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Abstract. Automatic classification of sleep stages is an important method for 

assessing sleep quality. This paper introduces a sleep staging network 

(MHASSNet) that combines multi-scale convolution, hybrid attention mecha-

nism, and state-space model, aiming to improve the accuracy of sleep stage clas-

sification for more effective evaluation of sleep quality. The model is character-

ized by its hybrid attention mechanism and multi-modal signal processing capa-

bilities. First, MHASSNet uses a multi-scale convolutional neural network 

(MSCNN) to extract low-frequency and high-frequency features. Next, it em-

ploys a hybrid attention module (MAM) that integrates spatial and channel atten-

tion mechanisms to capture the significant spatiotemporal dependencies between 

these features. Additionally, the state-space model (SSM) is used to enhance the 

understanding of temporal contextual information. Experimental results show 

that when tested on two public datasets, MHASSNet achieves significant results 

across various evaluation metrics, demonstrating its superior performance and 

application potential in automatic sleep stage classification. 
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1 Introduction 

Sleep accounts for about one-third of a person's life and plays a crucial role in main-

taining overall human health. With the acceleration of modern life rhythms and changes 

in lifestyle, various sleep disorders have become significant medical and public health 

issues, receiving increasing attention [1]. Sleep disorders can severely affect an indi-

vidual's cognitive abilities, attention span, and mental state. Chronic sleep disturbances 

can even lead to hypertension, coronary artery disease, and other cardiovascular and 

cerebrovascular diseases [2]. Therefore, identifying and addressing patients' sleep dis-

orders to improve sleep quality and ensure overall physical and mental health is critical. 



 

Currently, sleep monitoring, sleep structure analysis, and sleep quality assessment have 

become research hotspots, particularly sleep staging, which is essential for evaluating 

sleep structure and diagnosing sleep-related disorders.In the field of sleep medicine, 

polysomnography (PSG) monitors are the 'gold standard' for diagnosing sleep disorders 

[3]. Polysomnography (PSG) is an important tool used to record various physiological 

signals, including electroencephalogram (EEG), electrooculogram (EOG), electromy-

ogram (EMG), and electrocardiogram (ECG), playing a key role in sleep research [4-

5]. In traditional methods, sleep specialists or doctors first segment the PSG data col-

lected overnight into 30-second non-overlapping segments, and then manually analyze 

these segments according to authoritative standards (such as the Rechtschaffen and 

Kales standards (R&K) [6] or the American Academy of Sleep Medicine (AASM) 

standards [7]), categorizing them into different sleep stages. According to the AASM 

standards, sleep stages are typically divided into five categories: Wake (W), Non-Rapid 

Eye Movement 1 (N1), Non-Rapid Eye Movement 2 (N2), Non-Rapid Eye Movement 

3 (N3), and Rapid Eye Movement Sleep (REM). Sleep specialists typically use these 

standards to manually classify the sleep stages, which is not only a labor-intensive pro-

cess but also prone to subjective bias [8]. Therefore, automatic sleep staging is a more 

effective alternative to manual methods, with greater clinical value [9]. 

Simple deep learning networks cannot capture the time-varying features and time 

series information in sleep signals. To overcome these limitations, Supratak et al. [10] 

proposed a deep learning model, DeepSleepNet, which uses convolutional neural net-

works to extract time-invariant features and utilizes bidirectional long short-term 

memory to automatically learn the transition rules between sleep stages from EEG 

epochs. However, it primarily employs a one-to-one input-output model, aiming to la-

bel a single target sleep epoch at a time, but neglects the transition rules between dif-

ferent sleep stages. To address this issue, Phan et al. [11] proposed the SeqSleepNet 

hierarchical recurrent neural network, which treats the task as a sequence-to-sequence 

classification problem, receiving sequences of multiple epochs as input and classifying 

all labels at once. Due to the limited performance of single-channel EEG signal meth-

ods, in contrast, multi-channel sleep graphs significantly improve accuracy with their 

multi-channel structure and enhance the interpretability of the sleep stage classification 

model results. For example, Cheng et al. [12] proposed a new distributed multimodal 

and multi-label decision system (MML-DMS). It includes several interconnected clas-

sifier modules, including deep convolutional neural networks (CNN) and shallow per-

ceptron neural networks (NN). Chambon et al. [13] proposed a neural network model 

that uses multi-channel, multi-modal signals as input data. These methods mainly lev-

erage multi-channel features in PSG signals and combine the features of different chan-

nels in a cascading manner. Lin et al. [14] proposed a multi-scale local feature extractor 

