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Abstract. The detection of Working Memory Load (WML) plays a crucial role 

in neurofeedback processes and the treatment of disorders such as ADHD. How-

ever, the performance of existing detection methods remains unsatisfactory. Neu-

ropsychology research indicates that high-level cognitive processes are driven by 

both inter-regional collaborations across different brain functional areas and 

cross-frequency couplings. To comprehensively capture brain activities spanning 

both frequency domains and intra/inter-regional interactions, we propose a novel 

cognitively-inspired neural network – the Wavelet-based Cross-Frequency and 

Cross-Region Interaction Convolutional Neural Network (CFCRNet) – for WML 

decoding. Specifically, CFCRNet first employs predefined wavelet kernels to 

perform 1D convolution for time-frequency feature extraction, followed by 

multi-branch learning to model cross-frequency feature coupling with varying 

scales, and finally integrates intra- and inter-regional information interactions 

through spatial attention mechanisms. This architecture systematically fuses neu-

rophysiologically meaningful cross-frequency coupling mechanisms with func-

tional integration principles across brain regions, constructing a network model 

capable of simultaneously resolving dynamic characteristics of neural signals 

across different frequency bands and complex interactive relationships within/be-

tween functional areas. Experimental validation on our collected working 

memory dataset and public benchmarks demonstrates that incorporating neuro-

scientific priors into neural network design enhances classification performance. 

Collectively, our findings establish an advanced framework for accurate WML 

detection that can be extended to explore detection tasks associated with other 

cognitive behaviors and neurological disorders. 
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1 Introduction 

Cognitive working memory load (WML) refers to the physiological and psychological 

demands generated during the execution of single or multiple tasks, serving as a quan-

tifiable indicator of the proportion of the human brain's information processing capacity 

engaged in given cognitive activities [1],[2]. With the rapid advancement of contempo-

rary technologies and escalating complexity of occupational requirements, WML has 

inevitably intensified. However, given the finite nature of human cognitive resources, 

prolonged exposure to high-intensity WML may compromise both mental and physical 

health, subsequently diminishing task performance. Current research environments for 

cognitive workload recognition encompass diverse domains including but not limited 

to educational settings [3] (e.g., student online learning [4]), transportation systems 

(e.g., vehicle operation [5], aviation [6]), and more recently, computer-assisted diag-

nostics for medical conditions such as cancer [7], depression [8], schizophrenia [9], and 

autism spectrum disorders [10]. Consequently, precise detection of neural activity un-

der varying WML levels not only facilitates the development of adaptive strategies to 

enhance operational efficiency, but also provides an empirical foundation for parameter 

optimization in neuromodulation interventions and objective evaluation of therapeutic 

outcomes. 

To date, the measurement of cognitive WML can be classified into subjective and 

objective approaches [11]. Subjective measures rely on participants’ self-perception 

and self-evaluation through standardized questionnaires [12],[13]. While these ap-

proaches are easily implementable, their reliability predominantly hinges on partici-

pants’ honesty, thereby failing to provide real-time, objective, and accurate assess-

ments. In contrast, objective measures primarily utilize task performance metrics and 

physiological signal recordings, which minimize task interference and address the 

aforementioned limitations. Commonly employed physiological modalities include 

electroencephalography (EEG), functional magnetic resonance imaging (fMRI), and 

functional near-infrared spectroscopy (fNIRS) [14]. Notably, EEG has emerged as one 

of the most widely adopted physiological measurement techniques for estimating cog-

nitive WML due to its portability, cost-effectiveness, and capacity for real-time moni-

toring of cortical electrical activity [3]. Its applications extend to diverse cognitive do-

mains such as emotion recognition [15],[16], mental arithmetic tasks [17], and n-back 

paradigms [18]. Building on these methodological advantages, this study focuses on 

EEG-based assessment of cognitive WML. 

