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Abstract. Despite promising potential of Deep Reinforcement Learning (DRL) 

to adapt to various tasks, it remains highly vulnerable to adversarial attacks or 

anomalous observation signals. Existing research on DRL robustness does not 

fully safeguard against all types of adversarial perturbations and disturbances, 

which hampers its use in critical real-world systems and applications, such as 

smart grids, traffic control, and autonomous vehicles. In these contexts, anoma-

lous states can cause decision-making errors that may be exacerbated in subse-

quent actions, resulting in irreparable damage. To promptly detect anomalous 

states and prevent greater losses, we propose the Transformer-Based Anomaly 

Detection (T-BAD) framework. Utilizing the transformer's ability to handle se-

quential data robustly, T-BAD enables real-time detection of anomalous states 

and actions. Specifically, first, our approach involves collecting trajectory data 

from the DRL algorithm used by the agent and training a transformer module to 

accurately model the agent's actions. For anomaly detection, we input k consec-

utive states and k-1 consecutive actions (excluding the current action) into the 

transformer, and then compare its output with the agent's action. The difference 

between them indicates whether DRL model is influenced by interference or ad-

versarial attacks. Extensive experiments across multiple scenarios in Atari and 

Mujoco demonstrate that our T-BAD outperforms existing baselines in anomaly 

detection while also possessing some capacity for anomaly correction. 

Keywords: Deep Reinforcement Learning, Transformer, Anomaly Detection. 

1 Introduction 

Since the effectiveness of using Deep Neural Networks (DNNs) to parameterize rein-

forcement learning policies was demonstrated, substantial progress has been made in 

the development of new algorithms and applications within Deep Reinforcement Learn-

ing (DRL) [1]. However, these advancements have also introduced new challenges. 

Notably, the vulnerability of DNNs to perturbations in barely perceptible adversarial 

directions was first revealed by [2]. Subsequent studies by [3] and [4] extended these 

findings to DRL, showing that this vulnerability persists in reinforcement learning con-

texts. Such fragility is unacceptable in applications like autonomous driving, automated 

financial trading, or medical decision-making. 



Extensive efforts have been made to enhance the robustness of DNNs against adver-

sarial perturbations [5,6]. Some studies have explored adversarial directions, the cost 

of generalized robust training, and the inherent challenges in learning robust models 

[7,8]. However, no matter how robust a model is, it cannot withstand all adversarial 

attacks, as this would require DNNs to learn all possible state-action pairs, which are 

infinite. Given that achieving complete robustness against adversarial examples in 

DNNs is currently infeasible, a practical approach is to focus on detecting the presence 

of adversarial manipulations. A method for detecting adversarial directions in the neu-

ral loss landscape of DRL, effectively identifying adversarial states, was proposed [9]. 

However, adversarial attacks in DRL are not limited to state interference; they can also 

target actions. Moreover, states are not only vulnerable to adversarial attacks but may 

also be affected by issues such as random noise and signal loss in real-world scenarios. 

Currently, no general method exists for detecting all kinds of anomalies in DRL sys-

tems. 

Surprisingly, we discover that vanilla sequence modeling methods, such as decision 

transformer, exhibit robustness against data corruption, even without specialized mod-

ifications [10].  To unlock the full potential of sequence modeling, we propose the 

Transformer-Based Anomaly Detection (T-BAD) framework which detects anomalies 

in actions and states that were not encountered during the training of the agent and 

decides whether to terminate the algorithm's operation to mitigate potential losses. To 

be specific, we collect trajectory data from DRL algorithm and train a transformer, en-

abling it to fit the agent's current actions based on the input state-action sequence. Given 

transformers are designed to process sequence data and inherently more robust to ad-

versarial samples, we compare the T-BAD framework's output actions with those of the 

deployed agent to detect anomalies. In summary, our research makes the following 

contributions: 

• We propose a Transformer-Based Anomaly Detection (T-BAD) framework that uti-

lizes historical trajectory data to train transformers to detect adversarial samples or 

interferences. 

