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Abstract. With the vigorous growth of the manufacturing industry, the complex 

dynamic scheduling problem has become the focus of enterprise production and 

cannot be ignored. Therefore, this paper established a mathematical model of the 

dynamic job shop scheduling problem (DJSP) with uncertain processing time. 

The optimization objective was to minimize the makespan. Firstly, a multi-agent 

reinforcement learning (MADRL) method was proposed, including two agents: 

proximal policy optimization (PPO) and deep Q-network (DQN). The DQN 

agent employs a collaborative mechanism to co-train with the PPO agent. It pri-

oritizes high-value samples from the experience replay buffer and provides them 

to the PPO agent for feature extraction. Within the PPO agent, state features are 

represented by both job attributes and machine resource availability metrics. Dif-

ferent dispatching rules are assigned to feasible machines as action space, with 

the reward function defined by idle time during scheduling. Finally, we applied 

our method to a wide range of publicly available static benchmarks, with results 

demonstrating significant performance improvements. Furthermore, through 

comparative experiments with heuristic dispatching rules as well as PPO and 

DQN reinforcement learning algorithms, we further validated the versatility and 

superiority of our approach across dynamic scenarios of varying scales. 

Keywords: Dynamic job shop scheduling, Uncertain processing time, Multi-

agent reinforcement learning. 

1 Introduction 

With the advancement of manufacturing technologies, smart manufacturing has 

emerged as a key focus in both academia and industry.  As one of its core challenges, 

production scheduling faces growing complexity due to various uncertain factors in 

manufacturing processes, leading to an exponential expansion in production data state 

characteristics and significantly increasing the difficulty of scheduling optimization. 

The dynamic job shop scheduling problem (DJSP)has long been a key focus in in-

dustrial and manufacturing research. Traditional priority dispatching rules (PDRs) and 

heuristic algorithms [1] have been widely applied to the DJSP. However, current meth-

ods are often limited and singular, unable to effectively handle the dynamic factors in 
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real-world scenarios. This highlights the need for more advanced algorithmic frame-

works to tackle these challenges effectively.  

To address these challenges, the main contributions of this paper are as follows: (1) 

An optimization model for the DJSP is developed, with the objective of minimizing 

makespan. (2) A multi-agent reinforcement learning (MADRL) dynamic scheduling 

framework based on deep Q-network (DQN) and proximal policy optimization (PPO) 

agents is proposed, effectively alleviating the complexity introduced by dynamic sched-

uling. (3) A state representation based on jobs and machines is designed, incorporating 

scheduling rules into the action space, and continuously optimizing the optimal solution 

using the reward function. (4) Experimental results indicate that our method is highly 

effective and generalizable both in static and dynamic scheduling environments. Even 

for larger instances, the learned policies exhibit strong performance. 

The structure of the rest of this paper is as follows. Section 2 provides a literature 

review. Section 3 presents the model for dynamic job shop scheduling with uncertain 

processing times. Section 4 introduces the MADRL scheduling method. Section 5 pre-

sents the data from static and dynamic experiments, along with a discussion of the com-

parative results. Finally, Section 6 concludes the paper with a summary and outlook. 

2 Literature review 

In recent years, traditional PDRs and heuristic methods have been extensively explored 

in job shop scheduling, with heuristic [2] and meta-heuristic algorithms [3, 4] seeing 

the widest application. Zhang proposed a rescheduling method based on a genetic al-

gorithm (GA) and tabu search for DJSP with random job arrivals and breakdown of 

machines [5]. Chen proposed a cooperative evolutionary algorithm to solve the flexible 

job shop scheduling problem (FJSP) [6]. Li introduced a co-evolutionary algorithm for 

the flexible flow shop scheduling problem (FSP) with robotic transportation [7]. Gao 

proposed an improved particle swarm optimization algorithm combined with reinforce-

ment learning to solve the flexible job-shop scheduling problem [8]. While these ap-

proaches have demonstrated promising results in smaller-scale problems, they may en-

counter computational and temporal challenges when tackling larger-scale instances.  

