermitian symmetry preservation for numerical stability. Depthwise convolutions 

maintain computational efficiency following MobileNet's design principles [24], while 

the CSP (Cross Stage Partial) structure ensures gradient flow optimization [25]. Our 

method uniquely optimizes the interaction between complex spectral features and spa-

tial context, achieving superior performance on aerial datasets without compromising 

inference speed. 
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3.2 Adaptive WL-GH Attention for Aerial Scene Understanding 

To address the dual challenges of small object detection and occlusion reasoning in 

aerial imagery, we propose a Window Low-level and Global High-level (WL-GH) at-

tention mechanism similar to SpectFormer [26] with dynamic level adaptation, the ar-

chitecture of WL-GH Attention is shown in Fig. 3. This architecture disentangles low-

level/high-level visual patterns through parallel processing streams, then automatically 

adjusts their relative contributions using learnable parameters. 

 

Fig. 3. The architecture of WL-GH Attention. 

The WL-GH module processes input features through two complementary path-

ways. The low-level branch preserves fine spatial details essential for sub-20px targets 

through constrained self-attention within non-overlapping 2×2 windows. This local at-

tention mechanism reduces computational complexity from 𝑂((𝐻𝑊)2)  to 

𝑂 (
𝐻𝑊

𝑠2  (𝑠2)2)  while maintaining precise localization capabilities for small objects, 

where s denotes the size of the window. Conversely, the high-level branch employs 

cross-window attention on spatially pooled features (stride=s), establishing global de-

pendencies to resolve occlusion patterns and suppress background clutter through struc-

tural coherence. The attention shared by high-level and low-level branches is as fol-

lows: 

  Attention(𝑄, 𝐾, 𝑉) = Softmax (
𝑄𝐾𝑇

√𝑑𝑘
) 𝑉. (7) 

A novel alpha-predictor auxiliary net enables dynamic resource allocation between 

branches. Implemented as a lightweight convolutional network, this module analyzes 

input feature statistics to predict channel-wise adaptation coefficients 𝛼 ∈ [0,1]. The 

predicted alpha automatically adjusts the head allocation ratio between low-level and 

high-level streams through differentiable weight redistribution: 

 𝛼 = Sigmoid (ℱ1×1 (GeLU(ℱ1×1(𝑋)))) , (8) 



where ℱ1×1  denotes 1×1 convolutions for dimension transformation. This adaptive 

mechanism optimizes the trade-off between local precision and global context aware-

ness based on input content, particularly beneficial for diverse scenarios ranging from 

sparse open areas to densely packed urban scenes. 

The dual-stream outputs undergo channel-wise concatenation and linear projection 

to form final features. Integration with standard Vision Transformer architecture fol-

lows post-normalization design: 

 𝑋′′ = LayerNorm (𝑋′ + Dropout(FFN(𝑋′))) , (9) 

where FFN contains position-wise feed-forward networks. The content-aware level ad-

aptation is particularly effective in preserving edge details of miniature objects while 

suppressing low-level noise in complex backgrounds. 

3.3 Edge-Enhanced Multi-Scale Feature Fusion Neck 

We enhance the RT-DETR neck by replacing 3×3 convolutions in down-sampling op-

erations and RepC3 blocks within the neck with our SobelConv operators and append 

three consecutive Edge Fusion modules at the neck's terminal to progressively refine 

multi-scale edge representations. The enhanced neck is called Edge-Enhanced Multi-

Scale Feature Fusion Neck. E²MF addresses the critical challenge of preserving struc-

tural edge information in occlusion-heavy UAV imagery through two synergistic com-

ponents: SobelConv for edge-aware feature extraction and Edge Fusion module for 

adaptive feature integration. The architecture of SobelConv and Edge Fusion module 

is illustrated in Fig. 4. 

 

Fig. 4. The architecture of improvement components in neck. (a) SobelConv, (b) Edge Fusion. 