EEG signals pose significant challenges for robust feature extraction due to their 

weak amplitude, high noise susceptibility, and non-stationary nature. Traditional ana-

lytical approaches predominantly rely on statistical validation of feature differences, 

including spectral power variations in specific frequency bands [19] (e.g., theta-band 

power augmentation and alpha-band suppression under increased workload [20],[21], 

along with δ-, β-, and γ-band correlations [22],[23],[24]), time-domain event-related 

potential characteristics (e.g., P300 amplitude attenuation with load escalation 

[20],[25]), and complexity metrics (LZC, SEn, and their fusion variants [26]). These 

methods typically employ machine learning classifiers like SVM and LDA for pattern 

recognition, yet suffer from limited generalization due to EEG's temporal variability, 
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while manual feature engineering introduces computational complexity and scalability 

constraints in large-scale data processing. The advent of deep learning has enabled end-

to-end convolutional neural network (CNN) frameworks to autonomously extract 

multi-domain features [27],[28]. Specifically, convolutional filter banks synchronously 

capture spatio-temporal-spectral patterns (e.g., EEGNet's triple-convolution architec-

ture for efficient representation in P300/ERN paradigms [29]), pooling layers achieve 

feature dimensionality reduction and semantic aggregation, and fully-connected layers 

integrate high-order representations. Notable implementations include frequency-trans-

formed multiband 2D-CNN mappings [30], 3D convolutional attention-based decoders 

[31], and deep architectures for driving load classification [5]. Compared to conven-

tional two-stage paradigms (handcrafted features + classifiers), deep learning mitigates 

modeling difficulties arising from EEG's variability and dynamic fluctuations through 

hierarchical feature abstraction, demonstrating superior representational capacity and 

generalizability in cognitive workload recognition applications. 

 

Fig. 1.. Overview of the proposed CFCRNet architecture 

Current research on EEG-based feature learning for WML predominantly focuses 

on spatio-temporal information. In temporal dimension modeling, researchers have 

achieved effective extraction of temporal dynamics through one-dimensional convolu-

tional neural networks (1D-CNNs) [29],[32] and their multi-scale extended architec-

tures [33]. However, existing paradigms exhibit representational limitations in spatial 

dimension modeling: while 1D convolutional operations along electrode sequences 

capture global spatial correlations, they inadequately resolve local topological proper-

ties of brain regions. Conversely, image-like 2D mapping approaches [34] emphasize 

localized spatial patterns but potentially neglect cross-regional functional connectivity. 

The integration of neuropsychological mechanisms into deep learning architectures 

presents novel opportunities for enhancing EEG-based mental state decoding. Neuro-

physiological studies reveal that the human brain, as a prototypical multi-scale complex 

system, demonstrates hierarchical spatial organization spanning neuronal ensembles, 

local circuits, and functional zones, coupled with dynamic cross-frequency neural 



 

oscillatory coupling. Notably, during advanced cognitive task execution, information 

processing involves both region-specific activation of local functional areas and coor-

dinated interactions across distributed brain networks. Consequently, the design of neu-

rophysiologically plausible decoding networks that effectively simulate these mul-

tiscale brain activities becomes imperative for advancing WML assessment. 

To address these challenges, we propose a wavelet-based cross-frequency and cross-

region interaction convolutional neural network (CFCRNet) for WML decoding, as il-

lustrated in Fig.1. Specifically, based on the characteristics of EEG signals, we prede-

fined wavelet convolution kernels for 1D convolution to capture the temporal-fre-

quency characteristics of each electrode during the working memory task. Subse-

quently, multi-branch cross-scale convolution was employed to achieve dynamic cross-

frequency coupling. Drawing on neuroscientific prior knowledge, the brain was divided 

into distinct functional regions, where nodes within each region were fully connected 

to reflect intra-regional brain activity. A spatial attention module was then applied to 

aggregate all nodes within each functional region into a high-level representation, 

which subsequently interacts with the high-level representations of other brain regions 

to capture distinct WML patterns. Finally, the aggregated representations from all 

branches were fused and passed through a fully connected layer for WML detection. 

By integrating neuroscientific prior knowledge of cross-frequency coupling mecha-

nisms and functional network topology into the deep learning framework, the proposed 

model effectively enhances the ability to capture differences across various WML lev-

els. 