DRL frameworks have emerged as a powerful approach for job shop scheduling 

problems, owing to their exceptional learning capabilities and broad applicability. Zhao 

proposed the estimation of the reinforcement learning based distribution algorithm 

(RLEDA) to solve the energy-efficient DHFJSP while minimizing the makespan and 

total energy consumption [9]. Du designed a multi-objective DQN algorithm for the 

FJSP with crane transportation and setup times [10]. Luo addressed the DJSP with new 

job insertions using a double DQN algorithm [11]. Shahrabi proposed a scheduling 

method based on variable neighborhood search (VNS) to address the DJSP [12]. Lin 

introduced distributed edge computing into a smart factory framework, leveraging a 

multi-level neural network with a DRL framework to tackle the JSP [13]. Liu used a 

proximal policy optimization (PPO) algorithm to deal with DJSP with random job ar-

rivals and random machine failures by minimizing the makespan [14]. Wu proposed a 

PPO algorithm based on experience replay with mixed priorities to solve the DJSP with 
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uncertain processing time [15]. Hammami et al. combined PPO and Actor-Critic algo-

rithms with the event-driven rescheduling strategy to solve the real-time JSP problem 

under uncertain job arrivals [16]. 

Multi-agent reinforcement learning is a new research direction in the field of sched-

uling. Yuan proposed a dual deep Q-networks (MADDQN) algorithm for FJSP, with 

multi-agent reinforcement learning application scheduling rules composed of work-

piece agents and machine agents [17]. Zhang et al. proposed a multi-agent reinforce-

ment learning system (MARLS) to solve DJSP and adopted an improved contract net-

work protocol (CNP) to guide cooperation and competition among multiple agents [18]. 

However, their multi-agent approach treating jobs and machines as independent 

agents fails to account for algorithmic time complexity, potentially leading to model 

redundancy and state feature incompatibility. Therefore, the dynamic scheduling sys-

tem urgently requires improved algorithms to analyze these problems effectively. 

3 Problem description 

3.1 Problem formulation 

The DJSP with uncertain processing time in this paper is defined as follows. The set of 

𝑛  jobs 𝐽 = {𝐽1, 𝐽2, . . . , 𝐽𝑛}  needs to be processing on 𝑚  machines 𝑀 =
{𝑀1, 𝑀2, . . . , 𝑀𝑚}. Each job 𝐽𝑖 all has 𝑛𝑖 operations, among jth jobs named 𝑂𝑖,𝑗. Every 

job selects machine 𝑀𝑘  to process noted 𝑀𝑖,𝑗(𝑀𝑖,𝑗 ∈ 𝑀). An operation 𝑂𝑖,𝑗  may be 

stranded on the current machine 𝑀𝑘 due to factors, and the uncertain processing time is 

denoted as 𝑈𝑃𝑖,𝑗,𝑘. The optimization objective is to minimize the makespan, described 

as Equation (1). 

𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 = 𝑚𝑖𝑛 𝐶𝑚𝑎𝑥 = 𝑚𝑖𝑛 ∑ 𝐶𝑖(1 ≤ 𝑖 ≤ 𝑛) (1) 

The description of indices is given in Table 1, and the description of variables is given 

in Table 2. The decision of parameters is defined in Table 3. 

Table 1. The description of indices. 

Indices Related description 

𝑖, 𝑖′ The index of jobs, 𝑖, 𝑖′ = 1, . . . , 𝑛 

𝑗, 𝑗′ The index of operations, 𝑗, 𝑗′ = 1, . . . , 𝑚 

𝑘 The index of machine, 𝑘 = 1, . . . , 𝑚 

Table 2. The description of decision variables. 

Decision variables Related description 

𝑋𝑖,𝑗,𝑘 = {
1
0

 If operations 𝑂𝑖,𝑗 processed on machines 𝑀𝑘 

Otherwise 

𝑌𝑖,𝑗,𝑖′,𝑗′,𝑘 = {
1
0

 If operations 𝑂𝑖,𝑗 processed on machines 𝑀𝑘 before 𝑂𝑖′,𝑗′ 

Otherwise 



Table 3. The description of parameters. 

