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Abstract. Deep neural networks have achieved remarkable success in target clas-

sification, but as accuracy improves, model robustness has become a growing 

concern. Existing methods, such as adversarial training, enhance robustness, yet 

adversarial examples can still lead to high-confidence, incorrect predictions. To 

address this issue, we propose a new defense mechanism—Dynamic MixCut. 

This method combines the advantages of multi-box CutMix and Mixup by en-

hancing the diversity and complexity in the sample generation process, enabling 

more effective defense against complex adversarial attacks, especially in dy-

namic perturbation environments. Through in-depth theoretical analysis, we re-

veal the fundamental reasons behind the robustness limitations of traditional 

Mixup under multi-step attacks, particularly the limitations of mixing adversarial 

perturbations between samples. Furthermore, the Dynamic MixCut method en-

hances the model's adaptability to diverse attack strategies by integrating more 

sophisticated perturbation designs in the generation of adversarial examples, 

thereby mitigating the trade-off between standard accuracy and adversarial ro-

bustness. Experimental results on the CIFAR-10 and SVHN datasets demonstrate 

that the Dynamic MixCut method improves adversarial accuracy by over 10% on 

average compared to the baseline while preserving standard accuracy. This re-

search provides novel insights into robust training for object classification tasks 

and contributes to the advancement of adversarial training techniques. 

Keywords:  Object classification, Adversarial Attacks, Multi-step Attacks, Ad-

versarial Robustness, Robust Training. 



1 Introduction 

In recent years, deep learning technologies have made significant advancements in var-

ious fields such as computer vision and natural language processing [1]. Particularly, 

deep learning models have demonstrated superior performance over traditional meth-

ods in tasks like image classification, object classification, and semantic segmentation 

[2]. However, despite their outstanding performance across many tasks, deep learning 

models have been shown to be highly vulnerable. Small, imperceptible perturbations 

can be added to the original data, which are sufficient to cause the model to confidently 

make completely erroneous predictions. Numerous studies have confirmed the vulner-

ability of neural networks to adversarial examples and test inputs. Even slight, carefully 

crafted changes to test inputs are enough to cause misclassification by the model. 

Researchers have attempted to address this issue through adversarial training. While 

most methods improve the model's resistance to attacks [3,4], they also degrade the 

model's standard test accuracy [5]. These methods generate adversarial samples by cal-

culating the gradient of the loss function with respect to input samples, adding small 

perturbations to the input data, and introducing these adversarial examples into the 

training process. This allows the model to learn more robust decision boundaries under 

adversarial conditions. However, despite some success in improving robustness, these 

methods still have shortcomings, especially when facing complex multi-step attacks, 

where their robustness often falls short of the desired level. 

Although these methods have made significant progress in enhancing adversarial 

robustness, how to balance robustness with standard accuracy remains an urgent prob-

lem. Especially when facing various types of adversarial attacks, the effectiveness of 

different methods in improving robustness is inconsistent. Designing more effective 

adversarial training strategies to improve model robustness in different attack scenarios, 

while maintaining performance under normal conditions, continues to be a challenge. 

In this study, we propose a novel defense mechanism: a robust defense framework 

based on dynamic mix-cut fusion for object classification. We theoretically analyze the 

limitations of traditional Mixup in multi-step adversarial attacks and introduce a multi-

box dual CutMix approach for adversarial training with soft label data augmentation. 

Our method aims to improve robustness by generating more effective adversarial sam-

ples while minimizing the trade-off between standard accuracy and adversarial robust-

ness. Our contributions are as follows: 

➢ We propose Multi-box Dynamic MixCut, a novel augmentation method for spa-

tially adaptive region mixing, improving robustness against adversarial perturba-

tions. 

➢ Our analysis reveals Mixup’s vulnerability to adversarial attacks due to indiscrim-

inate mixing of background and salient regions, and we address this by introduc-

ing a training framework that enhances robust generalization through Lipschitz 

continuity analysis. 

