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Abstract. As a fundamental task of intelligent transportation systems, traffic pre-

diction aims to forecast traffic time series in road networks based on historical 

observation data to support upper-level applications. Although deep learning 

models have performed well in this field in recent years, their architectures have 

become increasingly complex and less efficient and lack sufficient modelling of 

the intrinsic features of traffic data over time. In this paper, we focus on the spe-

cial periodicity of traffic data and propose a novel model called DAE-FAN, 

which designs a dual adaptive embedding mechanism consisting of feature, peri-

odicity, and spatial embedding. Employing self-supervised learning, the combi-

nation of these embedding matrices can autonomously represent the periodic 

changes in traffic features and spatial patterns. In addition, we introduce the Fou-

rier principle to construct the Fourier neural network to enhance the capability of 

modelling periodicity. Extensive experiments on four large public traffic datasets 

demonstrate the superior performance and efficiency of DAE-FAN with its sim-

pler structure compared to current traffic prediction models, providing a promis-

ing direction for efficiently solving traffic prediction challenges. 

Keywords: Traffic Prediction, Adaptive Embedding, Fourier Principle. 

1 Introduction 

Traffic prediction aims to predict traffic time series in road networks based on historical 

observations. As a foundational task of intelligent transportation systems, traffic pre-

diction supports a large number of upper-layer applications in transportation scenarios, 

such as congestion warning, route planning, and location services. In recent years, deep 

learning models have become powerful tools for traffic prediction, among which spa-

tio-temporal graph neural networks (STGNNs) and Transformer-based models have 

dominated because of their outstanding performance. Researchers have invested signif-

icant effort in developing various features for these models, such as graph convolution 

operations, dynamic graph structure learning mechanisms, and attention modules. 

However, traffic model architectures are continuously becoming complex and ineffi-

cient, with diminishing performance gains. Moreover, most of these approaches focus 

on modelling the relationships between individual nodes in the STGNN [1], ignoring 

the significance of the intrinsic features in the traffic data that change over time. 



To illustrate our focus, Fig. 1(a) visualises the traffic flow of two sensors in a widely 

used traffic prediction benchmarking dataset (PEMS04) over one week. Clearly, the 

traffic data exhibit a unique daily periodic pattern. As shown in Fig. 1(b), sensors 7 and 

207 display distinct peaks and valleys during weekdays, while in Fig. 1(c), the traffic 

flow during the non-weekdays is relatively smooth. These unique daily periodic pat-

terns are arranged within a week, constituting the weekly periodic pattern. In addition, 

because of the spatial heterogeneity of the sensors, each sensor has unique feature pat-

terns within periods, and these periods overlap and interact. Yet, most existing models 

still lack sufficient modelling in this regard [2]. 

 

 
(a) Traffic flow of sensors 7 and 207 in PEMS04 over the week 

 
(b) Significant trend during the weekday 

 
(c) Smooth trend during the non-weekday 

Fig. 1. Examples of traffic data with special periodicity 

In light of this, we focus on the special periodic characteristics of traffic data. Rather 

than develop more complex model architectures, our research aims to explore more 

efficient data representation and introduce appropriate methods into simple network 

models to mitigate this problem. 

Specifically, we design a novel dual adaptive embedding (DAE) mechanism. Unlike 

conventional traffic prediction models relying on predefined graph structure data, our 

approach uses self-supervised learning to automatically extract discriminative embed-

dings from traffic feature sequences and additional temporal context. The resulting fea-

ture, spatial, and periodicity embeddings are integrated into a pair of embeddings that 

represent periodic changes in traffic features and spatial patterns, respectively. This 

integration allows the model’s encoder to utilise rich contextual information, eliminat-

ing the need for extra representation extraction steps during training. In addition, to 

improve the coding ability for modelling periodicity, we introduce the Fourier principle 

into the model network and form our Fourier analysis network (FAN). Experimental 
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results on four large publicly available traffic datasets show that our proposed DAE-

FAN achieves competitive prediction performance with previous state-of-the-art 

(SOTA) models in traffic prediction, with a simpler structure and higher computational 

efficiency. Moreover, the DAE-FAN model can support real-time traffic prediction 

even with limited computational resources. 