Parameters Related description 

𝑛 The number of jobs 

𝑚 The number of machines 

𝐽 The set of jobs, 𝐽 = {𝐽1, 𝐽2, . . . , 𝐽𝑛} 

𝑀 The set of machines, 𝑀 = {𝑀1, 𝑀2, . . . , 𝑀𝑚} 

𝑂 The set of operations,𝑂 = {𝑂11, 𝑂12, . . . , 𝑂1𝑗 , . . . , 𝑂𝑖,𝑗} 

𝐽𝑖 Jobs jth, for 𝑗 = 1, . . . , 𝑚 

𝑀𝑘 Machines ith, for 𝑖 = 1, . . . , 𝑛 

𝐶𝑖 The processing time of the jobs 𝐽𝑖 

𝐶𝑚𝑎𝑥 Makespan 

𝑂𝑖,𝑗 Operations jth of the jobs 𝐽𝑖 

𝑀𝑖,𝑗 The processing machines set of operations 𝑂𝑖,𝑗, 𝑀𝑖,𝑗 ∈ 𝑀 

𝐶𝑖,𝑗 The completion time of operations 𝑂𝑖,𝑗 

𝑆𝑖,𝑗 The start processing time of operations 𝑂𝑖,𝑗 

𝑃𝑖,𝑗,𝑘 The processing time of operations 𝑂𝑖,𝑗 on machines 𝑀𝑘 

𝑈𝑃𝑖,𝑗,𝑘 The processing time with uncertain time 

The constraints of DJSP are given by the Constraints (3-1) - (3-6). 
𝐶𝑖,𝑗 ≥ 0, 𝑆𝑖,𝑗 ≥ 0, 𝐶𝑖 ≥ 0, ∀𝑖, 𝑗 (3 − 1) 

𝑆𝑖,𝑗 ≥ 𝐶𝑖,𝑗−1, ∀𝑖, ∀𝑗 = 2, … , 𝑛 + 1 (3 − 2) 

𝐶𝑖,𝑗 ≥ 𝑆𝑖,𝑗 + 𝑃𝑖,𝑗,𝑘 ⋅ 𝑋𝑖,𝑗,𝑘, ∀𝑖, 𝑗, 𝑘 (3 − 3) 

∑ 𝑋𝑖,𝑗,𝑘

𝑚

𝑘∈𝑀𝑖,𝑗

= 1, ∀𝑖, 𝑗 (3 − 4) 

𝑆𝑖,𝑗 ≥ 𝐶𝑖′,𝑗′ − 𝑌𝑖,𝑗,𝑖′,𝑗′,𝑘 × 𝑁∗, ∀𝑖, 𝑗, 𝑖′, 𝑗′, ∀𝑀𝑘 ∈ 𝑀𝑖,𝑗 (3 − 5) 

𝑆𝑖′,𝑗′ ≥ 𝐶𝑖,𝑗 − (1 − 𝑌𝑖,𝑗,𝑖′,𝑗′,𝑘) × 𝑁∗, ∀𝑖, 𝑗, 𝑖′, 𝑗′, ∀𝑀𝑘 ∈ 𝑀𝑖,𝑗 (3 − 6) 

Constraints (3-1) represent the non-negative constraints on the processing time of jobs. 

Constraint (3-2) represents the processing sequence constraint between different oper-

ations of the same jobs. Constraint (3-3) represents the constraint correlation between 

the start and end times of the operations processing under the same jobs. Constraint (3-

4) represents the constraint of machine selection, which is that each operation should 

only be assigned to one machine for processing within the same machine. Constraints 

(3-5) and (3-6) represent the processing sequence relationship between different oper-

ations of different jobs on the same machine. 