In summary, the main contributions of this study are as follows:   

1. We designed an end-to-end neural network model, CFCRNet, for WML detection 

based on prior knowledge. This model effectively integrates the concepts of cross-fre-

quency and cross-region interactions.  

2. We developed a multi-branch cross-scale module to capture cross-frequency in-

formation interactions. Additionally, leveraging predefined functional brain regions, 

we proposed a cross-region feature interaction module based on a spatial attention 

mechanism to learn high-level representations both within and between brain regions.   

3. We validated the proposed model on a laboratory-collected working memory da-

taset based on the delayed match-to-sample paradigm and a publicly available N-back 

working memory dataset. The results demonstrated the effectiveness of the proposed 

model. 

2 Datasets and preprocessing 

Working memory tasks involve the temporary storage and manipulation of information, 

with common experimental paradigms including the n-back task and the delayed 

match-to-sample task (DMT). In this study, we validated the effectiveness of the pro-

posed model using a publicly available dataset based on the n-back paradigm and a self-

collected dataset based on the DMT paradigm. 
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2.1 Delayed Match-to-Sample Task Dataset 

A total of 20 healthy participants were recruited for this study (mean age: 21 years; all 

males; right-handed). All participants had no history of cognitive impairment, psychi-

atric, or neurological disorders, and had normal or corrected-to-normal vision. This 

study was approved by the Ethics Committee of the authors' university, and all partici-

pants provided written informed consent prior to the experiment. Participants received 

monetary compensation for their time and effort upon completing the experiment. All 

experimental procedures were conducted in accordance with the ethical guidelines set 

forth by the National Ministry of Health, Labor and Welfare and the Declaration of 

Helsinki (BMJ 1991; 302:1194). 

 

Fig. 2. The working memory experimental paradigms used in this study: (a) Delayed matching 

to sample paradigm; (b) N-back paradigm. 

Throughout the experiment, EEG data were recorded using a 64-channel NeuroScan 

system (Quik-Cap, band-pass filter range: 0.05–100 Hz, sampling rate: 1000 Hz, im-

pedance < 5 kΩ). E-prime software was employed to present experimental stimuli and 

record participants' behavioral responses. The experimental task was a DMT consisting 

of three difficulty levels: low (2 memory items), middle (4 memory items), and high (8 

memory items), with a total of six sessions. Each session included 60 trials, with 

memory load items from the three difficulty levels presented with equal probability. 

During the experiment, participants were instructed to fixate on a central fixation cross, 

remain relaxed, minimize blinking, eye movements, and head motion, and respond to 

the stimuli via button presses. The experimental paradigm is illustrated in Fig. 2(a). 

At the beginning of each trial, a central fixation cross flashed for 50 ms, indicating 

the start of the trial. Subsequently, a memory sequence was presented for 200 ms, dur-

ing which participants were instructed to memorize the sequence as accurately as 



 

possible. The memory sequence consisted of randomly selected uppercase letters from 

A to Z and included three difficulty levels presented with equal probability. Following 

a 3000 ms interval (retention period), a test sequence (probe item) was displayed for 

100 ms (retrieval period). Participants were required to determine whether the probe 

item had appeared in the previously presented memory sequence. If the probe item was 

absent from the memory sequence, participants were instructed to press the "F" key; if 

the probe item was present, they were to press the "J" key. Each participant completed 

a total of 360 trials, with 120 trials assigned to each difficulty level. 

2.2 Public N-back Dataset 

This dataset includes EEG recordings from 26 participants (9 males; mean age: 26.1 ± 

3.5 years; all right-handed). EEG data were collected using 30 electrodes, including 

Fp1, Fp2, AFF5, AFF6, AFz, F1, F2, FC1, FC2, FC5, FC6, Cz, C3, C4, T7, T8, CP1, 

CP2, CP5, CP6, Pz, P3, P4, P7, P8, POz, O1, O2, TP9 (reference electrode), and TP10 

(ground electrode), with a sampling rate of 1000 Hz. The experimental paradigm is 

illustrated in Fig. 2(b), and additional experimental details can be found in [35]. All 

participants were informed about the experimental procedure and provided written in-

formed consent prior to the experiment. This study adhered to the ethical principles 

outlined in the Declaration of Helsinki and was approved by the Ethics Committee of 

the Institute of Psychology and Human Factors at Technische Universität Berlin 

(SH_01_20150330). 