• Extensive experiments across various scenarios from Atari and Mujoco demonstrate 

that T-BAD provides better anomaly detection capabilities compared to other base-

lines, for both discrete and continuous actions. 

• More importantly, we also verify that T-BAD has the ability to correct certain anom-

alous actions to some extend. 

2 Related Work 

2.1 Adversarial Attack in DRL 

In recent years, adversarial attacks in DRL can be categorized into reward-based attacks 

[11], strategy-based attacks [12], observation-based attacks [13,14], environment-based 

attacks [15], and action-based attacks [16] according to their algorithmic principles. 

Reward-based attacks manipulate the reward signal from the environment, either by 

changing the reward value's sign or replacing the original reward function with an 
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adversarial one. Strategy-based attacks use adversarial agents to generate states and 

actions that disrupt the victim agent’s decision-making process. Observation-based at-

tacks involve adding perturbations to the sensory input of agent, typically images, typ-

ically images, leading the victim agent to take actions desired by the attacker. Environ-

ment-based attacks modify the agent's training environment directly, altering its dy-

namics or introducing new obstacles. Action-based attacks directly modify action out-

puts by changing the action space in the training data.  In DRL, regardless of the type 

of adversarial attack [17], the fundamental goal is to alter the agent's actions, as an 

attack is only considered successful unless the agent's actions are changed. Therefore, 

with the growing concerns about adversarial attack techniques in recent research, our 

work aims to provide a general framework for detecting adversarial attacks by identi-

fying anomalous actions in DRL. 

2.2 Adversarial Example Detection 

Adversarial detection methods can be broadly categorized into distribution diversity, 

feature transformation, and deep learning-based approaches. For distribution diversity,  

[18] identified differences in the local intrinsic dimension (LID) between adversarial 

and clean samples, enabling detection via distance distribution analysis. Feature trans-

formation-based methods leverage adversarial sensitivity to input changes.  [19] de-

tected adversarial samples via KL divergence between original and transformed out-

puts, while [20] used denoising and cross-entropy calculations. Additionally,  [21] 

found that adversarial samples exploit high-curvature regions near decision boundaries, 

aiding differentiation. Deep learning-based approaches analyze model internal repre-

sentations. [22] proposed cascade detection using CNN layer statistics, and [23] intro-

duced SMSnet, integrating convolutional layers and global pooling-based feature syn-

thesis for classification. These methods typically assume prior knowledge of adversar-

ial samples or their distribution, which is impractical in DRL scenarios where such 

information is often unavailable. 

 

3 Method 

In this section, we introduce Transformer-Based Anomaly Detection (T-BAD), a 

framework designed to monitor whether an agent is experiencing adversarial attacks or 

signal interference in real-time during its interaction with the environment. This frame-

work utilizes a pre-trained transformer to model the actions generated during the agent-

environment interactions. When the agent is subjected to an adversarial attack, resulting 

in altered actions, the framework detects the anomaly by comparing the transformer's 

predicted actions with the agent's actual actions. 



 

Fig. 1. T-BAD framework. The green section represents the process where the agent interacts 

with the environment, during which an attacker may attack the state or directly modify the action. 

The blue section indicates the process where we use a transformer to perform anomaly detection. 

If the attacker attacks a certain state 𝑠𝑡̃, the action output by the agent is 𝑎𝑡̃, and the action output 

by the transformer is 𝑎𝑡̂. The gray section shows that we determine whether an attack or interfer-

ence has occurred by comparing the differences between the two actions. 