➢ We analyze our proposed method with the results of experiments on CIFAR-10 

[6] and SVHN [7] dataset, demonstrating that Dynamic MixCut significantly en-

hances the robustness of state-of-the-art adversarial training methods. 
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2 Related Works 

2.1 Adversarial training 

Early adversarial training methods, such as the Fast Gradient Sign Method (FGSM) and 

Projected Gradient Descent (PGD) [8-10], generate adversarial samples by calculating 

the gradient of the loss function with respect to input samples and adding small pertur-

bations to the input data. These methods perform well against single-step attacks but 

show poor effectiveness when confronted with more complex multi-step attacks.   

In addition to FGSM and PGD, many other powerful adversarial attack methods ef-

fectively challenge existing defense mechanisms. For example, the Carlini-Wagner 

(CW) attack [11] employs an optimization strategy to generate highly imperceptible 

adversarial samples, minimizing the perturbation size while ensuring the model mis-

classifies, demonstrating strong attacking capabilities in high-dimensional data and 

complex models. In contrast, the SPSA attack [12] is a black-box attack method that 

uses randomized gradient estimates to generate adversarial samples, suitable for sce-

narios where the model gradients are inaccessible. The Square attack [13] generates 

highly effective and imperceptible adversarial samples by randomly optimizing pertur-

bation regions in the image space, making it particularly effective for attacking high-

dimensional data. Another emerging attack strategy is Feature Scattering [14], which 

perturbs or scatters key features in the feature space, forcing the model to misclassify 

on decision boundaries without relying on pixel-level perturbations in the image.  

Although existing defense methods have improved adversarial robustness to some 

extent, they typically sacrifice standard accuracy in exchange for adversarial robust-

ness, leading to a trade-off between accuracy and robustness [15,16]. Robust general-

ization refers to the model's ability not only to defend against adversarial attacks seen 

during training but also to effectively handle unseen adversarial samples. Improving 

robust generalization is an important research direction in adversarial training, with the 

aim of allowing models to defend against unknown threats [17], rather than being lim-

ited to specific types of attacks. 

2.2 Data Augmentation in Adversarial Training 

Data augmentation has become a prevalent and effective strategy in adversarial train-

ing, with the primary goal of enhancing the model's robustness [18]. By incorporating 

a wider variety of training samples, data augmentation not only improves the model's 

generalization capabilities but also strengthens its resilience to adversarial attacks. Tra-

ditional image augmentation techniques, such as rotation, scaling, and flipping, have 

shown some benefits in boosting robustness; however, their impact on defending 

against adversarial perturbations remains limited. In recent years, augmentation meth-

ods based on mixing inputs, such as Mixup and CutMix, have emerged as powerful 

tools for improving a model's adversarial resilience. 

 



 

Fig. 1. Overview of the dual-enhancement strategy for improving classification robustness 

against adversarial attacks. 

Several approaches have already been proposed, including ManifoldMixup [19], Un-

Mix [20], Puzzle-Mix [21], SaliencyMix [22], TokenMix [23], and TrasMix [24]. These 

methods enhance robustness by introducing more sophisticated mixing strategies. Sali-

ency-based methods, such as Attentive-CutMix and SaliencyMix, focus on identifying 

key image regions (e.g., objects or edges), thereby reducing interference from less im-

portant background areas and improving adversarial defense. 

Building on these advancements, we propose DynaMixCut, a novel approach that 

combines the strengths of Mixup and CutMix. DynaMixCut effectively handles both 

global and local image variations, significantly enhancing robustness against complex 

adversarial attacks. By refining the generation of adversarial examples, DynaMixCut 

increases training data diversity and better captures the varying contributions of differ-

ent image regions to the label space. This approach enables the model to learn more 

robust decision boundaries while minimizing the trade-off between standard accuracy 

and adversarial robustness. 