(MSLFE), which has a multi-branch convolutional neural network (CNN) with differ-

ent convolution kernel sizes and a global relationship modeling (GRM) module, to ef-

fectively extract features in both the time and frequency domains. Duan et al. [15] pro-

posed MMS-SleepNet, which uses a deep learning multi-modal feature extraction mod-

ule (MMS-FE) to embed expert knowledge, effectively capturing the multi-modal fea-

tures of each stage and the fine-grained EEG features of different frequencies. How-

ever, these approaches fail to capture the cross-modal contextual relationships between 
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different modalities, overlooking the differences in how each modality contributes to 

sleep stages, which affects the overall performance of the sleep model.In summary, the 

existing research has the following shortcomings: (1) it is difficult to extract effective 

features from the raw EEG signals; (2) some studies focus on extracting channel fea-

tures from the signals while neglecting local features, which impacts the overall perfor-

mance and generalization ability of the model; (3) most models do not delve deeply 

enough into the complex relationships in cross-modal contexts. Although some studies 

have fused multimodal data through concatenation, addition, or dot multiplication [14-

16], these simple methods fail to fully integrate global contextual information and 

shared characteristics between different samples. To address these research deficien-

cies, this paper proposes an end-to-end multimodal automatic sleep staging network 

model based on EEG and EOG. First, a multi-scale 1D convolutional neural network 

(1D-CNN) is used to extract features corresponding to low and high frequencies from 

different signal bands. Furthermore, a hybrid attention mechanism (MAM) that com-

bines local spatial information and global channel information is then incorporated. Fi-

nally, a state-space sequence coupling module is introduced to learn the cross-modal 

contextual relationships between the signals. This paper also conducts extensive exper-

iments on the sleep-EDF dataset to comprehensively verify the effectiveness and feasi-

bility of the proposed method. Through in-depth testing on this dataset, its reliability 

and applicability are further confirmed. 

2 Methodology 

2.1 The Structure of MHASSNet  

 
Fig. 1. MHASSNet framework 



 

As shown in Figure 1, the MHASSNet architecture mainly includes a multi-branch 

feature extraction module, an attention-based feature fusion module, and a classifica-

tion module. The multi-branch feature extraction module extracts different frequency 

signal features from EEG and EOG using convolutional kernels of two different sizes. 

The attention-based feature fusion module is primarily composed of a Mixed Attention 

mechanism layer and a coupled SSM layer. The Mixed Attention mechanism layer 

combines local spatial information with global channel information, evaluating and 

learning the importance of each channel in the feature map. These weights are then 

applied to the original channel data, enhancing the expressiveness of key features. The 

coupled state-space model layer focuses on extracting temporal features from multi-

modal sleep signals, improving the model's understanding by deeply exploring cross-

modal temporal dynamic relationships. Finally, the classification module's fully con-

nected layer integrates these features and outputs the classification results. This model 

performs an end-to-end analysis of sleep signal features from both temporal and spatial 

perspectives, improving the accuracy of the prediction results. 