3.2 Uncertain processing time 

𝑈𝑃𝑖,𝑗,𝑘 denotes the uncertain processing time of an operation. Each randomly generated 

instance contains two sets of distributions. The uncertainty of the processing time was 

weighted using the normal distribution α in Equation (2) and uniform distribution β in 

Equation (3) to obtain the value of the uncertainty ratio. Detailed values are outlined in 

Table 4. 
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𝐹(𝑥) =
1

√2𝜋𝜎
exp (−

(𝑥 − 𝜇)2

2𝜎2
) (2) 

𝐹(𝑥) = {

1

𝑏 − 𝑎
, 𝑎 ≤ 𝑥 ≤ 𝑏

0, 𝑒𝑙𝑠𝑒

(3) 

Table 4. Uncertain processing time 

Distribution α β 

Normal 

Uniform 

1,2,3 

1,2,3 

±25%,50%,75%,100% 

±25%,50%,75%,100% 

4 Our method for DJSP 

4.1 Multi-agent method for scheduling 

In multi-agent reinforcement learning (MARL), each agent is required to determine its 

actions based on its own local observations. MARL method extends agents to utilize 

global information for policy updates during the training phase. However, during exe-

cution, each agent makes decisions based solely on its individual local observations. 

The structure of the MARL method is represented in Fig. 1. This method consists of 

two agents: PPO and DQN. Within the multi-agent collaborative mechanism, DQN and 

PPO agents share a unified objective function aimed at maximizing rewards derived 

from a common reward function, thereby achieving global optimization. 

Initially, the experience replay buffer samples data from the environment. The DQN 

agent interacts with the sampled trajectory and replays experienced samples based on 

value function optimization advantages. Subsequently, the actor network in the PPO 

agent processes input tuple (𝑆, 𝐴𝑖 , 𝑅, 𝑆′) optimizes network weight coefficients 𝜃, and 

selects action 𝐴 to pass to Critic network. The Critic network performs action evalua-

tion to obtain 𝑄(𝐴) for policy gradient calculation. Another pair of Actor-Critic net-

works known as target networks process output next state 𝑆′. The Actor network in the 

target network selects action 𝐴𝑡+1 while the critic network combines output 𝑄(𝐴𝑡+1) 

with output 𝑄(𝐴𝑖) from PPO agent to calculate Loss function. Finally, PPO agent cop-

ies obtained 𝑄′, 𝜃′ to target network. Immediate reward 𝑅 generated by each episode is 

fed back for optimizing makespan as optimization targets by the multi-agent method 

for scheduling. 

We propose a framework for DJSP based on a MADRL method illustrated in Fig. 2. 

In this study, we integrate the value function-based DQN agent with the policy gradient-

based PPO agent, utilizing the cooperative mechanism between each other for schedul-

ing. Algorithm 1 describes the specific details of the DJSP algorithm based on 

MADRL. 



 

Fig. 1. Flow of the MARL algorithm 

 

Fig. 2. Multi-agent method for scheduling 
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Algorithm 1: The MARL based on DQN and PPO agents for DJSP 

1: Initialize experience replay buffer 𝒟, batch size b, buffer maximum size 𝒩, 

epsilon ε, policy network Q with θ, target network Q’ with θ’ in DQN agent 

2: Initialize epoch M, episode N, batch size b, mini buffer m, trajectories T, 

discount factor γ, Critic network 𝑄(𝑠, 𝑎|𝜃𝑄) and Actor network 𝑄(𝑠, 𝑎|𝜃𝑢) 

in PPO agent 

3: for 𝑒𝑝𝑜𝑐ℎ = 1,2, … , 𝑀 do 

4: for 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 = 1,2, . . . , 𝑁 do 

5: DQN agent: 

6: Observe state 𝑠𝑡, action 𝑎𝑡, reward 𝑟𝑡 and 𝑥𝑡+1 

7: Set 𝑠𝑡+1 = 𝑠𝑡, 𝑎𝑡, 𝑥𝑡+1 and preprocess 𝜙𝑡+1 = 𝜙(𝑠𝑡+1) 

8: Store transition (𝜙𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝜙𝑡+1) in 𝒟 