3 Method 

In this section, we theoretically explain the limitations of the traditional Mixup method 

when addressing multi-step adversarial attacks, particularly its shortcomings in defend-

ing against dynamic perturbations and complex attack strategies. By introducing the 

Dynamic MixCut method, which combines the strengths of CutMix and Mixup along 

with a multi-box mechanism, we effectively enhance the diversity and complexity of 

adversarial samples. This improvement significantly increases the model's adaptability 

to multi-step adversarial attacks. The method not only enhances the model's robustness 

in specific attack scenarios but also boosts its generalization ability, enabling the model 

to better withstand previously unseen attack strategies. As a result, the overall perfor-

mance and robustness of the model are significantly improved. The main process is 

shown in Figure 1.  
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3.1 Theoretical Motivation 

To enhance model robustness against adversarial attacks, the Mixup method increases 

the continuity between samples, enabling the model to better adapt to small perturba-

tions. For any two samples (xi, yi) and (xj, yj), Mixup generates a new sample as:   

 

                                  x̅ =λxi+(1-λ)xj,   y̅  = λyi + (1 − λ)yj                                  (1) 

 

Where λ is sampled from a uniform distribution (U(0, 1). For single-step attacks 

such as the Fast Gradient Sign Method (FGSM), the adversarial loss is defined as: 

                

𝐿𝑎𝑑𝑣(𝜃) =  
1

𝑛
∑ 𝑙(||𝛿𝑖||

𝑚𝑎𝑥 𝜃, (𝑥𝑖 + 𝛿𝑖 , 𝑦𝑖))𝑛
𝑖=1                               (2) 

 

𝜖 is the upper limit of disturbance. After applying Mixup, the adversarial loss becomes: 

 

                                                         𝐿𝑎𝑑𝑣(𝜃) =  ∑ 𝑙(𝑛
𝑖=1 𝜃, (x̅, 𝑦𝑖))                                     (3) 

 

x̅ is a linear interpolation generated by the Mixup technique between the original image 

and its corresponding adversarial image. While Mixup demonstrates effectiveness in 

mitigating adversarial loss under single-step attacks (e.g., Fast Gradient Sign Method, 

FGSM), its robustness significantly deteriorates when confronted with more sophisti-

cated multi-step attacks, such as Projected Gradient Descent (PGD). The adversarial 

loss for PGD is defined as: 

 

                                                       𝐿𝑎𝑑𝑣(𝜃) =  ∑ 𝑙(𝑛
𝑖=1 𝜃, (𝑥𝑖 + 𝛿𝑖 , 𝑦𝑖))                             (4) 

 

Due to the dynamic nature of PGD perturbations in magnitude and direction, Mixup-

generated samples often fail to defend against such attacks, leading to reduced model 

robustness. To further analyze Mixup's limitations, we perform a second-order Taylor 

expansion of the adversarial loss [25]: 

 

                                         𝐿𝑎𝑑𝑣(𝜃) ≈  𝑙(𝜃, (𝑥, 𝑦)) + ∇𝑙(𝜃, (𝑥, 𝑦)𝑇𝛿 + 
1

2
𝛿𝑇𝐻𝛿               (5) 

 

Where H is the Hessian matrix of the loss function with respect to the input, capturing 

second-order derivative information, and 𝛿 is the adversarial perturbation. 

While Mixup reduces adversarial loss under small perturbations, it struggles to cap-

ture second-order changes in the loss function under larger perturbations, particularly 

in multi-step attacks. As sample complexity increases, Mixup's adversarial perturbation 

effect diminishes. Assuming a constant 𝑐𝑥 such that ||𝑥𝑖|| ≥ 𝑐𝑥√𝑑  for all i, where 𝑥𝑖 

is the input sample, d is the feature dimension, and ||𝑥𝑖|| is the𝐿2 norm, the perturbation 

magnitude generated by Mixup is proportional to the sample's complexity and feature 

dimension d. This leads to the inequality: 

 

                                              𝐿𝑚𝑖𝑥(𝜃) ≥
1

𝑛
∑ 𝑙𝑎𝑑𝑣(𝜖𝑚𝑖𝑥√𝑑1

𝑖=1 , (𝑥𝑖 , 𝑦𝑖)                               (6) 



 

This suggests that Mixup's effectiveness weakens as sample complexity increases, the 

adversarial perturbation effect of the Mixup method weakens, indicating the need to 

explore potential methods combined with adversarial training. 