The core innovation lies in the SobelConv operator, which implements learnable 3D 

convolutions with fixed Sobel kernels to explicitly model gradient patterns. Given an 
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input feature map 𝑋 ∈ ℝ𝐶×𝐻×𝑊, the horizontal and vertical edge responses are com-

puted through:  

 𝐆𝑥 = ∑ 𝐖𝑥
(𝑖+1,𝑗+1)1

𝑖,𝑗=−1 ∗ 𝐗𝑝𝑎𝑑
(𝑖,𝑗)

,  𝐆𝑦 = ∑ 𝐖𝑦
(𝑖+1,𝑗+1)1

𝑖,𝑗=−1 ∗ 𝐗𝑝𝑎𝑑
(𝑖,𝑗)

 , (10) 

where 𝑊𝑥  and 𝑾𝑦  denote the predefined Sobel kernels expanded across channels 

through depthwise convolution. The final edge-enhanced features 𝐸 = 𝐺𝑥 + 𝐺𝑦  capture 

directional intensity discontinuities while maintaining channel-wise independence.  

The Edge Fusion module synthesizes hierarchical edge information through a cas-

caded transformation pipeline. By concatenating multi-scale edge features 𝐸1 ⊕ 𝐸2 ⊕
⋯ ⊕ 𝐸𝐾  along the channel dimension, the module first compresses the combined high-

dimensional features into a compact representation (ℝ𝐾𝐶 → ℝ𝐶/2) using a 1×1 convo-

lution. Subsequent spatial context aggregation is performed via a 3×3 depthwise sepa-

rable convolution, which enhances local geometric relationships while minimizing 

computational overhead. Finally, a 1×1 projection layer recalibrates the feature re-

sponses to match the target output dimension (ℝ𝐶/2 → ℝ𝐶), ensuring compatibility 

with feature hierarchy.  

This architecture enables two critical capabilities: Explicit edge guidance through 

physics-inspired operators counteracts the feature smearing caused by heavy occlu-

sions; and the scale-pyramid fusion mechanism adaptively weights edge responses 

based on object sizes - a crucial property for UAV scenes containing both large vehicles 

and small pedestrians.  

4 Experiments 

4.1 Datasets 

To validate FE-DETR's effectiveness, we conducted experiments on VisDrone 2019 

datasets [3]. VisDrone 2019 contains UAV-captured images with challenges including 

uneven illumination and object occlusion, covering 10 categories such as pedestrians, 

cars, and buses. The official data splits were adopted, with evaluation conducted on the 

validation set. This dataset, widely used in UAV vision research, offers a realistic 

testbed for our model. Its images, captured in diverse scenarios, provide rich variations 

in object appearances and interactions. The extensive annotations facilitate comprehen-

sive evaluation of detection performance across different scales and categories.  

4.2 Experiment Setup 

The experimental environment utilizes a Windows 11 workstation running Python 

3.8.16 and PyTorch 2.0.1, optimized for CUDA 12.1 acceleration. Hardware configu-

ration combines cutting-edge consumer components: A 13th Gen Intel® Core™ i7-

13700K processor (16 cores/24 threads, 5.4GHz turbo) handles serial computations, 

while an NVIDIA RTX 4090 GPU with 24GB GDDR6X VRAM accelerates parallel 

operations. The GPU's 3rd-generation RT cores and 4th-generation Tensor Cores 



enable mixed-precision training through PyTorch's AMP (Automatic Mixed Precision) 

module. 

As detailed in Table 1, the experimental configuration maintains fixed hyperparam-

eters across all trials. Reproducibility measures include PyTorch's deterministic algo-

rithms (enabled via torch.backends.cudnn.deterministic) and fixed random seeds across 

Python, NumPy, and CUDA environments. Thermal monitoring confirmed consistent 

GPU operation at 65°C±3°C during sustained loads. All trials completed within 5% 

temporal variance of projected durations, demonstrating hardware stability across ex-

tended training sessions. 