2 Preliminaries 

2.1 Problem Statement 

Traffic prediction aims to predict the traffic data 1:
outN D

t t TX 
+ +   for the next 'T  

time steps by training a model ( )F   with parameters  , based on the historical se-

quence 1:
inN D

t T tX 
− +   of the past T  time steps. This process can be expressed as 

follows: 

  ( )
1 1[ , , ] [ , , ]

F
t T t t t TX X X X




− + + + ⎯⎯⎯→  ,  (1) 

where t is the current time step, N  is the number of sensors in the traffic network, inD  

is the dimension of the input features, and outD  is the dimension of the output features. 

In this example, the dimension of the input features and that of the output features are 

1, representing traffic speed or traffic flow. 

2.2 Fourier Analysis 

At the core of the Fourier function is the decomposition of any function into linear 

combinations of sine and cosine functions of different frequencies, including non-peri-

odic functions via period expansions, revealing underlying periodic patterns within 

complex functions [3]. Mathematically, a function ( )f x  can be expressed through the 

Fourier series: 

 0

1

2 2
( ) cos sinn n

n

nx nx
f x a a b

T T

 

=

    
= + +    

    
 ,  (2) 

where T  is the period of the function; n  is the frequency component; and 0a , na , 
and nb  are determined by the integral of the function over one period: 

 0
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0

1 2
( )sin

T

n

nx
b f x dx

T T

 
=  

 
 .  (5) 

In this paper, we embed Fourier decomposition into the structure of the network 

because different combinations of frequencies can cover a variety of complex period 



patterns, allowing the network to learn complex interactions based on frequency fea-

tures [4]. Specifically, a function ( ) : dx dyf x R R→ is fitted to the network, where dx  

and dy  denote the dimensions of x  and y , respectively, and the Fourier series ex-

pansion of the function is as follows: 
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where in,y xd N dB W   , 2
out

yd NW   are all learnable parameters. [ || ]   and 

[ , ]  denote the concatenation along the first and second dimensions, respectively. In 

Equation (6), (I) follows the computation of na  and nb  in Equations (4) and (5), and 

(II) and (III) follow the equivalence of matrix operations. 

3 Methodology 

Fig. 2 illustrates the structure of the proposed DAE-FAN model. The following subsec-

tions describe each module in detail. 

 

Fig. 2. The overview of the proposed DAE-FAN. 
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3.1 Embedding Layer 

Periodicity embedding. To capture the information about the period of the traffic data, 

we apply additional time signals at time step t : time-in-day Tid
tX  and day-in-week 

Diw
tX , which are useful for the model to capture the temporal context information em-

bedded in the traffic data. 

Additionally, we apply two learnable embedding dictionaries: the time-in-day em-

bedding dictionary Tid dN DQ   and the day-in-week embedding dictionary 

Diw wN DQ  . These two embedding dictionaries use the inputs Tid
tX  and Diw

tX  as 

indices to retrieve the corresponding time-scale embeddings, i.e. the daily embedding 
Tid N D
tE   and the weekly embedding Diw N D

tE  . Through this approach, the 

two embedding dictionaries adaptively learn the internal representations of daily and 

weekly periodicities within the network, effectively differentiating the traffic pattern 

differences between weekends and weekdays. 