3.2 Dynamic MixCut  

To enhance the model's robustness against adversarial attacks, we propose the Dynamic 

MixCut algorithm. This algorithm uniquely combines dynamic mixing techniques to 

generate a rich variety of sample combinations, effectively improving the model's re-

sistance to complex attacks. Additionally, Dynamic MixCut enhances the diversity of 

samples in adversarial training, making the model's performance more stable and reli-

able across different scenarios. 

CutMix operation for generating adversarial samples. After generating the mixed 

samples, we introduce the Mixup strategy to further improve sample diversity. The 

Mixup technique generates new samples by linearly interpolating the features of two 

samples, thereby increasing the continuity of the samples and the model's adaptability 

to small perturbations. Specifically, for the mixed samples  𝑥̃1 and 𝑥̃2, we use weight 

coefficients β1 and β2 to generate the final input sample 𝑥̅ : 

 

                                                    x̅ =  𝛽1 ∙  𝑥̃1 +  𝛽2  ∙  𝑥̃2                                                 (7)                                 
 
                                       

 

Here, β1 and β2 are sampled from the uniform distribution U(0, 1). With the Mixup 

operation, the model receives samples durings training that are interpolated between 

the original and adversarial samples, increasing the diversity of the training data. 

Additionally, we apply smoothing techniques to the labels to prevent the model from 

overfitting to them.                                                                                                    

Targeted Attacks and Mixup for Robust Generalization . Neural networks exhibit 

local linearity, which forms the theoretical foundation for improving adversarial robust-

ness. Data augmentation techniques like Mixup exploit this property, as illustrated in 

Figure. 2, where the model learns to interpolate linearly between neighboring samples 

by reinforcing strong linearity in local input regions, thereby expanding the input sam-

ple space and enhancing resistance to perturbations. The local linearity hypothesis for 

adversarial noise suggests that a model’s output can be approximated as a linear trans-

formation of the input during training, providing intrinsic resistance to adversarial at-

tacks. 

According to Lipschitz continuity, reducing the Lipschitz constant decreases the 

model’s sensitivity to input perturbations, thereby improving adversarial robustness. 

Under this condition, the model’s response to perturbations remains smooth within a 

local region, ensuring that Mixup-generated samples through interpolation experience 

limited perturbations, thus enhancing robustness against adversarial noise. 
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Algorithm 1 Dynamic MixCut Adversarial Training 

Require: Training set D, model parameters 𝜃, adversarial sample generation func-

tion G, loss function 𝑙, number of iterations K, smoothing factor 𝛼. and β₁ generated 

from uniform(0, 1) distribution. 

1:  for each epoch =1 to N do    

2:        for each training sample lable pair (x,y) ~ D do    

3:              Generate two distinct adversarial samples:                                 

4:                        𝑝1 ← 𝐺(𝑥, 𝑦; 𝜃)                                         

5:                        𝑝2 ← 𝐺(𝑥, 𝑦; 𝜃) 

6:              for k=1 to K do 

7:                        Generate random box coordinates for CutMix: 𝑎𝑘 

8:                        Perform CutMix operation: 

9:                                 𝑥̃1 ← (1 − 𝑎𝑘)𝑥 + 𝑎𝑘𝑝1 

10:                               𝑥̃2 ← (1 − 𝑎𝑘)𝑥 +  𝑎𝑘𝑝2 

11:              end for 

12:              Mixup among blended samples: 

13:                        x̅ =  𝛽1 ∙  𝑥̃1 + (1 − 𝛽1)  ∙  𝑥̃2 

14:              Label Smoothing: 

15:                         𝑦̅ ← 𝑦 ∙ (1 − 𝛼) +
∝

𝑐𝑙𝑎𝑠𝑠𝑒𝑠
  

16:              Compute the loss:  𝑙(x̅, 𝑦̅;  𝜃) 

17:              Backpropagate the loss and update parameters 𝜃 

18:        end for 

19:  end for 

20:  Output: Robust model parameters 𝜃 

 

Targeted and untargeted attacks behave differently within this framework. Targeted 

attacks can manipulate the model’s output within a local input region, driving predic-

tions toward a specific class. For example, an attacker can modify a sample 𝑥 with per-

turbation 𝜖 to make 𝐹(𝑥 +  𝜖) =  𝑦𝑖  the dominant output, thereby achieving the attack. 