2.2 Multiscale Convolution 

For the refined extraction of the spatiotemporal features of EEG signals, numerous 

studies have confirmed [16-17] that the Multi-Scale Convolutional Neural Network 

(MSCNN) architecture demonstrates unique advantages in heterogeneous data pro-

cessing. MSCNN optimizes feature extraction by constructing a dual-branch pathway, 

which separately targets the low-frequency and high-frequency features in the signal 

for efficient capture. In terms of specific implementation, MSCNN adopts a parallel 

dual-scale convolution structure. For example, in the first layer, the large-scale convo-

lution kernel is (1, 50), with a stride of 20 and 64 kernels, achieving robust extraction 

of low-frequency features through a wide receptive field; while the small-scale CNN 

convolution kernel is (1, 20), with a stride of 5 and 64 kernels, focusing on the high-

frequency detailed features in the signal. Additionally, Maxpooling(4, 4) refers to a 

maximum pooling layer with a kernel size of (4, 4). After multiple layers of convolu-

tion, EEG and EOG are connected together via the Concatenation operation and then 

output to the next layer of the network. 

 
Fig. 2. MHASSNet framework 
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2.3 Mixed Attention Mechanism 

The attention mechanism is a data processing technique and one of the core capabilities 

of human perception and decision-making. In brainwave signal processing applications, 

commonly used attention mechanisms include Squeeze-and-Excitation Attention and 

Efficient Channel Attention, among other channel attention mechanisms. However, 

these only consider the overall relationship between channels, neglecting the spatial 

information of each channel. Therefore, for the multimodal signals discussed in this 

paper, as shown in Figure 3, this paper introduces a hybrid attention mechanism that 

combines local spatial information with global channel information, significantly en-

hancing the model's overall performance in feature extraction, expression capability, 

and computational efficiency. 

First, the local attention mechanism uses a one-dimensional convolution operation 

to effectively capture short-range dependencies on the time series, enhancing the mod-

el's sensitivity to local patterns. The one-dimensional convolution operation computes 

the local attention mechanism as shown in formula (1). Let the input tensor be 

x∈RB×C×T, where B is the batch size, C is the number of channels, and T is the time 

step. The local attention mechanism is then applied, and the output has C/r channels, a 

convolution kernel size of k, with padding set to k/2, where r represents the reduction 

ratio and k represents the convolution kernel size. The output is local_attention. 

_ Re ( 1 ( ))local attention LU Conv D X=                        (1) 

 

Meanwhile, as shown in equation (2-3), the channel attention mechanism is used. The 

channel attention first computes the time step average for each channel and generates 

the channel attention weights through a fully connected layer:FC is a linear transfor-

mation, with an input dimension of C and an output dimension of C/r. 

     

1

1
[:, , ], 1,2,...,

T

c

t

z x c t c C
T =

= =                                 (2) 

_ Re ( ( ))channel attention LU FC z=                        (3) 

Finally, as shown in formula (4), the local attention and channel attention are multi-

plied, where ⊙ denotes element-wise multiplication. 

combined _ local _ channel_attention attention attention= 
    

 (4) 

The combination of both not only captures features across multiple scales but also sig-

nificantly reduces computational complexity and parameter count through dimension-

ality reduction (reduction ratio), improving computational efficiency while maintaining 

performance. Additionally, this mechanism enhances the model's ability to adapt to 

complex input distributions through non-linear activation functions (such as ReLU) and 

element-wise multiplication, demonstrating stronger robustness. 



 

 
Fig. 3.  Mixed attention mechanism 

2.4 State Space Model Coupling Module 

Recently, the State Space Model (SSM) has gradually emerged as an efficient building 

unit or hierarchical structure in the process of constructing deep networks. However, 

SSM is unable to capture the interaction information between modalities. Therefore, 

this paper proposes a multi-modal SSM coupling module that combines SSM with the 

attention mechanism, aiming to enhance the interaction ability between modalities.The 

SSM coupling module is shown in Figure 4. The data processing flow of the SSM 

model can be described as follows: First, the modality input is defined as XnϵRB×T×D, 

where B represents the batch size, T is the time step, and D is the dimension of input 

features. Additionally, the model includes the following key matrices: state update ma-

trix AϵRH×H, input projection matrix BϵRH×D, modality correlation matrix SnϵRH×H, and 

output transformation matrix EϵRD×H. Here, H is the hidden state dimension, and we 

also introduce a weighted fusion parameter Wn to adaptively assess the importance of 

each modality. 