In our example, 288dN =  denotes the number of time slots in a day, 7wN =  de-

notes the number of days in a week, N  is the number of nodes, and D  is the hidden 

dimension. For the convenience of representation, we integrate the above two scales of 

embeddings ( Tid
tE  and Diw

tE ) through the concatenation operation Concat( )  and 

represent it as the periodic embedding P 2N D
tE  : 

 P Tid DiwConcat( , )t t tE E E= .  (7) 

Feature embedding. For the input feature sequence 1:
inN D

t T tX 
− +  , we apply a lin-

ear layer Linear( )  for encoding to retain the intrinsic information in the original data: 

 1:Linear( )F
t T ttE X − += .  (8) 

where F N D
tE   is the feature embedding. By combining the feature embedding 

with the periodicity embedding, we obtain the combined representation 3N D
tE   of 

traffic features over the period: 

 Concat( , )F P
t t tE E E= .  (9) 

Dual Embedding. Traffic flow data are characterised by the sequential flow of events 

and the cyclic nature of time, i.e., events at a node in a traffic road network usually 

affect its direct neighbouring nodes, resulting in the similarity of periods. Therefore, 

establishing the correlation between sequences is beneficial for the model to understand 

the internal relationships of the periodic changes in different traffic data. In this regard, 

instead of constructing a predefined or dynamic adjacency matrix as a graph for spatial 

relationship modelling, we create a shared adaptive spatial embedding S N DE  , 

which is initialised with the Xavier uniform initialisation and then treated as a model 

parameter. 



We concatenate the spatial embedding with the periodicity embedding to obtain the 

combined representation of space over the period, denoted as Dual 3N D
tE  , and we 

refer to it as the dual embedding: 

 Dual PConcat( , )S
t tE E E= .  (10) 

3.2 FAN Block and Regression layer 

The Fourier analysis layer is based on the Fourier series formula in Equation (2). To 

appropriately express it as part of a neural network, we need to ensure that the features 

of its intermediate layers can be used for subsequent modelling. Moreover, as the depth 

of the model network increases, the Fourier analysis layer should be able to handle or 

represent more complex Fourier coefficients [5], enhancing the ability to model perio-

dicity. Based on the above principles, we decouple Equation (6) as follows: 

 ( ) out inf x f f x= ,  (11) 

where 

 in in( ) [cos( ) sin( )]inf x W x W x= ,  (12) 

 out( )outf x B W x= + .  (13) 

In the neural network, inf  and outf  are not applied sequentially but simultane-

ously. Therefore, the FAN layer ( )   can be expressed as follows: 

 ( ) [cos( ) sin( ) ( )]p p p px W x W x B W x  + ,  (14) 

where x pd d
pW  , x pd d

pW  , and pd
pB   are learnable parameters; pd  and 

pd  are hyperparameters, representing the first dimensions of pW  and pW , respec-

tively; 2( ) p pd dx +  is the output; and   denotes the activation function, which is 

set as the ReLU activation function in this example. 

Based on the FAN layer, we construct FAN blocks with residual connections to en-

code information. For the feature embedding tE , the l th FAN block can be expressed 

as follows: 

 1( ) Linear (Dropout( ( ) )) ( )l l l l l
t t tE E E+ = + .  (15) 

We also use the FAN block to encode the dual embedding Dual
tE . In this way, we 

obtain the encoded hidden representations ( )L
tE  and Dual( )L

tE . Subsequently, we fuse 

the two embeddings into the layernorm layer: 

 DualLayerNorm(( ) ( ) )L L
t t tH E E= + .  (16) 

Similarly, it then goes through the M  layer FAN block again for global coding to 

obtain 3( )M N D
tH  , which is fed into the regression layer for prediction: 

 1: Linear(( ) )M
t t T tY H+ + = ,  (17) 

where 1:
outN D

t t TY 
+ +   is the prediction. 
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4 Experimental Study 

4.1 Experimental Setup 

Datasets. We evaluated the performance of the DAE-FAN model on four major traffic 

prediction benchmarking datasets – PEMS-BAY, PEMS04, PEMS07, and PEMS08 – 

widely used in the traffic prediction research community. PEMS-BAY provides traffic 

speed information, and PEMS04, PEMS07, and PEMS08 provide traffic flow infor-

mation on the road network. Table 1 shows the details of these datasets. 