9: Sample minibatch transitions (𝜙𝑗, 𝑎𝑗 , 𝑟𝑗 , 𝜙𝑗+1) from 𝒟 

10: Compute 𝑦𝑗 and perform a gradient descent step on (𝑦𝑗 − 𝑄(𝜙𝑗, 𝑎𝑗; 𝜃))
2
 

11: Optimize and update 𝜃’ ← 𝜃 

12: Update policy network Q and target network Q’ 

13: PPO agent: 

14: for 𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑖𝑒𝑠 = 1,2, . . . , 𝑇 do 

15: Obtain buffer m with (𝜙𝑗, 𝑎𝑗 , 𝑟𝑗 , 𝜙𝑗+1) from DJSP environment 

16: Run policy 𝜃𝑢 in DJSP environment for T trajectories 

17: Compute generalized advantage function 

𝐴𝑡̂ = 𝛿𝑡 + (𝛾𝜆)𝛿𝑡+1 + ⋯ + ⋯ + (𝛾𝜆)𝑇−𝑡+1𝛿𝑇−1， 

𝑤ℎ𝑒𝑟𝑒 𝛿𝑡 = 𝑟𝑡 + 𝛾𝑉(𝑠𝑡+1) − 𝑉(𝑠𝑡) 

18: end for 

19: Optimize surrogate objective 𝐿(𝜃)  with mini buffer m, 𝐿(𝜃) =

𝐸𝑡[min(𝑟𝑡(𝜃)𝐴𝑇̂ , 𝑐𝑙𝑖𝑝(𝑟𝑡(𝜃), 1 − 𝜖, 1 + 𝜖)𝐴𝑇̂)]  

20: Optimize and update 𝜃𝑄 ← 𝜃𝑢 

21: Update Actor network 𝑄(𝑠, 𝑎|𝜃𝑢) and Critic network 𝑄(𝑠, 𝑎|𝜃𝑄)  

22: end for 

23: end for 

4.2 State feature 

Given the complexity and variability of the DJSP, a 3D vector coordinate system is 

designed to capture the state features. As illustrated in Figure 3, the jobs and machines 

are initially represented using a traditional disjunctive graph. Next, the edges corre-

sponding to feasible solutions are connected based on the scheduling relationships, 

forming the final directed acyclic graph. The critical path is then derived from the 3D 

coordinates, where the X-axis represents the job sequence number, the Y-axis repre-

sents the machine sequence number, and the Z-axis represents the processing time. The 

state representation is given by Equation (4). 
[𝐽𝑜𝑏𝑠𝑛][𝑀𝑎𝑐ℎ𝑖𝑛𝑒𝑠𝑚][𝑃𝑇𝑡] = 𝐷𝑅/𝑇𝑂𝑆 (4) 



where 𝐽𝑜𝑏𝑠𝑛 and 𝑀𝑎𝑐ℎ𝑖𝑛𝑒𝑠𝑚 denotes the nth job and mth machine. 𝑃𝑇𝑡 indicates the 

processing time for the current operation, while 𝐷𝑅 refer to the currently selected dis-

patching rules. 𝑇𝑂𝑆 represents the total operations. 

4.3 Action space 

The action space of this study is defined as follows: At each time step 𝑡, the selection 

is made based on the current state of the dynamic job shop scheduling environment, 

which includes the state features of machines and jobs. 

The agent probabilistically chose a dispatching rule by the policy network from the 

action space. For different production states, we define these priority dispatching rules 

(PDRs) in Table 5 as the shortest processing time (SPT), the longest processing time 

(LPT), the shortest remaining machine without itself (SRM), the longest remaining ma-

chine without itself (LRM), the shortest remaining processing time (SRPT), the longest 

remaining processing time (LRPT), the shortest processing time with next operation 

(SSO), and the shortest processing time with next operation (LSO). By selecting these 

dispatching rules, the objective is to minimize the makespan. 

Table 5. Action space of PDRs with description 

PDRs Related description 

SPT The next selected job is according to the shortest processing time. 

LPT The next selected job is according to the largest processing time. 

SSO 
The next selected job is according to the minimum processing time 

of the subsequent operation. 