State update mechanism: First, according to equation (5), layer normalization is ap-

plied to the input of the nth modality at time step t to standardize the input features. 

Then, based on equation (6), a cross-modal interaction representation is constructed by 

aggregating the hidden states of all modalities.  

( ) ayer orm( ( ))n nx t L N x t=                                   (5) 

1

( ) ( 1)
N

sum n

n

H t h t
=

= −
                              

(6) 

Next, the hidden state for the next time step is generated by combining the input 

features at the current time step with the historical hidden states of each modality. Spe-

cifically, the hidden state update rule for the n-th modality is given by formula (7): 

1

( ) tanh( ( 1) ( ) )
M

T B H

n m n

m

h t h t S X t B R 

=

= −  +  
        

(7) 

Among them, M represents the number of modes, hm(t−1) is the hidden state of the 

m-th mode at time step t−1, Sn is the correlation matrix of mode n, and BT is the trans-

pose of the input projection matrix. 
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Cross-modal interaction and attention mechanism: In order to further enhance the 

interaction effects between modalities, by combining the historical states of all modal-

ities with the current input, according to formula (8), the similarity score score(hn(t), 

hm(t)) between modality n and modality m at time step t is calculated to achieve adap-

tive weighting between modalities. This score reflects the degree of correlation between 

the two modalities at the current time step. Finally, as shown in formula (9), the hidden 

state of modality n at time step t will interact with the states of other modalities through 

attention weighting: 

 

1

exp( ( ( ), ( )))
( )

exp( ( ( ), ( )))

n m
nm M

n mm

score h t h t
t

score h t h t


=

=

                

(8) 

1

( ) tanh( ( ) ( 1) ( ) )
M

T

n nm n n

m

h t t h t S X t B
=

=  −  +             
(9) 

Output: According to formula (10), the output Yn of each modality is obtained by 

projecting the corresponding hidden state hn(t) into the output space through a linear 

transformation matrix ET. Then, according to formula (11), the model performs a 

weighted integration of the outputs from all modalities to generate the final multimodal 

output Y. Here, Wn is the weighted parameter for each modality. 

 
T

n nY h E= 

 
                                      

(10) 

1

1 M

n n

n

Y W Y
M =

=                                    
(11) 

3 Materials and experimental setup 

3.1 Dataset  

In this paper, two public datasets, Sleep-EDF-20 and Sleep-EDF-78, were used from 

Physiobank [19]. Table 1 provides detailed information, including the number of sam-

ples and the sample proportions in the datasets. Sleep-EDF-20 contains sleep PSG data 

files from 20 subjects, while Sleep-EDF-78 contains data from 78 subjects. The data 

collected from the subjects includes EEG signals from two channels (from the Fpz-Cz 

and Pz-Oz electrode positions), an EOG signal (horizontal), an EMG signal (chin), and 

event markers. Additionally, both the EOG and EEG signals were sampled at 100 Hz. 

The entire night of data is recorded in two files: SC*PSG. The hypnogram was manu-

ally scored according to the Rechtschaffen and Kales protocol and then labeled as N1, 

N2, N3, N4, Wake, REM, and UNKNOWN classes. 

 

 

 



 

Table 1. Sample Count and Sample Proportion in the Sleep-EDF Dataset. 

Dataset W N1 N2 N3 REM total 

Sleep-EDF-20 
8285 

19.6% 

2804 

6.6% 

17799 

42.1% 

5703 

13.5% 

7717 

18.2% 
42308 

Sleep-EDF-78 
65951 

14.3% 

21522 

3.2% 

69132 

43.7% 

13039 

18.5% 

25835 

20.3% 
195479 

3.2 Contrast model 

The proposed model is compared with the following baseline methods:U-time [20] is a 

time-based fully convolutional network based on the U-Net architecture. It maps input 

sequences of arbitrary length to class label sequences on a freely chosen time scale. 