Table 1. Summary of traffic datasets. 

Dataset 
No. of 

Sensors 
No. of 

Records 
Interval 
(min) 

Time Range Location 

PEMS-BAY 325 52,116 5 01/2017–05/2017 San Francisco Bay Area 

PEMS04 307 16,992 5 01/2018–02/2018 California District 4 

PEMS07 883 28,224 5 05/2017–08/2017 California District 7 

PEMS08 170 17,856 5 07/2016–08/2016 California District 8 

Metrics. Following previous work, we adopted three widely used metrics to evaluate 

the performance of traffic prediction methods: mean absolute error (MAE), mean ab-

solute percentage error (MAPE), and root mean square error (RMSE): 

 
1

1
ˆ| |

n

i i

i

MAE y y
n =

= − ,  (18) 

 
1

ˆ1
100%

n
i i

ii

y y
MAPE

n y=

−
=  ,  (19) 

 2

1

1
ˆ( )

n

i i

i

RMSE y y
n =

= − ,  (20) 

where ˆiy  and iy  represent the predicted value and ground truth of traffic information 

at node i , respectively, and n  denotes the total number of nodes. MAE calculates the 

average absolute error between predictions and ground truth. RMSE weights larger er-

rors by squaring them before averaging. MAPE normalises errors by ground truth val-

ues as percentages. All metrics follow the principle that lower values indicate better 

performance. 

Implementation. We referred to previous work to divide the dataset and used a ratio 

of 7:1:2 for training, validation, and test sets for the PEMS-BAY dataset and 6:2:2 for 

the other datasets. We set the input length and prediction length to 1 h, i.e., 12T T = = , 

the number of layers in the Fourier analysis block was 3, the number of epochs was 

100, and Adam was used as the optimiser with a learning rate of 0.001, which was 

gradually reduced. For the PEMS-BAY, PEMS04 and PEMS08 datasets, we set the 



embedding dimensions FE , TodE , DowE , and SE  in DAE-FAN to 36, and for the 

PEMS07 dataset, which has more nodes, we set these embedding dimensions to 72. The 

proposed model was implemented with Pytorch 2.1.1 on an NVIDIA RTX 4080Ti 

GPU. All experiments were conducted on the BasicTS platform for fair and consistent 

comparisons [6]. 

Baselines. In this study, we compare our proposed method with several widely used 

baselines in the field. We use HI [7] as a traditional benchmark, which reflects standard 

industry practices. We also consider STGNNs such as spatio-temporal graph convolu-

tional networks (STGCN, [8]), DCRNN [9], GWNet [10], DGCRN [11], MTGNN [12], 

and AGCRN [13], in which GWNet, DGCRN, MTGNN, and AGCRN construct spatial 

dependencies in transportation road networks through adaptive learning of adjacency 

matrix. In addition, we selected special methods, such as STNorm [14], which under-

stand the spatio-temporal relationship by decomposing the high- and low-frequency 

components of traffic data. In addition, STID [15] mitigates the indistinguishability of 

the samples in spatial and temporal dimensions by adding spatial and periodic embed-

dings to the inputs. We also selected some Transformer-based models focusing on traf-

fic prediction, such as GMAN [16], STAEformer [17], and D2STGNN [18]. In terms 

of data representation, GMAN incorporates spatial and temporal embeddings, STAE-

former modifies the spatial embedding to a spatio-temporal embedding, and D2STGNN 

decomposes the diffusion signal in the estimate gate using two temporal embeddings, 

a source node embedding, and a target node embedding. These embedding matrices are 

learnable parameters. 

4.2 Performance study 

In this section, we evaluate the performance of the proposed DAE-FAN. Table 2 shows 

the model performance on the PEMS-BAY, PEMS04, PEMS07, and PEMS08 datasets, 

where the best results are in bold, and the second-best results are underlined. Overall, 

models that adaptively learn spatial dependencies using spatial embedding techniques 

generally outperform models that construct spatial dependencies based on adjacency 

matrices. At the architectural level, Transformer-based models outperform STGNNs, 

and this advantage stems from the stronger ability to capture complex spatio-temporal 

relationships by the self-attention mechanism. 