2.3 Data Preprocessing 

The raw EEG signals from both datasets underwent the following preprocessing steps: 

1. Unrelated electrodes were removed (DMT dataset: "CB1," "CB2," "M1," and "M2"), 

and the data were downsampled to 256 Hz. 2. A band-pass filter of 0.5–45 Hz was 

applied, and a notch filter was used to eliminate power line noise. 3. Signal segments 

with noticeable artifacts, particularly those caused by large muscle activity, were visu-

ally inspected and discarded. Damaged electrode data were interpolated using spherical 

spline interpolation. 4. The data were re-referenced using the average reference method. 

Independent component analysis (ICA) was then employed to identify and remove ar-

tifacts such as electromyographic (EMG) and electrooculographic (EOG) noise. 5. Fol-

lowing data cleaning, the EEG signals were segmented to retain only the retention pe-

riod data (DMT dataset: 3 s; N-back dataset: 2 s), with each epoch including a 0.1 s 

baseline period preceding the stimulus. 6. Each epoch was baseline-corrected using the 

baseline period data to reduce baseline drift effects. 

3 Methodology 

This section first introduces the predefined 1D wavelet kernel function designed to 

transform the raw EEG signals into spatial-spectral-temporal (SST) representations. 

Subsequently, the modules for learning cross-frequency and cross-region interactions 
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are described. Finally, the extracted features are passed through a fully connected layer 

for load level detection. The overall framework of the proposed model is illustrated in 

Fig. 1. 

3.1 Spatial-Spectral-Temporal Representation of EEG Signals 

The CFCRNet network proposed in this study employs a wavelet-based time convolu-

tional neural network [36] to learn the SST representation for the EEG signals from C 

electrodes after preprocessing. Specifically, as shown in Fig. 1, the continuous wavelet 

convolution layer (CWConv) is responsible for extracting SST features from the EEG 

signals. This convolutional layer uses F wavelet time convolution kernels 𝜓𝑠(𝑡) to spe-

cifically analyze the corresponding frequency components 𝑓 in the signal. The mathe-

matical definition is as follows: 

 
1

( ) ( ), 0,
2

s

t u ωr
ψ t ψ s

s πfs

−
= =   (1) 

Here, the real-valued Morlet wavelet 𝜓(·) [37] is used as the basis function, where 

𝑢 represents the time-domain translation parameter, 𝑠 is the scale parameter (inversely 

related to the frequency component 𝑓), 𝜔 is the central frequency constant of the mother 

wavelet (used to adjust the balance between time resolution and frequency resolution), 

and 𝑟 is the sampling rate of the EEG signal. By convolving the EEG signal from the 

𝑖-th electrode 𝑋𝑖 ∈ 𝑅1×𝑇  with F convolution kernels of different scale parameters, it is 

transformed into a two-dimensional spectral-temporal representation, denoted as 𝐻𝑖 ∈
𝑅𝐹×𝑇. Specifically, the scale parameters regulate feature extraction through the follow-

ing mechanism: when s decreases, the wavelet function is compressed in the time do-

main, and its convolution with the signal effectively captures high-frequency compo-

nents; conversely, when s increases, the wavelet function is stretched, facilitating the 

extraction of low-frequency features. Finally, by performing CWConv on the signals 

from C electrodes, the network constructs an SST feature space 𝐻 ∈ 𝑅𝐶×𝐹×𝑇 with dis-

criminative power for classification. 

It is important to note that the inherent frequency smoothing properties of wavelet 

convolution may lead to autocorrelation effects in the time-frequency representation. 