Compared to untargeted attacks, targeted attacks generate more diverse adversarial 

samples, improving the model’s overall robustness. Therefore, adversarial training with 

random targeted attacks enhances the robustness of Mixup-trained models. 

Training Process of the Combined Dynamic MixCut. The entire training process of 

Dynamic MixCut is iterative. In each epoch, we first generate and mix adversarial sam-

ples for each sample (x, y) in the training set D. The number of adversarial samples 

generated and the number of Mixup operations can be adjusted according to experi-

mental settings to meet the needs of different datasets and tasks.  

In each iteration, two independent adversarial samples 𝑝1 and 𝑝2 are first generated, 

followed by multiple CutMix operations to obtain 𝑥̃1 and 𝑥̃2. Then, these mixed sam-

ples are combined using Mixup to get the final training sample 𝑥̅, and its corresponding 

label 𝑦̅ is computed. The model is then trained based on these mixed samples, and the 

model parameters 𝜃 are updated by minimizing the cross-entropy loss. 



The key to this process is that by generating and mixing adversarial samples multiple 

times, we provide the model with more challenging training samples, which improves 

its robustness when facing adversarial attacks. Moreover, the dynamic nature of Dy-

namic MixCut allows the model to adaptively adjust the sample generation and mixing 

strategies at different stages of training, further enhancing its performance. 

Therefore, by combining the advantages of CutMix and Mixup, the corresponding 

algorithm is as follows in Algorithm 1. 

4 Experimental Results and Analysis  

4.1 Experiment Settings 

Dataset. To verify the effectiveness of our method, we use two widely used public 

datasets: SVHN (Street View House Numbers) and CIFAR-10. The SVHN dataset con-

tains 732,577 training images and 26,032 test images, all of which are 32x32 pixels in 

size and cover 10 digit categories. Its complex backgrounds and diverse digit styles 

make it an ideal benchmark for testing model robustness. The CIFAR-10 dataset con-

sists of 60,000 32x32 pixel color images, divided into 10 categories (e.g., airplane, au-

tomobile, bird, cat, deer, dog, frog, horse, ship, and truck), with 6,000 images per cate-

gory. Known for its simple backgrounds and standardized images, CIFAR-10 is a clas-

sic benchmark for evaluating model performance. 

By conducting experiments on these datasets, we comprehensively assess the per-

formance and robustness of our model. Note that PGD and CW attacks with iteration 

steps are denoted as PGDT and CWT, respectively, while the original test set is referred 

to as Clean. 

Implementation Details. We employ the ResNet18 [26] model for robust training on 

the CIFAR-10 and SVHN. During training, we use SGD as the optimizer with a mo-

mentum of 0.9 and a weight decay of 2e-4. All loss functions are based on cross-entropy 

loss. The optimizer relies heavily on learning rate adjustments, and we adopt a warm-

up strategy followed by exponential decay to gradually reduce the learning rate. 

For CIFAR-10, we set the initial learning rate to 0.1, warming up to 1 over 10 epochs 

and then multiplying by 0.985 after each epoch. For SVHN, we use the same settings: 

an initial learning rate of 0.032, warming up to 1 over 10 epochs and decaying by 0.985 

after each epoch. We set the total number of epochs to 400 and the batch size to 128 for 

all datasets. The adversarial examples used in training are generated by PGD-10, with 

an 𝑙∞ norm 
8

255
. To validate the effectiveness of our method, we use FGSM, PGD, and 

CW for adversarial testing. We used a computer with Ubuntu20.04, GeForce RTX4090, 

python-3.9.19 and Torch-2.1.1+cu118, and mainly compared the following settings in 

our experiments: 

 

➢ Standard: Models trained with the original dataset. 
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➢ PGD: Models trained with adversarial examples from PGD, step size = 2, iteration 

steps = 10. 