Specifically, for the PEMS-BAY dataset, DAE-FAN outperforms other models in 

all metrics. Compared with the second-best model, it improves by 1.92%, 0.86%, and 

0.28% in terms of MAE, MAPE, and RMSE, respectively. For the PEMS04, PEMS07 

and PEMS08 datasets, DAE-FAN shows comparable performance to STAEformer in 

the MSE and MAPE and achieves an overall advantage in the metrics, with improve-

ments of 1.88%, 0.79%, and 0.26%, respectively, over the second-best model. This 

suggests that DAE-FAN performs well in terms of reduced extreme errors and better 

overall prediction stability. Overall, DAE-FAN achieves competitive results in terms 

of performance compared to other SOTA models; moreover, our proposed method is 

simpler and more efficient. 
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Table 2. Comparative performance analysis of models on PEMS datasets. 

Model 
PEMS-BAY PEMS04 PEMS07 PEMS08 

MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE 

HI 6.83 16.83 14.81 38.32 28.17 56.83 45.74 21.86 67.98 32.86 20.49 47.94 

STGCN 1.69 3.81 3.80 19.67 13.44 31.36 22.17 9.58 35.58 16.35 10.68 25.63 

DCRNN 1.59 3.59 3.68 19.55 13.31 31.10 21.16 9.07 34.11 15.24 9.76 24.25 

GWNet 1.58 3.50 3.65 19.01 13.40 30.43 20.29 8.67 33.21 14.64 9.28 23.60 

DGCRN 1.60 3.59 3.74 19.19 14.15 30.57 20.43 8.81 33.47 14.97 10.13 23.90 

MTGNN 1.58 3.54 3.67 19.31 13.46 31.12 20.54 9.30 34.07 15.45 10.02 24.43 

STNorm 1.60 3.57 3.71 19.09 13.25 31.75 20.43 8.73 33.93 15.46 10.39 25.23 

STAEformer 1.57 3.53 3.58 18.21 12.18 30.38 19.26 7.94 33.25 13.40 8.74 23.33 

D2STGNN 1.56 3.49 3.59 18.64 13.11 30.00 19.56 8.31 32.77 14.16 9.21 23.44 

AGCRN 1.61 3.66 3.70 19.29 13.16 31.00 20.65 8.76 34.35 15.95 10.35 25.50 

GMAN 1.61 3.62 3.57 19.34 13.71 30.98 20.35 8.65 33.39 14.32 9.50 23.89 

STID 1.58 3.54 3.60 18.42 12.85 29.90 19.65 8.28 32.78 14.17 9.26 23.31 

DAE-FAN 1.53 3.46 3.56 18.27 12.42 29.81 19.21 8.02 32.51 14.05 9.14 23.27 

4.3 Efficiency Study 

In this section, we compare the efficiency of DAE-FAN with other learning methods 

based on all datasets. For a more intuitive and effective comparison, we compare the 

average training time required for each epoch of these models. The results are shown 

in Table 3. Transformer-based models such as STAEformer, D2STGNN, and GMAN 

require more computation time compared to other models because of their computa-

tional complexity, which usually grows quadratically with the length of the input time 

series, highlighting the impact of the attention mechanism on the computational re-

quirements for training. Second, because of their combined sequence model (e.g., 

RNN) and graph convolutional architecture, STGNNs result in significant time con-

sumed to implement their iterative approach for prediction and graph-to-graph message 

passing. DAE-FAN, although second only to STID, which has a pure multilayer per-

ceptron architecture in terms of training speed, still achieves a significant reduction in 

training time compared to the other models, demonstrating an efficient computational 

performance. 

Table 3. Training time (s) for each epoch of the models on four datasets. 