3.1 Reinforcement Learning as Sequence Modeling 

In DRL tasks that satisfy the Markov property, the agent learns a mapping from the 

current state to the current action. Decision Transformer (DT) models decision-making 

from offline datasets as a sequence modeling problem [10].  The 𝑖-th trajectory 𝜏(𝑖) of 

length 𝑇 in dataset 𝒟 is reorganized into a sequence of return-to-go 𝑅𝑡
(𝑖)

, state 𝑠𝑡
(𝑖)

, ac-

tion 𝑎𝑡
(𝑖)

: 

 

𝜏(𝑖) = (𝑅0
(𝑖)

, 𝑠0
(𝑖)

, 𝑎0
(𝑖)

, … , 𝑅𝑇−1
(𝑖)

, 𝑠𝑇−1
(𝑖)

, 𝑎𝑇−1
(𝑖)

) (1) 

Here, the return-to-go (RTG) 𝑅𝑡
(𝑖)

 is defined as the sum of rewards from the current 

step to the end of the trajectory: 

𝑅𝑡
(𝑖)

= ∑ 𝑟
𝑡′
(𝑖)

𝑇

𝑡′=𝑡

(2) 

DT employs three linear projection layers to project the return-to-go, states, and ac-

tions to the embedding dimension, with an additional learned embedding for each 

timestep added to each token. A GPT model is adopted by DT to autoregressively pre-

dict the actions 𝑎𝑡
(𝑖)

 with input sequences of length 𝐾: 
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ℒ𝒟𝒯(𝜃) = 𝐸𝜏(𝑖)∼𝔻 [
1

𝐾
∑|𝜋𝜃(𝜏𝑡−𝐾+1:𝑡−1

(𝑖)
, 𝑅𝑡

(𝑖)
, 𝑠𝑡

(𝑖)
) − 𝑎𝑡

(𝑖)
|2

2

𝐾−1

𝑡=0

] (3) 

where τ𝑡−𝐾+1:𝑡−1
(𝑖)

 indicates the segment of τ(𝑖) from timestep 𝑡 − 𝐾 + 1 to 𝑡 − 1. 

By increasing the input dimensionality, we enhance the model's robustness. As a 

result, even if an attacker alters the agent's state at a specific time step, they cannot 

modify the transformer's output action. Compared to training a binary classification 

neural network to determine whether the agent is under attack, our method has the ad-

vantage of not requiring any negative samples during training, making it more aligned 

with practical scenarios. 

3.2 Do We Really Need RTG Token in Anomaly Detection? 

In the absence of interference or attacks, the initial RTG can be a constant value to 

assist in predicting actions. However, in the presence of adversarial attacks where the 

rewards along the agent's trajectory are altered, the predicted RTG will significantly 

differ from the actual rewards. In this case, the RTG no longer aids in action prediction 

but rather becomes a source of interference. In this paper, the 𝑖-th trajectory τ(𝑖) of 

length 𝑇 in dataset 𝒟′ is reorganized into a sequence of state 𝑠𝑡
(𝑖)

, action 𝑎𝑡
(𝑖)

: 

𝜏(𝑖) = (𝑠0
(𝑖)

, 𝑎0
(𝑖)

, … , 𝑠𝑇−1
(𝑖)

, 𝑎𝑇−1
(𝑖)

) (4) 

The sequences we consider in this paper are similar to those used in DT, but we do not 

include RTG as part of the sequence. T-BAD also adopts a GPT model to autoregres-

sively predict the actions 𝑎𝑡
(𝑖)

 with input sequences of length 𝐾: 

ℒ𝒯−ℬ𝒜𝒟(𝜃) = 𝐸𝜏(𝑖)∼𝔻′ [
1

𝐾
∑|𝜋𝜃(𝜏𝑡−𝐾+1:𝑡−1

(𝑖)
, 𝑠𝑡

(𝑖)
) − 𝑎𝑡

(𝑖)
|2

2

𝐾−1

𝑡=0

] (5) 

In environments with discrete action space, we calculate the cross-entropy loss between 

the agent's actions and those generated by T-BAD to train the transformer. In environ-

ments with continuous action space, the training phase involves calculating the mean 

squared error loss between the agent's actions and the actions generated by T-BAD. 