Table 1. Hyperparameter configuration 

Hyperparameter Value 

Input size 640×640 

Batch size 8 

Training epochs 300 

Optimizer 

Initial learning rate 

AdamW 

0.0001 

Learning rate factor 0.01 

Momentum 0.9 

Warmup steps 2000 

4.3 Comparison Experiments with State of the Art 

We evaluate FE-DETR against state-of-the-art detectors on VisDrone2019 under 

640×640 resolution (Table 2). Our model achieves 50.4% mAP50 and 31.1% mAP50-

95 with the second lowest complexity (17.3M parameters, 54.9G FLOPs), outperform-

ing all paradigms. FE-DETR surpasses RT-DETR-R50 by +0.3% mAP50/+0.2% 

mAP50-95 while using 58.6% fewer parameters, validating its efficiency-accuracy bal-

ance. Two-stage methods like EMA [27] incur prohibitive costs, while one-stage 

MSFE-YOLO-L [12] suffers 3× higher FLOPs from parallel convolutions. End-to-end 

competitors like UAV-DETR-R18 [9] exhibit spectral redundancy, whereas our fre-

quency-spatial synergy minimizes overhead. 

FE-DETR addresses aerial imaging challenges through specialized architectural in-

novations. For sub-20px vehicle detection, the model leverages phase-preserving fast 

Fourier transform reconstruction to enhance localization precision compared to con-

ventional approaches like RT-DETR-R50. When handling occluded pedestrians, the 

WL-GH optimizes feature prioritization across scales, improving recognition of par-

tially visible instances. The framework further demonstrates robustness in motion-

blurred scenarios through FFF module, which maintains structural integrity during 

spectral processing. This capability proves particularly advantageous in dense urban 

landscapes where overlapping objects and transient visual artifacts complicate detec-

tion tasks. 
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Table 2. Performance evaluation of FE-DETR versus SOTA methods on the VisDrone-2019-

DET validation set, with the best and second-best results marked in red bold and blue bold re-

spectively for each metric. 

Model Publication Imgsize 
mAP50 

(%)↑ 

mAP50-

95 

(%)↑ 

Params 

(M)↓ 

FLOPs 

(G) ↓ 

Two-stage methods 

Faster R-

CNN[14] 

NeurIPS 

2015 
640×640 31.0 18.2 41.2 127.0 

ARFP[10] Appl Intell 
1333×

800 
33.9 20.4 42.7 193.8 

EMA[27] 
ICASSP 

2023 
640×640 49.7 30.4 91.2 - 

One-stage methods 

YOLOv12-M[13] arXiv 2025 640×640 43.1 26.3 20.3 67.5 

HIC-

YOLOv5[11] 
ICRA 2024 640×640 44.3 26.0 10.5 31.2 

MSFE-YOLO-

L[12] 
GRSL 640×640 46.8 29.0 41.6 160.2 

YOLO-DCTI[28] 
Remote 

Sensing 

1024×
1024 

49.8 27.4 37.7 - 

End-to-end methods 

DETR[18] ECCV 2020 
1333×

750 
40.1 24.1 40.0 187.1 

Deformable 

DETR[19] 
ICLR 2020 

1333×
800 

43.1 27.1 40.2 172.5 

RT-DETR-R18[8] CVPR 2024 640×640 47.2 28.7 20.2 57.0 

UAV-DETR-

R18[9] 
arXiv 2025 640×640 48.8 30.4 20.5 64.3 

RT-DETR-R50[8] CVPR 2024 640×640 49.3 30.6 41.8 133.2 

Ours 

FE-DETR - 640×640 50.4 31.1 17.3 54.9 

4.4 Ablation Experiments 

The ablation experiments shown in Table 3 systematically evaluate the contributions 

of each proposed module within FE-DETR on the VisDrone2019 validation set. Start-

ing with the baseline RT-DETR-R18, incremental integration of components reveals 

progressive performance gains. Introducing the FFF module alone elevates mAP50 to 

48.4%, demonstrating its efficacy in amplifying faint object signatures through spec-

tral-spatial synergy. The standalone WL-GH improves occlusion reasoning, yielding a 

0.7% mAP50 gain by dynamically balancing local-global feature prioritization. The 

E²MF independently enhances edge preservation under complex backgrounds, achiev-

ing 47.8% mAP50. Combining FFF with WL-GH yields a significant leap to 49.8% 

mAP50, validating their complementary roles in addressing small targets and dense 

occlusions. Adding E²MF to FFF further improves robustness, particularly for motion-

blurred instances.  