Method PEMS-BAY PEMS04 PEMS07 PEMS08 

STGCN 24.58 6.73 30.02 4.50 

DCRNN 83.63 21.92 154.79 13.70 

GWNet 40.92 11.12 68.04 7.30 

DGCRN 112.95 24.93 263.19 70.41 

MTGNN 16.34 4.72 28.43 3.05 

STNorm 19.24 5.26 31.81 3.07 

STAEformer 152.90 40.50 288.65 30.03 

D2STGNN 169.02 44.74 369.58 43.62 

AGCRN 36.67 10.17 55.44 6.99 

GMAN 125.78 37.65 238.91 39.63 

STID 3.16 1.30 3.26 0.87 

DAE-FAN 8.48 1.92 12.38 2.07 



This analysis emphasises the advantages of DAE-FAN in terms of prediction accuracy 

and computational efficiency. DAE-FAN achieves comparable prediction accuracy to 

the traffic prediction SOTA model with a concise architecture and low computational 

resource consumption. It exhibits a balance between model complexity and prediction 

efficiency and provides a solution that takes into account both the technological fron-

tiers and engineering practicability in the field of traffic prediction and spatio-temporal 

data modelling. 

4.4 Ablation Study 

To validate the effectiveness of our proposed components, we set up three variants of 

DAE-FAN: w/o DualE  removes the dual embedding DualE ; w/o PE  removes the pe-

riodicity embedding PE ; w/o FAN replaces the FAN in the model with a fully con-

nected layer. We conducted experiments on the PEMS04 and PEMS07 datasets, and 

the results are shown in Fig. 3. The w/o DualE  performance degradation is significant, 

demonstrating that our proposed embedding effectively captures the spatio-temporal 

dependence of the traffic scene. The w/o PE  error rises, indicating the importance of 

capturing periodic patterns in traffic sequences for traffic prediction. In addition, re-

moving FAN from the model degrades the performance, especially in PEMS07 (which 

has more nodes), suggesting that FAN enhances the model for a more comprehensive 

understanding of the traffic data. 

Fig. 3. Model component analysis of DAE-FAN. 

4.5 Visualization 

To visualise and understand our proposed embedding representation, in this section, we 

use the t-SNE (t-distributed stochastic neighbour embedding) technique [19] to visual-

ise the model on the PEMS04 dataset and learn the adaptive embedding matrix
S N DE  , the embedding dictionary dTid N DQ  , and wDiw N DQ  . The results 

are shown in Fig. 4. 
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(a) Spatial embedding
SE  

 

(b) Embedding dictionary
TidQ  

 

(c) Embedding dictionary
DiwQ  

Fig. 4. Visualization of learned embedding. 

First, Fig. 4(a) indicates that different node embeddings learned by the model naturally 

form clusters, consistent with the knowledge that neighbouring node features tend to 

be similar in traffic road networks. Second, Fig. 4(b) visualises the embeddings of 288 

timestamps per day, and the adjacent timestamp features are highly correlated, con-

sistent with the continuity of temporal data. Finally, Fig. 4(c) indicates that significant 

separation occurs in the feature embeddings of weekdays and non-weekdays, which 

 alidates the effecti eness of the model’s abilit  to distinguish multi le  eriodic  at-

terns in traffic data. 

5 Conclusion 

In this study, we focus on the intrinsic periodicity of traffic data and propose the novel 

DAE-FAN. DAE-FAN can efficiently learn the feature patterns at each node within 

multiple periods using the Fourier principle to enhance periodic modelling. Extensive 

experiments were conducted on four open-source traffic datasets, demonstrating the 

dual advantages of DAE-FAN over other benchmark methods in performance and effi-

ciency. We believe DAE-FAN is promising for solving traffic prediction challenges 



rather than being constrained to designing complex models. In future work, we will 

extend the method to other scenarios with periodic characteristics, as well as evaluate 

the performance on non-periodic datasets. 
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