ResnetLSTM [21] utilizes residual modules to increase the network depth for extracting 

multi-level features of sleep staging, while using Long Short-Term Memory (LSTM) 

networks to learn the sleep transition mechanisms during the sleep process. The Cross-

Modal Transformer [22] proposes an architecture consisting of a cross-modal Trans-

former encoder and a multi-scale 1D convolutional neural network for automatic rep-

resentation learning. AttnSleep [23] is based on a multi-resolution convolutional neural 

network (MRCNN), an adaptive feature recalibration (AFR) module, and a temporal 

context encoder (TCE). MMASleepNet[24] is a model that extracts multimodal fea-

tures. It has a multi-branch feature extraction (MBFE) module, followed by an atten-

tion-based feature fusion (AFF) module. 

3.3 Model parameter setting 

In this experiment, to evaluate the model's performance, we applied a five-fold cross-

subject method to two datasets. Specifically, participants in each dataset were randomly 

but evenly divided into five groups to ensure that each fold reflects the overall sample's 

characteristic distribution. During the model training phase, we used the Adam opti-

mizer with a learning rate of 0.001, and to address the class imbalance issue in the 

dataset, we adopted a weighted cross-entropy loss function to adjust the importance 

weights of different class samples, ensuring the model could learn information from 

each class in a balanced manner. Furthermore, the batch size was set to 128 during 

training, and the entire training process was executed over 100 epochs, aiming to en-

hance the model's expressiveness and generalization ability through sufficient iteration 

and optimization. 

3.4 Evaluation indexes 

To evaluate the model's performance, we used a set of commonly used evaluation met-

rics. The formulas for the evaluation metrics such as accuracy, Macro-F1 score, Cohen's 

Kappa, sensitivity, specificity, and precision are shown in (12)-(17).  
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4 Experimental Results and Analysis 

4.1 Comparison with the State-of-the-art Baselines 

Tables 2 and 3 show a comparison of six models: U-time, ResnetLSTM, Cross-Modal 

Transformer, AttnSleep, MMASleepNet, and MHASSNet. Among them, MMASleep-

Net has the worst performance.MMASleepNe on the Sleep-EDF-20 Dataset achieved 

an Accuracy of 79.04%, Macro-F1 score of 71.87%, Cohen's Kappa of 70.02%, sensi-

tivity of 78.33%, specificity of 94.81%, and Precision of 70.55%. On the Sleep-EDF-

78 Dataset, the Accuracy was 76.62%, Macro-F1 score 69.53%, Cohen's Kappa 

67.92%, sensitivity 78.05%, specificity 94.26%, and Precision 67.39%. The 

MHASSNet proposed in this paper achieved the following results on the Sleep-EDF-

20 Dataset: Accuracy 84.29%, Macro-F1 score 73.44%, Cohen's Kappa 75.96%, sen-

sitivity 71.94%, specificity 95.31%, and Precision 76.29%. On the Sleep-EDF-78 Da-

taset, the results were: Accuracy 82.13%, Macro-F1 score 70.52%, Cohen's Kappa 

73.78%, sensitivity 69.14%, specificity 94.90%, and Precision 74.37%. Furthermore, 

as can be seen from the table, the classification accuracy of N2, N3, and Wake is rela-

tively high for both the Sleep-EDF-20 and Sleep-EDF-78 datasets. The MHASSNet 

proposed in this paper outperforms the baseline methods, indicating that MHASSNet 

has an advantage in automatic sleep staging during feature extraction and fusion oper-

ations of multimodal electrophysiological signals. 

 

 



 

Table 2. Performance of six models on the Sleep-EDF-20 dataset. 

model 

Per-Class Precisions(%) Per-Class Precisions(%) 

ACC MF1 Kappa Sen Spec Pre Pre(N1) Pre(N2) Pre(N3) Pre(REW) Pre(Wake) 