3.3 Framework 

As shown in Fig. 1, the agent interacts with the environment, producing a trajectory 

composed of historical states and actions. During this process, the current state 𝑠𝑡 may 

be attacked, leading to a modified state 𝑠𝑡̃. The input of the anomalous state 𝑠𝑡̃ causes 

the agent to output a potentially altered action 𝑎𝑡̃. Alternatively, the attacker might di-

rectly alter the agent's output. To illustrate the detection process employed by T-BAD, 

we focus on the common scenario of state-based adversarial example generation. 



As shown in Algorithm T-BAD (for discrete actions), the last 𝑘 timesteps of the tra-

jectory 𝜏 = (𝑠𝑡−𝑘+1, 𝑎𝑡−𝑘+1, … , 𝑎𝑡−1, 𝑠𝑡̃), consisting of 2𝑘 − 1 tokens, are provided as 

input to the transformer module. Actions 𝐴𝑡 = (𝑎𝑡−𝑘+1, … , 𝑎𝑡−1) as well as states 𝑆𝑡 =
(𝑠𝑡−𝑘+1, … , 𝑠𝑡̃)  are processed through linear encoders, and an embedding for each 

timestep is added to each token. Distinct from the conventional positional embedding 

employed by transformers, each timestep corresponds to two tokens. The tokens are 

then processed by the transformer model with casual making (GPT), which fits the ac-

tions of the agent and outputs the prediction of the agent's current action. The action 𝑎𝑡̂ 

output by T-BAD will be compared with the action 𝑎𝑡̃ actually executed by the agent.  

In a discrete action environment, a mismatch between these indicates the presence of 

an attack or interference. In a continuous action environment, we need to calculate the 

variance between the action output by T-BAD and the action executed by the agent. If 

this variance exceeds a predetermined threshold, the agent is considered to be under 

attack. The threshold is determined as the average loss during the last 𝐿 rounds of the 

transformer pre-training process. It is important to note that the agent within the frame-

work is well-trained, and its policies does not include the possibility of taking random 

actions. 

Algorithm T-BAD (for discrete actions) 

Require: 𝑆, 𝐴, 𝑇: states , actions , or timesteps; 𝑘: context length (length of each input to T-

BAD); 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟: transformer with causal masking (GPT); 𝐷𝑄𝑁: DRL algorithm for 

agent; 𝑎𝑡𝑡𝑎𝑐𝑘: attacks or interferes with a state at a certain frequency. 

1: 𝑆, 𝐴, 𝑇, 𝑑𝑜𝑛𝑒 = [𝑒𝑛𝑣. 𝑟𝑒𝑠𝑒𝑡()], [ ], [1], 𝐹𝑎𝑙𝑠𝑒  

2: while not done do: 

3:     𝑆[−1] = 𝑎𝑡𝑡𝑎𝑐𝑘(𝑆[−1]) 

4:     𝑎̃ = 𝐷𝑄𝑁(𝑆[−1]) 

5:     𝑎̂ = 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟(𝑆[−𝑘: ], 𝐴[−𝑘 + 1: ], 𝑇[−1]) 

6:     compare 𝑎̂ with 𝑎̃ 

7:     𝑠, _ , 𝑑𝑜𝑛𝑒 = 𝑒𝑛𝑣. 𝑠𝑡𝑒𝑝(𝑎̃) 

8:     𝑆, 𝐴, 𝑇 = 𝑆 + [𝑠], 𝐴 + [𝑎̃], 𝑇 + [𝑙𝑒𝑛(𝐴)] 

9: end while 

4 Experimental Setup 

4.1 Environments 

To evaluate the capability of our T-BAD framework to detect anomalous discrete ac-

tions or continuous actions, we conduct experiments on Atari and Mujoco, respectively. 

In Atari, we choose Pong, Freeway, and Road Runner as experimental environments 

for discrete actions. In Mujoco, we choose Hopper, Humanoid, and Walker2D as ex-

perimental environments for continuous actions. 