➢ TRADES: Designed to balance model accuracy with adversarial robustness by 

introducing a regularization term to enhance adversarial sample training. 

➢ Feature Scatter: Optimizes model performance across different data distributions 

by analyzing feature distribution scatter, helping to identify potential overfitting 

and underfitting issues. 

➢ Our Method: We apply our proposed method to models based on PGD. 

4.2 Ablation Studies 

Effect of CutMix and Targeted Attacks    We first analyze the impact of using 

original samples versus our proposed method on model performance during training. 

To validate the effectiveness of mixed attacks (CutMix and targeted attacks), we 

conduct ablation experiments comparing standard adversarial training with our 

approach. As shown in Table. 1, both CutMix and targeted attacks simultaneously 

enhance the model's robustness and accuracy under cross-entropy loss.  

Table 1. Ablation study on target attacks and CutMix effects, showing robustness met-

rics under clean/adversarial settings (PGD-20/100 steps) with Lipschitz constants. 

Method\Attack Targeted Clean PGD20 PGD100 Lipz 

Without CutMix 
- 81.5 44.3 43.9 71.4 

√ 86.4 40.1 39.6 133.9 

Dynamic MixCut 
- 86.3 59.1 56.7 1.63 

√ 89.8 67.7 64.5 1.35 

 

Table 2. Impact of box count on model performance: natural accuracy and PGD-20 

results on SVHN dataset. 

Dataset 

 

Box Number Natural Accuracy PGD-20 

Best Final↓ Diff Best Final Diff↓ 

 

 

SVHN 

One Box 96.1 95.3 0.8 84.2 69.1 15.1 

Two Box 96.5 96.0 0.5 86.9 79.3 7.6 

Three Box 96.5 95.9 0.6 85.3 71.1 14.2 

Four Box 96.6 96.0 0.6 86.9 73.4 13.5 

Five Box 96.7 96.0 0.7 86.4 74.3 12.1 

Six Box 96.7 96.1 0.6 88.7 77.9 10.8 

Effect of Box Count. Finally, we study the impact of the number of boxes on the re-

sults. By adjusting the number of boxes used in each input image, we analyzed the 

effect of different box counts during the training process. Our experiments showed that 

the number of boxes directly affects the model's performance, particularly when facing 

adversarial attacks. Increasing the number of boxes appropriately can provide more 



contextual information and details, which helps improve the model's classification abil-

ity in complex scenarios. However, using too many boxes may lead to information 

overload, thereby affecting the model's learning efficiency. Therefore, exploring the 

effect of the number of boxes on experimental results is crucial. The specific experi-

mental results are shown in Table. 2. 

Loss Landscape. To investigate the impact of adversarial examples on model outputs, 

we visualize the loss landscapes of different models. These loss surfaces capture the 

variation in model loss within the neighborhood of a single sample. We define two 

orthogonal directions: the attack direction relative to the sample as the x-axis and a  

 

 
(a) Models trained using standard images 

 
(b) Models trained using PGD adversarial training 

 
(c) Models trained using Our Method adversarial training 

Fig. 3. Comparision of adversarial training methods under different attack radius:0.05,0.1,0. 

random direction orthogonal to the x-axis as the y-axis, forming a plane in the sample 

space. We then sample points on this plane in a grid, calculating the loss at each grid, 

calculating the loss at each grid point. The difference between the grid loss and the 

original loss is used as the z-axis value, and the resulting surface is plotted for visuali-

zation. 