Table 3. Ablation studies using the RT-DETR baseline model were evaluated on the Vis-

Drone2019 validation set, with the best and second-best results marked in red bold and blue bold 

respectively for each metric. 

FFF WL-GH E²MF 
mAP50 

(%)↑ 
mAP50-95 

(%)↑ 
Params 

(M)↓ 
FLOPs 

(G) ↓ 

- - - 47.2 28.7 20.2 57.0 

√ - - 48.4 29.5 18.7 50.9 

- √ - 47.9 29.2 18.1 56.4 

- - √ 47.8 29.0 20.9 60.8 

√ √ - 49.8 30.7 16.5 50.7 

√ - √ 49.5 30.6 19.2 54.9 

- √ √ 49.0 30.3 18.9 60.0 

√ √ √ 50.4 31.1 17.3 54.9 

The full FE-DETR configuration demonstrates synergistic integration, where fre-

quency-domain reconstruction, adaptive attention allocation, and edge-aware fusion 

collectively optimize aerial scene understanding. Notably, parameter count reduces 

from 20.2M to 17.3M despite performance gains, attributable to FFF's channel splitting 

and WL-GH's dynamic resource allocation. FLOPs decrease by 3.6%, highlighting 

computational efficiency from optimized spectral processing and depth-wise convolu-

tions. These results confirm that FE-DETR's architectural innovations harmonize accu-

racy and efficiency through physics-inspired feature engineering rather than mere ca-

pacity expansion. 

4.5 Experimental Results 

To validate the effectiveness of FE-DETR, we visualized aerial images containing typ-

ical challenges in drone-based detection (including undersized targets, occlusions in 

dense scenarios, and illumination variations between sunlit and shaded areas e.g.). 

Comparative detection results between RT-DETR and FE-DETR are presented in Fig. 

5, with purple bounding boxes highlighting regions where FE-DETR demonstrates su-

perior detection performance compared to RT-DETR. 

 

Fig. 5. Comparison of detection effects between RT-DETR and FE-DETR in complex aerial 

photography scenes. 
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The detection results reveal significant performance disparities between RT-DETR 

and FE-DETR in handling complex urban scenarios. As shown in the figure, RT-DETR 

exhibits multiple labeling errors including fragmented detections, misclassifications, 

and incomplete object recognition. These errors predominantly occur in areas with 

small-scale vehicle and overlapping objects. In contrast, FE-DETR demonstrates en-

hanced robustness through complete word formations and accurate classification of 

challenging cases, particularly in regions marked by purple boxes. The comparative 

outcomes substantiate FE-DETR's superior capability in resolving partial occlusions 

and maintaining detection consistency under scale variations, addressing critical limi-

tations observed in RT-DETR's performance on dense urban imagery. 

5 Conclusion 

This paper presents FE-DETR, a novel aerial object detection framework that harmo-

nizes spectral-spatial feature integration through Fourier-enhanced processing, adap-

tive attention allocation, and edge-aware multi-scale fusion. By synergizing global fre-

quency analysis with physics-inspired edge preservation, FE-DETR achieves state-of-

the-art performance on VisDrone2019 with 17.3M parameters, demonstrating superior 

efficiency-accuracy balance for drone-based scenarios. The proposed modules effec-

tively address critical challenges including sub-20px targets, motion blur, and dense 

occlusions. 

Potential extensions include integrating temporal modeling for video-based UAV 

detection and lightweight deployment via neural architecture search. Exploring cross-

modal fusion (e.g., infrared/LiDAR) and self-supervised spectral adaptation could fur-

ther enhance robustness under extreme conditions. Additionally, dynamic computation 

strategies tailored to scene complexity may optimize real-time performance for re-

source-constrained UAV platforms. 
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