 

 

 

2025 International Conference on Intelligent Computing 

July 26-29, Ningbo, China 

https://www.ic-icc.cn/2025/index.php 

 

 

Fig. 2. Examples of Removing Features in Pong and Hopper. In Pong, the left half of the screen 

will be removed. In Hopper, the first five features will be set to zero. 

4.2 Algorithms and Compared Methods 

In the discrete environment, we employ the Deep Q-Network (DQN) algorithm [24] 

and in the continuous environment, the adopted DRL algorithm is Proximal Policy Op-

timization (PPO) [25]. The trajectories used to train the transformer are also generated 

by these respective algorithms. To demonstrate the superiority of our framework, we 

compare it against Decision Transformer (DT) [10] and Imitation Learning (IL) [26]. 

The context length used by DT is aligned with that of T-BAD. The Returns-To-Go is 

set to the maximum episode reward achievable by the agent within the training data. 

4.3 Anomalous Observations 

We test the ability of different methods to detect anomalous states in Atari, divided into 

four types: PGD (black-box), FGSM (black-box), Removing Features (RF), and Ran-

dom Noise (RN). The black-box attacks PGD and FGSM are generated by an additional 

DQN network, with a small perturbation ϵ =  0.004. Removing features means remov-

ing half of the state, where only the right half is displayed, and the remaining pixels are 

set to 0, as shown in Fig. 2 (a). The range of random noise is [-30, 31], and the noisy 

images are clipped to ensure pixel values are within [0, 255]. 

Similarly, we access the ability of different methods to detect anomalous states in 

Mujoco, also divided into four types: Critic, Maximal Action Difference (MAD), Re-

moving Features, and Random Noise. The Critic method uses the gradient of 𝑄(𝑠, 𝑎)  

to adversarially update states over 𝑁 steps. MAD identifies an adversarial state 𝑠̃ by 

maximizing 𝐷𝐾𝐿(π( ⋅∣ 𝑠 ) ∥ π( ⋅∣ 𝑠̃ )). In the Removing Features scenario, depicted in 

Fig. 2 (b), the first five features of the state are set to 0 for Walker2D and Hopper, and 

the first 20 features are set to 0 for Humanoid. The random noise is introduced within 

the range of [-1, 1]. 

5 Experiments 

We conducted four sets of experiments to evaluate the detection efficiency of T-BAD. 

The first set presents our main results, assessing T-BAD’s detection success rates in 

both discrete and continuous action environments under four different types of attacks 



or disturbances. The second set compares T-BAD with other baseline methods, includ-

ing Decision Transformer and Imitation Learning. The third set examines the ability of 

T-BAD and Decision Transformer to correct anomalous actions when agents are under 

attack. The fourth set evaluates whether T-BAD’s detection performance is influenced 

by varying levels of perturbation. 

Table 1. Testing the ability of T-BAD to detect anomalies in Atari. We report the average value 

over 10 random seeds, with the standard errors in the bracket. Mismatch refers to the number of 

times the action predicted by T-BAD does not match the action of the agent when it is not under 

attack. Attack Frequency refers to the number of times the attack changes the agent's action. 

Detection Failure is the number of times that the T-BAD's action is also attacked. 

Environ-

ment 

Mis-

match 
Attack 

Attack Fre-

quency 

Detection 

Failure 

Success 

Rate 

Pong 
0.2 

(0.6) 

PGD 298.5 (60.4) 0.1 (0.3) 99.93 (0.08) 

FGSM 330.4 (48.5) 0.0 (0.0) 100.00 (0.00) 

RF 1281.0 (140.4) 0.1 (0.3) 99.99 (0.02) 

RN 1209.8 (136.3) 0.1 (0.3) 99.99 (0.03) 

Freeway 
7.0 

(5.4) 

PGD 169.2 (13.7) 0.3 (0.6) 99.82 (0.20) 