LSO 
The next selected job is according to the largest processing time of 

the subsequent operation. 

SRPT 
The next selected job is according to the minimum remaining 

machining time. 

LRPT 
The next selected job is according to the largest remaining 

machining time. 

SRM 
The next selected job is according to the minimum processing time 

of the subsequent operation without itself. 

LRM 
The next selected job is according to the largest processing time of 

the subsequent operation without itself. 

These rules are designed to select eligible processing operations and assign them to the 

appropriate machines. During the training process, the objective of minimizing the 

makespan is continuously optimized. 

4.4 Reward function 

In RL, the ultimate task of an agent is to maximize the cumulative reward. In scheduling 

optimization problems, however, the objective is typically to minimize the makespan 

for all jobs. Therefore, we align the reward function with the makespan based on ma-

chine idle time, as shown in Equation (5). 
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𝑅𝑒𝑤𝑎𝑟𝑑 = −𝐼𝑑𝑙𝑒 𝑡𝑖𝑚𝑒 = ∑ 𝐶𝑖(1 ≤ 𝑖 ≤ 𝑛) − 𝑀 ∗ 𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 (5) 

where 𝑅𝑒𝑤𝑎𝑟𝑑 represents the total reward after algorithm training, 𝐼𝑑𝑙𝑒 𝑡𝑖𝑚𝑒 denotes 

the total idle time across all machines, 𝐶𝑖 is the completion time of the ith job, 𝑛 is the 

total number of jobs, 𝑀 represents the number of machines, and 𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 refers to 

the actual minimum completion time of all jobs. 

Specifically, after each scheduling solution is completed, the idle time of the ma-

chines is compared to the makespan. By optimizing the objective function, the cumu-

lative reward during the network training process is effectively maximized, ensuring 

consistency between the optimal solution of the problem and the reinforcement learning 

reward function.  

5 Experiments and Results 

5.1 Model and configurations 

For the PPO agent, the epoch is set to 100 with 10 episodes per epoch. The actor net-

work’s input layer corresponds to the state space dimensions, followed by two hidden 

layers with 100 nodes each. Action probabilities are normalized using a softmax func-

tion and mapped to a 1-D vector. The critic network has a similar structure but outputs 

a state-value function. The learning rates for both the actor network and the critic net-

work are set to 0.001. The clipping ratio coefficient for the actor network is 0.2, and the 

number of hidden layers corresponds to the dimensions of the training instances, spe-

cifically the number of jobs multiplied by the number of machines. In the experience 

replay buffer, the priority weight factor for the prioritized experience replay mechanism 

is set to 0.6, the memory size is configured to 10, and the target network is updated 

every 10 iterations. The capacity of the experience replay buffer is determined by the 

memory size multiplied by the dimensionality of the state space. The batch size is pro-

portional to the scale of the problem instance. 

For the DQN agent, the memory capacity of the experience replay mechanism is set 

to 10. Each sampled instance is iterated for 1000 episodes, with each episode consisting 

of 10 timesteps. The batch size is configured to 128, and the exploration factor for the 

policy is set to 0.05. The target network is updated every 100 episodes, and the discount 

factor for the reward function is set to 0.8. Certain network layers are shared, while 

personalized policy layers are retained. This design enables the agent to capture global 

environmental dynamics while optimizing its policy through local interactions. 

All remaining parameters are set to the default values in Pytorch. The selected hy-

perparameters strike a balance between convergence speed and training stability. Ex-

periments were conducted on a system equipped with an Intel Core i7-11800 CPU and 

a single Nvidia GeForce RTX 3060 GPU. 

5.2 Static experiments 

We first selected a set of benchmark instances from the OR-Library, including la01, 

la02, ..., la40 [19], and some instances from ta21, ta22, ..., ta51, ta52 [20], representing 



different scales. These instances were used as a static test set to evaluate our method. 

Specifically, we chose instances of the following sizes for training and testing: 10 × 5, 

15 × 5, 20 × 5, 10 × 10, 15 × 10, 20 × 10, 30 × 10, 15 × 15, 20 × 20, 30 × 15, 30 × 20, 

and 50 × 15. 