The loss surfaces are plotted at different scales: the smallest scale (0.05 attack radius) 

captures fine-grained variations, while the largest scale (0.15 attack radius) reflects 
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broader trends. A commonly used attack radius is 
8

255
, which falls within the smallest 

scale of our plots. If the loss variation within this range is minimal, it indicates that the 

model exhibits excellent smoothness and robustness to attacks. Larger scales further 

demonstrate the model's smoothness under stronger perturbations. However, when the 

attack radius exceeds 0.15, adversarial samples severely degrade the semantic infor-

mation of the image, rendering further analysis meaningless. 

4.3 Effectiveness of the Proposed Algorithms 

In this section, we demonstrate the robust generalizability of our adversarial training 

method. The experiments are carried out on the SVHN and CIFAR-10 datasets, using 

the ResNet18 model as the base architecture. The training settings follow the configu-

rations described in Section 4.1, including the use of SGD with a warm-up phase and 

exponential decay for the adjustment of the learning rate. 

To evaluate the effectiveness of our method, we test against a variety of adversarial 

attack algorithms, including FGSM, PGD-20, SPSA, CW-20. We report the accuracy 

on clean test images and under adversarial attacks, as well as the model's adversarial 

Lipschitz continuity. The perturbation bound is set to  𝜖 =
8

255
 with a step size of 

2

255
, 

consistent with standard settings in the literature. 

 

Dataset Method Nat FGSM PGD20 SPSA CW20 Lipz 

 

 

CIFAR-10 

Standard 96.4 20.6 0.0 0.0 0.0 566.7 

PGD_untarget 81.4 52.4 44.6 54.0 44.5 7.1 

TRADES 82.0 57.9 52.2 58.7 50.0 23.5 

Feature Scatter 91.4 73.7 57.5 52.5 49.8 8.4 

Our Method 89.5 74.8 70.4 76.5 82.8 1.27 

 Standard 96.4 30.3 0.2 0.9 0.2 438.1 

 PGD_untarget 91.4 66.2 52.5 58.9 49.8 52.1 

SVHN TRADES 91.2 69.7 58.8 63.1 54.9 19.4 

 Feature Scatter 93.4 72.1 62.6 69.1 60.1 15.1 

 Our Method 95.2 82.0 79.6 83.0 90.7 1.29 

Table. 3. Comparison of Model Performance with and without Dynamic MixCut under Different 

Attacks (Clean, FGSM, PGD-20, SPSA and CW-20), and the Lipschitz constant of the model 

was calculated. 

The results, summarized in Table. 3, show that our fusion algorithm outperforms the 

baseline methods in almost all evaluation metrics. Specifically, our method achieves 

higher robustness against adversarial attacks while maintaining competitive accuracy 

on clean data. These results highlight the effectiveness of our fusion algorithm in en-

hancing adversarial robustness across diverse datasets and attack scenarios. By com-

bining the strengths of CutMix and Mixup, our approach provides a more comprehen-

sive defense mechanism against complex adversarial perturbations. 



5 Conclusion 

In this paper, we propose Dynamic MixCut for improving the robustness of object clas-

sification. This approach integrates the strengths of CutMix and Mixup with a multi-

box mechanism to enhance perturbation diversity during training. Dynamic MixCut 

addresses the limitations of traditional Mixup in defending against multi-step adversar-

ial attacks, particularly its vulnerability to dynamic perturbations. Through theoretical 

analysis, we identify that Mixup’s tendency to overfit to adversarial features and its 

limited adaptability to perturbation variations undermine its robustness. Dynamic 

MixCut mitigates these issues by refining the adversarial sample generation process, 

significantly reducing the trade-off between standard accuracy and adversarial robust-

ness. 

Experimental results demonstrate that Dynamic MixCut outperforms existing de-

fense methods, achieving superior robustness against complex adversarial attacks on 

CIFAR-10, and SVHN datasets. While our method advances adversarial robustness, 

future work should focus on improving traditional data augmentation techniques for 

multi-step attacks and dynamic perturbation environments. By integrating more flexi-

ble perturbation generation strategies and adaptive training mechanisms, data augmen-

tation can further strengthen adversarial training. 
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