To reduce the complexity of network training, this study uses predefined wavelet con-

volution kernels. By initializing the scale parameters of the CWConv layer, the fre-

quency range is set to cover the common cognitive frequency range (1-45 Hz), with an 

expansion interval of 2 Hz, covering a total of 23 frequencies. This design, by incorpo-

rating frequency domain prior knowledge, ensures the completeness of the convolution 

kernels in the cognitively relevant frequency bands while effectively guiding the net-

work to focus on physiologically meaningful frequency bands. 



 

 

Fig. 3. Predefined brain regions in this study. (a) DMT dataset, (b) Nback dataset. 

3.2 Cross-Frequency Feature Interaction Module 

Previous studies in cognitive neuroscience have shown that high-level cognitive tasks 

(such as working memory and emotion) involve cross-frequency coupling at different 

frequencies [38]. Based on this, the present study proposes a cross-frequency feature 

interaction module (CFFI), as shown in Fig. 1, specifically designed to extract cross-

scale frequency interaction information from the SST representation data extracted by 

CWConv. This module utilizes a multi-branch structure, with each branch having a 

unique frequency receptive field, allowing it to capture frequency interactions across 

different ranges and achieve cross-frequency information coupling. In this study, mul-

tiple branches with receptive fields ranging from narrow to wide frequencies are con-

structed to cover local frequency interactions and global frequency feature coupling in 

the SST data. To preserve the spatial structure, the cross-frequency feature interaction 

is implemented through separable convolutions in each branch, meaning that cross-fre-

quency interactions are independently performed at each electrode. 

 , , , 1
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where X and Y represent the input and output features, respectively, 𝑊𝑖,𝑗 is the 𝑗-th 

convolution kernel parameter of the 𝑖-th electrode, with a size of 𝑘, and 𝑓 is the fre-

quency step. In this study, four branches are used, with convolution kernel sizes set as 

(1,1), (5,1), (9,1), and (13,1), where the first dimension corresponds to the direction of 

the frequency convolution. 

3.3 Cross-Region Feature Interaction Module 

In the cross-frequency feature interaction module, each branch performs cross-region 

feature interaction (CRFI). In this study, based on the anatomical structure of the cere-

bral cortex, the brain is divided into six regions (frontal lobe, central region, occipital-

parietal region), as shown in Fig. 3. Each brain region is responsible for different cog-

nitive functions, yet they cooperate to accomplish cognitive tasks. Therefore, we hy-

pothesize that the features extracted from the electrodes in each brain region are similar 

and contain redundancy. To address this, we apply the proposed spatial attention mech-

anism to extract high-level representations of each brain region for dimensionality 
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reduction, effectively learning a virtual electrode to represent the information from all 

electrodes within a given brain region. We obtain six sets of high-level representations 

to describe the entire brain's information, and these sets are then cascaded to achieve 

information interaction and fusion. We assume that the input features for the CRFI 

module are denoted as 𝑋 ∈ 𝑅𝐶×𝐹×𝑇, and we first partition them into six brain regions, 

as shown in Fig. 3. 

 1 2 6, ( 1,2, 6; )sC F T

sX R s , C C C C
 

 =  + + + =  (3) 

Then, a spatial attention mechanism (SA) is applied to each brain region, and the 

specific process is as follows: First, global max pooling and global average pooling are 

performed on 𝑋𝑠  along the spatial dimension, yielding two feature maps of size 

𝑋𝑠,𝑚𝑒𝑎𝑛 , 𝑋𝑠,𝑚𝑎𝑥 ∈ 𝑅1×𝐹×𝑇. Next, the results of the global max pooling and global aver-

age pooling are concatenated along the channel dimension, resulting in a feature map 

of size 𝑋𝑠,1 ∈ 𝑅2×𝐹×𝑇. A 1×1 convolution operation is applied to the concatenated re-

sult to reduce the dimensionality, obtaining a feature map of size 𝑋𝑠,2 ∈ 𝑅1×𝐹×𝑇. Fi-

nally, the Sigmoid activation function is applied to generate the spatial attention weight 

matrix 𝑀(𝑋𝑠), with the following calculation formula: 
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where AvgPool and MaxPool represent the max and average pooling operations per-

formed along the spatial electrode dimension, 𝑓1×1(·)  is the convolution operation, 

and 𝜎(·) is the Sigmoid function. 