As shown in Fig. 3, we present the makespan obtained after training, comparing it 

with the known optimal solutions of the benchmark instances. We calculate the accu-

racy as shown in Equation (6). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (1 −
|𝐶𝑂𝑢𝑟𝑠 − 𝐶𝑂𝑝𝑡|

𝐶𝑂𝑝𝑡

) ∗ 100% (6) 

where the 𝐶𝑂𝑢𝑟𝑠 represents the makespan obtained by our method. The 𝐶𝑂𝑝𝑡 refers to 

the optimal solution for the given benchmark case. The green values in Fig. 3 illustrates 

the accuracy between the 𝐶𝑂𝑢𝑟𝑠 and the 𝐶𝑂𝑝𝑡, which represented the precision of the 

optimal and worst makespan obtained by our method. 

 

Fig. 3. Comparison with the Opt 

The method refines the dispatching rules by utilizing the action space, and it selects the 

appropriate scheduling strategy for job sequencing based on the optimization of the 

policy gradient. By considering machine idle times, our approach ultimately produces 

more effective scheduling solutions in static experiments. 

5.3 Dynamic experiments 

Subsequently, we conducted dynamic experiments using 36 instances randomly gener-

ated from three different scales: 20 × 10, 30 × 10, and 30 × 20. These instances of 

uncertain processing time were generated with normal and uniform distributions, as 

described in Section 3.2. 

The Fig. 4 and Fig. 5 respectively illustrate the change in makespan and loss during 

training on different scale instances. For the small-scale instances of 20 × 10, we can 

observe the evolution of the current makespan and the optimal makespan after training 

the model and fine-tuning the hyperparameters. The fluctuations indicate that the agent 

is exploring different learning policies, ultimately converging to the optimal makespan. 

And the loss gradually converges to 0 after training. In the PPO agent, the loss change 
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of the actor represents the core loss function, which governs the stability and efficiency 

of policy updates.  This loss is computed using a gradient ascent approach. 

Our model achieves performance on the medium-scale instances comparable to the 

excellent results obtained on the small-scale instances. The effectiveness of our method 

was validated on the 30 × 20 large-scale instances. Although the training time in-

creased, the learning capability was significantly enhanced, and the convergence speed 

of the loss improved.  When compared to the results from previous instances, the model 

demonstrated consistent applicability across different scales. 

 

Fig. 4. Makespan of different instances 

 

Fig. 5. Loss of different instances 

Finally, we compared our method with five priority dispatching rules (PDRs), PPO, 

and DQN algorithms across various scales, as presented in Table 6. The results demon-

strate that: (1) Solutions derived from PDRs exhibit inferior quality with notable limi-

tations, particularly manifested through excessive machine idle time. (2) Our method 



achieves significantly better makespan performance than the optimal PDR solutions 

across all test instances. (3) Superiority over DRL Baselines: Our method demonstrates 

stronger optimization capability than both PPO and DQN algorithms. Specifically, PPO 

achieves an intermediate balance, with solutions consistently falling between those of 

the proposed method and DQN. DQN exhibits high solution variance across the same-

scale instances, indicating instability in its convergence behavior. 