FGSM 217.6 (18.7) 0.6 (0.7) 99.72 (0.31) 

RF 1082.1 (44.8) 1.4 (1.3) 99.87 (0.12) 

RN 649.6 (21.5) 1.3 (1.0) 99.80 (0.16) 

Road 

Runner 

1.4 

(1.1) 

PGD 290.2 (42.0) 1.6 (1.0) 99.45 (0.32) 

FGSM 307.2 (56.9) 1.6 (1.5) 99.48 (0.43) 

RF 1923.3 (226.5) 268.1 (34.2) 86.06 (4.16) 

RN 1015.6 (143.9) 56.2 (20.4) 94.47 (5.21) 

5.1 Main Results 

Regardless of the adversarial attack type, the primary objective is to alter the agent's 

actions, thereby impacting its performance. The agent's actions can be categorized into 

discrete and continuous types. During the experiments, adversarial algorithms are ap-

plied at each timestep, while in the detection for timestep 𝑡, previous timesteps are as-

sumed to be unaffected by attacks. For the timestep 𝑡, the inputs are updated to 𝐴𝑡 =
(𝑎𝑡−𝑘+1, … , 𝑎𝑡−1) and 𝑆𝑡 = (𝑠𝑡−𝑘+1, … , 𝑠𝑡−1, 𝑠𝑡̃), where 𝑠𝑡̃ is the state at timestep 𝑡 that 

may be affected and it causes the agent to output an anomalous action 𝑎𝑡̃. These exper-

iments are designed to test the success rate of detecting anomalous actions. In practical 

application, once our T-BAD has detected an anomaly, appropriate measures can be 

implemented within the agent system to mitigate potential risks. 

Discrete Action. As shown in Table 1, we select Pong, Freeway, and Road Runner as 

our experimental environments and each set of data is the mean and standard deviation 

of ten trials. First, we evaluate the match between the actions predicted by T-BAD and 

those taken by the agent, and it is evident that mismatches by T-BAD are rare. Further-

more, T-BAD demonstrates a consistently high detection success rate,  generally 
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reaching 99% across various scenarios. While the detection performance against the 

Removing Features attack in the Road Runner environment was comparatively lower 

at 86%, further analysis reveals that the rapid emergence of hazards on the desert high-

way necessitates swift decision-making by the agent. In such cases, historical trajectory 

data offers limited predictive value, and thus, the removal of half of the state signifi-

cantly impacts T-BAD’s detection capability. 

 

Fig. 3. Heatmap of attention layer in T-BAD. T-BAD has a total of 99 tokens, comprising 50 

states and 49 actions. The first token represents the current state. 

Fig. 3 (b) shows that attention weights are concentrated primarily in the top left cor-

ner and along the diagonal. This pattern suggests that in the Road Runner game, the 

attention mechanism focuses more on the recent states and actions (query and key po-

sitions that are close to each other). Similar to Road Runner, as shown in Fig. 3 (a), the 

attention weights in Pong are more concentrated along the diagonal. This indicates that 

in the Pong game, the attention mechanism also tends to focus on recent states and 

actions, but there might be slightly more dispersion in the attention weights compared 

to Road Runner. That’s why T-BAD performs poorly in detecting anomalous states in 

Road Runner. T-BAD cannot effectively utilize the context in Road Runner, as it fo-

cuses too much on the current state. Consequently, when the current state is attacked, 

T-BAD has a high probability of failing to detect the attack. 

Continuous Action. We choose Humanoid, Walker2D, and Hopper as experimental 

environments to evaluate continuous action spaces. Unlike discrete actions, where 

equivalence can be straightforwardly determined, continuous actions introduces addi-

tional complexity. To address this, we establish a threshold based on the loss during T-

BAD training to determine whether the agent's actions are altered by an attack. This 

threshold is defined as the average loss over the last 𝐿 training rounds. Although 𝐿 is a 

hyperparameter, its value does not significantly impact the experimental results. The 

agent is considered to be under attack if the variance between the actions output by T-

BAD and those executed by the agent exceeds this threshold. As shown in Table 2, T-



BAD consistently achieved a detection success rate of 90% or higher across all attack 

methods, with the exception of the Removing Features attack in the Walker2D envi-

ronment. 