Finally, the spatial attention weight matrix 𝑀(𝑋𝑠) is applied to the input features 𝑋𝑠, 
and the entire region's information is represented by performing an averaging operation. 

 1( ( )), F T

s sY mean X M X Y R  =    (5) 

Similarly, the same cross-region feature interaction operation is performed in each 

branch. 

3.4 Classification block 

The features obtained from each branch are fused and passed to the classification block 

to determine the sample's category. Specifically, the features from each branch are first 

merged to form a combined feature map 𝑌𝑎𝑙𝑙 ∈ 𝑅4×𝐹×𝑇. Then, the proposed SA mech-

anism is applied to extract global information from each fused scale. After that, all 

feature maps are flattened into a one-dimensional vector and fed into a fully connected 

layer. The output of the fully connected layer is then passed through a softmax function 

to convert it into category probabilities. Finally, the category label with the highest 

probability is selected as the network's final classification result. 

3.5 Experimental Setup 

The model training in this study adopts the following optimization strategy: the Adam 

optimizer (with an initial learning rate of 1×10⁻³ is used to minimize the cross-entropy 

loss function. Additionally, ℓ₂ regularization is applied to constrain the model 



 

complexity, and a cosine annealing learning rate scheduler is integrated to implement 

dynamic learning rate decay. The batch size is set to 32. For the continuous wavelet 

convolution layer (CWConv), the core parameter configuration is as follows: the wave-

let kernel time domain length 𝑠 = 150 samples, the translation parameter 𝑢=0, and the 

central frequency constant 𝜔=5.15. 

In terms of the validation scheme, a within-subject ten-fold cross-validation strategy 

is used for the DMT dataset. Previous related studies [39] have suggested that EEG 

experimental decoding based on block design might be influenced by block effects. 

Therefore, in this study, a "leave-one-session-out" cross-validation is adopted for the 

open N-back dataset to demonstrate the effectiveness of our model. 

4 Results and Discussion 

This section primarily validates the effectiveness of the proposed model through com-

parisons with other models and ablation experiments. Standard evaluation metrics are 

used to assess the model's performance in detecting WML levels, including AUC, 

Macro_F1 (MF1), Macro_Precision (MP), Macro_Sensitivity (MS), and Accuracy 

(ACC, %). 

 

Table 1: Comparison of the proposed model with other models on the DMT dataset. 

Model ACC AUC MF1 MP MS 

ShallowNet 71.16±5.56 56.70±8.33 70.81±5.63 72.19±5.56 71.22±5.61 

DeepNet 71.55±5.77 57.26±8.61 71.26±5.77 72.55±5.85 71.54±5.75 

EEGNet 67.26±6.58 50.58±9.84 66.76±6.52 68.31±6.54 67.31±6.60 

LMDA-Net 69.51±6.39 54.23±9.54 69.21±6.56 70.56±6.46 69.56±6.41 

JMNet 70.84±6.44 56.19±9.64 70.33±6.65 72.07±6.46 70.85±6.48 

LGGNet 64.44±5.49 46.56±8.19 63.64±5.67 65.48±5.81 64.45±5.53 

EEGNex 73.15±5.10 59.68±7.62 72.76±5.20 74.25±5.10 73.18±5.13 

CFCRNet 78.08±5.54 66.99±8.31 77.77±5.65 78.94±5.44 78.05±5.56 

4.1 Comparison with Other Models 

In this study, the proposed algorithm is compared with several commonly used deep 

learning models for EEG data classification. The commonly used EEG data classifica-

tion models include ShallowNet and DeepNet [32], EEGNet [29], LMDA-Net [40], 

JMNet [41], LGGNet [42], and EEGNex [43]. These models have been applied to var-

ious brain-computer interface paradigms such as P300, movement-related cortical po-

tentials, sensorimotor rhythms, and other tasks. Below is a brief description of each 

model: 

ShallowNet and DeepNet (2017): These models consist of a series of convolutional 

and pooling layers designed to decode task-related information from EEG signals. Shal-

lowNet is a simpler model with fewer layers, while DeepNet employs deeper architec-

tures for more complex feature extraction. 
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EEGNet (2018): EEGNet is a compact CNN for EEG analysis. It utilizes deep con-

volutions and depthwise separable convolutions to construct an EEG feature extraction 

model. 