Table 6. Comparison of dynamic experiments 

Instances SPT LPT SRM LRM SRPT PPO DQN Ours Time 

20x10_25%_1 1986 1742 2182 1538 2020 1371 1634 1279 149.3s 

20x10_25%_2 1913 1692 2088 1512 2130 1379 1727 1280 149.8s 

20x10_25%_3 2137 1810 2180 1489 2043 1391 1784 1295 152.5s 

20x10_50%_1 1881 1663 2114 1543 2029 1372 1785 1289 150.0s 

20x10_50%_2 1967 1691 2044 1506 2049 1398 1630 1277 152.0s 

20x10_50%_3 2046 1840 2193 1469 2056 1388 1826 1289 151.7s 

20x10_75%_1 2077 1720 2141 1511 2081 1385 1712 1286 151.1s 

20x10_75%_2 1949 1628 2248 1521 2039 1382 1833 1281 152.9s 

20x10_75%_3 1933 1743 2104 1536 2048 1353 1669 1310 172.7s 

20x10_100%_1 2161 1719 2081 1475 2113 1356 1665 1285 202.7s 

20x10_100%_2 1890 1657 2166 1459 2095 1363 1757 1291 208.9s 

20x10_100%_3 2200 1869 2085 1507 2166 1336 1641 1294 207.7s 

30x10_25%_1 2417 2410 2797 1929 2643 1831 2169 1786 348.8s 

30x10_25%_2 2414 2352 2737 1924 2848 1819 2191 1782 341.3s 

30x10_25%_3 2452 2337 2595 2015 2981 1830 2242 1776 286.3s 

30x10_50%_1 2425 2419 2684 1951 2808 1803 2131 1787 281.1s 

30x10_50%_2 2332 2324 2814 1943 2793 1822 2185 1781 276.6s 

30x10_50%_3 2273 2562 2709 2004 2852 1810 2241 1776 265.3s 

30x10_75%_1 2366 2406 2579 2000 2791 1830 2223 1789 273.8s 

30x10_75%_2 2623 2353 2876 1983 2775 1803 2218 1768 278.7s 

30x10_75%_3 2593 2239 2911 1926 2981 1797 2197 1777 277.9s 

30x10_100%_1 2415 2457 2780 1957 2829 1794 2349 1788 286.1s 

30x10_100%_2 2360 2418 2853 1998 2869 1808 2393 1785 275.0s 

30x10_100%_3 2376 2521 2685 1937 2806 1823 2284 1777 290.1s 

30x20_25%_1 3075 3145 3533 2735 Null 2452 3297 2388 845.8s 

30x20_25%_2 3060 3240 3285 2806 3393 2520 3391 2379 796.2s 

30x20_25%_3 3115 Null 3278 Null Null 2502 3393 2420 826.8s 

30x20_50%_1 3189 3397 3432 2749 3595 2465 3172 2403 960.9s 

30x20_50%_2 3236 3344 Null 2810 3283 2479 3484 2419 772.0s 

30x20_50%_3 3269 Null 3201 2829 3262 2450 3201 2384 824.1s 

30x20_75%_1 3159 3336 3324 2692 Null 2506 3126 2383 834.5s 

30x20_75%_2 3243 Null 3386 2756 3343 2477 3254 2396 735.9s 

30x20_75%_3 3346 Null 3294 Null Null 2479 3343 2388 728.2s 

30x20_100%_1 3153 3119 3432 2688 3237 2522 3148 2394 726.2s 

30x20_100%_2 3306 Null 3475 Null Null 2529 3237 2392 744.1s 

30x20_100%_3 3165 Null 3392 2742 3366 2465 3367 2383 758.8s 
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(4) Under varying uncertain processing time conditions across different test groups, our 

method maintains consistent makespan performance with minimal deviation (<5% fluc-

tuation). This stability demonstrates remarkable robustness against dynamic variations 

in processing time. (5) Notably, the proposed method demonstrates enhanced general-

ization capability in large-scale instances.  

These results comprehensively validate the superiority and effectiveness of the 

multi-agent learning strategy for dynamic scheduling problems, offering a novel solu-

tion paradigm for optimization challenges in complex production environments. 

6 Conclusion 

In this study, we investigate the DJSP with uncertain processing time based on the 

MADRL algorithm. A mathematical optimization model of mixed integer linear pro-

gramming is proposed. The MADRL scheduling algorithm, combining the DQN agent 

and PPO agent is established. The state features, action space, and reward function in 

dynamic scheduling are designed. Experimental results demonstrate that MADRL out-

performs heuristic scheduling rules, PPO, and DQN algorithms, and shows remarkable 

performance on different scale instances.  

MADRL is an emerging DRL method for scheduling problems, offering significant 

research potential. In future work, we will continue to develop more effective network 

models to further enhance the efficiency and convenience of using MARL for solving 

scheduling optimization problems. 
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