Table 2. Testing the ability of T-BAD to detect anomalies in Mujoco. 

Environ-

ment 

Mis-

match 
Attack 

Attack Fre-

quency 

Detection 

Failure 
Success Rate 

Human-

oid 

22.6 

(7.5) 

Critic 834.5 (115.5) 14.9 (6.5) 98.21 (2.15) 

MAD 884.4 (106.5) 4.7 (1.2) 99.47 (0.42) 

RF 113.6 (14.9) 11.6 (4.6) 89.79 (6.59) 

RN 618.6 (54.2) 32.1 (8.7) 94.81 (5.43) 

Walker2

D 

2.5 

(1.0) 

Critic 957.2 (84.0) 28.6 (5.8) 97.01 (3.91) 

MAD 974.4 (121.6) 50.6 (6.2) 94.82 (4.30) 

RF 849.8 (67.3) 175.5 (13.8) 79.34 (7.27) 

RN 894.8 (51.6) 103.7 (11.7) 88.41 (10.06) 

Hopper 
0.5 

(0.6) 

Critic 825.0 (71.3) 28.4 (6.6) 96.56 (2.35) 

MAD 886.8 (90.2) 5.3 (3.0) 99.40 (0.61) 

RF 866.3 (100.1) 64.8 (8.1) 92.52 (4.29) 

RN 694.7 (58.3) 54.1 (7.2) 94.21 (2.48) 

5.2 Compared with DT and IL 

Table 3 provides a comparative analysis of the detection success rates of T-BAD, De-

cision Transformer (DT), and Imitation Learning (IL) methods under PGD, FGSM, 

Removing Features, and Random Noise attacks, as well as the number of mismatched 

actions compared to an unperturbed agent. T-BAD achieves the highest detection suc-

cess rate across all attack scenarios. Additionally, in all three environments, T-BAD 

demonstrates the fewest mismatched actions compared with DT and IL. Although DT 

can achieve a detection rate of over 90% in many cases, it exhibits a much higher num-

ber of mismatched actions. In practical applications of anomaly detection using DT, it 

is challenging to distinguish between “a mismatch between DT’s predicted action and 

the agent’s actual action” and “the agent being under attack”, since the agent’s intended 

action in the absence of an attack remains unknown. Therefore, T-BAD offers a more 

practical approach than DT for detecting anomalies, as further corroborated by subse-

quent experiments. 

5.3 Correct Anomalous Actions 

In this part of experiments, we assess the performance of the agent after using T-BAD 

and DT to correct anomalous actions they have detected, i.e. making the agent take the 

output actions of T-BAD and DT. The attack used is removing half of the state, with an 

attack frequency set at every five steps. As shown in Fig. 4, T-BAD effectively detects 

and corrects anomalous actions in both Pong and Freeway. In Road Runner, T-BAD 

demonstrated superior mitigation of the attack’s impact compared to DT. Interestingly,  
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Table 3. Comparing the success rates of anomaly detection in Atari using T-BAD, DT, and IL. 