LMDA-Net (2023): LMDA-Net is a lightweight decoding network based on a multi-

dimensional attention mechanism. It includes a baseline network for EEG feature ex-

traction and classification, a channel attention module that expands the spatial infor-

mation of the input EEG across the depth dimension using tensor products, and a deep 

attention module to promote high-dimensional feature interaction. 

JMNet (2024): JMNet introduces a multi-branch attention CNN framework for de-

coding EEG signals. This model automatically generates task-specific EEG signal rep-

resentations within a particular subject’s sub-band and effectively extracts local and 

global time-frequency features through its multi-branch structure. 

LGGNet (2024): LGGNet is a new neural-inspired graph neural network (GNN). It 

consists of a series of multi-scale one-dimensional convolution kernels in the time con-

volution module and a kernel-level attention fusion mechanism. This network is de-

signed to capture the temporal dynamic features of EEG signals. These features are then 

input into the designed local and global graph filtering layers. The model uses a set of 

locally and globally meaningful graphs to model the complex interactions within the 

brain. 

EEGNex (2024): EEGNex uses EEGNet as the backbone network and introduces 

three modules to enhance the extraction of spatial representation information from EEG 

input signals. It also replaces depthwise separable convolutions with dilated convolu-

tions to increase the receptive field of the model. 

These models have been widely used in brain-computer interface applications and 

are selected as baseline models for comparison with the proposed CFCRNet. 

4.2 Results on the DMT dataset. 

The comparison results between the proposed model and other baseline algorithms are 

shown in Table 1 and Fig. 4. Specifically, from Table 1, it can be seen that the CFCRNet 

model outperforms all other models in all evaluation metrics. For example, CFCRNet 

achieves higher accuracy than the most advanced baseline model, EEGNex, by 4.93% 

(78.08% vs. 73.15%). This highlights the effectiveness of cross-frequency and cross-

region interactions in working memory tasks. This aligns with previous studies [38], 

which suggest that completing higher-order cognitive tasks (such as working memory) 

involves cross-frequency coupling and information interactions between different brain 

regions. The network model designed in this study is more consistent with such cogni-

tive processes. 

Furthermore, to better analyze the model's classification performance at different 

load levels, we compared the classification accuracy at various load levels using con-

fusion matrices, as shown in Fig. 4. The results indicate that most models show higher 

accuracy for classifying low-load levels, while significant confusion occurs between 

middle and high load levels, especially at the middle load level, where classification 

accuracy is the lowest. Often, models confuse middle and high load levels. However, 

our model alleviates this issue to some extent. Still, at the medium load level, there is a 



 

17.31% confusion with high load levels. This could be due to the fact that the cognitive 

resources required for medium and high load levels are very similar, making it chal-

lenging to distinguish them using EEG data. 

 

Fig. 4. Confusion matrix results of CFCRNet compared with other algorithms on the DMT da-

taset. 

4.3 Results on the N-back dataset 

To validate the generalization capability of the model, we conducted comparative ex-

periments on the public N-back dataset. Previous research has shown that EEG exper-

iment decoding based on block designs may be affected by block effects. Therefore, we 

adopted leave-one-block cross-validation to avoid this issue. The comparison results 

are shown in Table 2. Similar to the results on the DMT dataset, the proposed algorithm 

still achieves the best performance across all evaluation metrics. Specifically, in terms 

of accuracy, our model outperforms the best comparative algorithm by 2.88% (70.35% 

vs. 67.47%), and it achieves a 3.11% improvement on the MF1 metric. These results 

further suggest that the CFCRNet proposed in this study is more in line with the cogni-

tive processes involved in working memory. 

Table 2: Comparison of the proposed model with other models on the N-back dataset. 