Env Method PGD FGSM RF RN 

Pong 

T-BAD 99.93 (0.08) 100.00 (0.00) 99.99 (0.02) 99.99 (0.03) 

DT 99.73 (0.45) 99.88 (0.26) 99.84 (0.21) 99.86 (0.13) 

IL 99.87 (0.16) 99.94 (0.10) 80.26 (8.82) 82.47 (6.49) 

Free-

way 

T-BAD 99.82 (0.20) 99.72 (0.31) 99.87 (0.12) 99.80 (0.16) 

DT 90.58 (2.47) 91.89 (5.18) 95.19 (3.64) 96.46 (1.43) 

IL 88.26 (6.26) 88.73 (8.80) 84.66 (7.12) 77.62 (2.48) 

Road 

Runner 

T-BAD 99.45 (0.32) 99.48 (0.43) 86.06 (4.16) 94.47 (5.21) 

DT 98.94 (1.20) 95.50 (3.44) 80.71 (9.79) 83.28 (7.54) 

IL 88.30 (6.69) 85.79 (5.81) 73.00 (6.35) 69.46 (9.03) 

in Freeway and Pong, the performance with DT corrections is even worse than under 

attack. This is attributed that DT corrects the agent’s actions whenever a mismatch is 

detected, regardless of whether the agent’s actions are truly attacked. As a result, such 

“corrections" may inadvertently serve as an additional form of attack, degrading the 

agent’s performance. 

 

Fig. 4. Testing the ability of T-BAD to correct anomalous actions in Atari. The blue line repre-

sents the episode reward of the agent over steps without any interference. The orange one shows 

the performance of the agent under attack. The red and green lines depict the performance of the 

attacked agent after action correction by T-BAD and DT, respectively. 

5.4 PGD Attacks with Different Epsilon Values 

In this subsection, we evaluate the detection performance of our method under PGD 

attacks across different epsilon values. As shown in Table 4, the experiments were 

conducted in Pong, Freeway, and Road Runner. For each environment, we measure 

three metrics: Attack Frequency, Detection Failure, and Success Rate (detection suc-

cess rate) under varying levels of adversarial perturbation. The results indicate that our 

detection method is generally effective across a range of PGD attack strengths, main-

taining a high success rate and low detection failure rate in most scenarios. Notably, the 

Road Runner environment is more susceptible to higher epsilon values, with a slight 

drop in success rate. As discussed in Section 5.1, the RoadRunner environment has 

substantial frame-to-frame variations, causing the Transformer model to focus more on 



the current state and action. Consequently, when the current state is under attack, de-

tection is more likely to fail. 

Table 4. Detection performance of our method under PGD attacks with varying epsilon values 

in different environments. 

Env Index ε= 0.001 ε= 0.0025 ε= 0.004 ε=0.0055 ε= 0.007 

Pong 

Attack Fre-

quency 
81.0 200.6 298.5 383.3 476.7 

Detection 

Failure 
0.1 0.2 0.2 0.3 0.3 

Success 

Rate(%) 
99.87 99.90 99.93 99.92 99.93 

Free-

way 

Attack Fre-

quency 
50.0 114.4 169.2 214.8 251.9 

Detection 

Failure 
0.1 0.2 0.3 0.3 0.4 

Success 

Rate(%) 
99.80 99.83 99.82 99.86 99.84 

Road 

Run-

ner 

Attack Fre-

quency 
99.3 200.4 290.2 374.2 442.0 

Detection 

Failure 
0.4 0.8 1.6 2.5 6.1 

Success 

Rate(%) 
99.60 99.60 99.45 99.33 98.62 

 

6 Conclusion 

In this paper, we propose a Transformer-Based Anomaly Detection (T-BAD) frame-

work that leverages the robustness of transformer-based sequence inputs for real-time 

detection of anomalous states and actions. Our experiments conducted in both Atari and 

Mujoco environments demonstrate that T-BAD achieves a high success rate in anomaly 

detection even without prior knowledge of adversarial examples, making it a versatile 

tool in various settings. We compared T-BAD with decision transformer and imitation 

learning, and found that T-BAD consistently outperforms these baselines in detecting 

anomalies. Additionally, T-BAD shows potential in correcting detected anomalies, 

which is a promising direction for enhancing the reliability of reinforcement learning 

systems. Our future work will aim to further improve T-BAD’s capabilities and extend 

its application to multi-agent reinforcement learning scenarios, where the complexity 

of detection and correction can be more challenging. 
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