Model ACC AUC MF1 MP MS 

ShallowNet 63.79±6.03 45.59±8.98 62.51±6.10 63.97±6.24 63.54±5.84 

DeepNet 60.65±5.59 40.85±8.25 58.85±5.66 61.50±5.33 60.40±5.30 

EEGNet 64.12±5.54 46.09±8.24 63.07±5.54 64.57±5.36 63.86±5.37 

LMDA-Net 64.58±5.86 46.73±8.70 63.33±5.85 65.21±5.56 64.25±5.58 

JMNet 63.06±5.22 44.38±7.83 61.18±5.47 64.52±4.59 62.67±5.10 

LGGNet 61.78±5.56 42.54±8.29 60.00±6.11 62.89±5.21 61.44±5.45 

EEGNex 67.47±4.84 51.08±7.23 66.18±4.95 68.08±4.77 67.13±4.72 

CFCRNet 70.35±4.81 55.44±7.19 69.29±5.00 71.36±4.64 70.11±4.65 
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As before, the comparison results of the confusion matrix are shown in Fig. 5. In 

almost all algorithms, the distinction between the middle-load and high-load levels 

(corresponding to 2-back and 3-back in the experiment) is difficult, while the low-load 

level is easily separable. This could be due to the fact that the cognitive resources re-

quired for the two load levels are very close. In our daily experience, it is also noticeable 

that there is no significant difference in terms of both accuracy and response time be-

tween 2-back and 3-back tasks, which is why they are difficult to distinguish. This 

might also explain why the performance difference between the proposed algorithm 

and other algorithms on the N-back dataset is smaller than that on the DMT dataset. 

 

Fig. 5. Confusion matrix results of CFCRNet compared with other algorithms on the N-back 

dataset. 

4.4 Ablation Study 

To verify the indispensability of the individual modules proposed in this study, an ab-

lation study was conducted on the DMT dataset. The ablation experimental design is as 

follows: 

Base: This is the baseline model of this study, where cross-frequency feature inter-

action is replaced by a 1×1 convolution layer, while maintaining the multi-branch struc-

ture. The entire brain region is treated as a single region, with the rest of the structure 

unchanged. 

Base+CFFI: This model adds the cross-frequency feature interaction module to the 

Base model. 

Base + CRFI: This model adds the cross-brain-region feature fusion module to the 

Base model. 

The experimental comparison results are shown in Fig. 6. We observed that both the 

CFFI and CRFI modules lead to significant improvements over the Base model, espe-

cially when both modules are integrated into the network. The performance of 

CRCFNet, with both modules, was enhanced by 5.49% (78.02% vs. 72.53%). This 



 

indicates that the network achieves optimal performance only when both cross-fre-

quency information interaction and cross-brain-region information interaction are sim-

ultaneously applied. This further supports previous research, which suggests that high-

level cognitive tasks (such as working memory) involve cross-frequency coupling and 

information interaction between different brain regions. 

 

Fig. 6. Ablation experiment results on the DMT dataset 

5 Conclusion 

This study designs a cross-frequency and cross-region interaction convolutional neural 

network for WML decoding, named CFCRNet, based on the cognitive process of work-

ing memory. Specifically, CFCRNet first extracts SST features using a custom wavelet 

kernel via 1D convolution. Then, it employs a multi-branch structure to learn cross-

frequency features coupling over different frequency ranges. Finally, the network uses 

a spatial attention mechanism to learn cross-brain region information interaction, 

achieving local and global feature fusion. CFCRNet integrates cross-frequency cou-

pling mechanisms with cross-brain region functional integration principles, construct-

ing a network model capable of analyzing dynamic characteristics of brain signals in 

different frequency bands and complex interactions both within and between functional 

regions. We validated the model through experiments on a working memory dataset 

collected in our lab, a public dataset, and ablation studies. The results demonstrate that 

incorporating neuroscientific prior knowledge into neural network design improves 

classification performance. In conclusion, our findings provide an advanced framework 

for accurately detecting working memory load, and the approach can be extended to 

exploring detection tasks related to other cognitive behaviors and diseases. 
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