U-time 80.52 72.07 71.87 77.86 95.03 70.56 37.66 92.99 57.24 75.89 89.02 

ResnetLSTM 81.96 73.60 73.50 75.51 95.15 72.73 37.92 90.77 68.87 76.12 89.97 

Cross-Modal 

Transformer 
81.29 72.49 72.73 76.12 95.13 70.60 36.76 92.72 61.76 73.82 87.94 

AttnSleep 81.33 72.44 72.66 75.59 95.09 70.51 36.02 92.81 64.42 73.53 85.70 

MMASleepNet 79.04 71.87 70.02 78.33 94.81 70.55 33.36 94.24 57.16 77.13 90.83 

MHASSNet 84.29 73.44 75.96 71.94 95.31 76.29 46.54 88.63 79.91 75.93 90.47 

 

Table 3. Performance of six models on the Sleep-EDF-78 dataset. 

model 

Per-Class Precisions(%) Per-Class Precisions(%) 

ACC MF1 Kappa Sen Spec Pre Pre(N1) Pre(N2) Pre(N3) Pre(REW) Pre(Wake) 

U-time 79.74 71.84 70.97 73.50 94.79 69.78 38.97 84.42 60.04 72.94 92.53 

ResnetLSTM 79.18 71.50 70.87 76.57 94.75 69.12 40.15 88.86 52.08 70.48 941.8 

Cross-Modal 

Transformer 
79.16 71.84 70.97 77.82 94.79 69.50 39.26 89.52 50.15 74.63 93.92 

AttnSleep 80.06 73.62 72.27 79.49 95.01 70.72 42.00 89.16 53.91 73.25 95.29 

MMASleepNet 76.62 69.53 67.92 78.05 94.26 67.39 38.57 88.37 41.09 73.90 95.04 

MHASSNet 82.13 70.52 73.78 69.14 94.90 74.37 46.41 83.82 75.14 77.67 88.79 

4.2 Ablation Study 

MMASleepNet consists of MSCNN module, MAM module, and SSM module. To an-

alyze the impact of each module and validate the effectiveness of the modes in 

MHASSNet, ablation experiments were designed on the Sleep-EDF-20 and Sleep-

EDF-78 datasets as follows. Since the MSCNN and MAM modules are spatial feature 

extraction modules, while SSM is a temporal feature extraction module, this paper 

mainly compares the impact of these two types of modules on the overall performance 

of the model. From Table 4 and Table 5, it can be seen that the performance of the 

MSCNN-MAM combined model is slightly lower than the overall performance of the 

MHASSNet model. This indicates that the MSCNN-MAM module plays a major role 

in the overall model. Additionally, by adding the SSM module, which is capable of 

extracting temporal features, the classification performance can be further improved, 

proving the necessity of modeling the interdependencies between features. 
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Table 4. Results of MHASSNe's ablation experiment on the Sleep-EDF-20 dataset. 

model 

Per-Class Precisions(%) Per-Class Precisions(%) 

ACC MF1 Kappa Sen Spec Pre Pre(N1) Pre(N2) Pre(N3) Pre(REW) Pre(Wake) 

MSCNN-MAM 82.29 69.55 72.80 68.64 94.67 73.85 39.25 87.47 78.91 76.19 87.41 

SSM 51.60 22.24 11.39 24.76 82.18 29.31 0 55.08 23.64 33.79 34.02 

MHASSNet 84.29 73.44 75.96 71.94 95.31 76.29 46.54 88.63 79.91 75.93 90.47 

Table 5. Results of MHASSNe's ablation experiment on the Sleep-EDF-78 dataset. 

model 

Per-Class Precisions(%) Per-Class Precisions(%) 

ACC MF1 Kappa Sen Spec Pre Pre(N1) Pre(N2) Pre(N3) Pre(REW) Pre(Wake) 

MSCNN-MAM 82.29 69.55 72.80 68.64 94.67 73.85 39.25 87.47 78.91 76.19 87.41 

SSM 51.60 22.24 11.39 24.76 82.18 29.31 0 55.08 23.64 33.79 34.02 

MHASSNet 84.29 73.44 75.96 71.94 95.31 76.29 46.54 88.63 79.91 75.93 90.47 

5 Conclusion 

This paper introduces a multi-channel automatic sleep signal classification method, 

namely the MHASSNet model. The model uses multi-scale CNNs to extract features 

from different frequency bands of EEG signals, and then employs a Mixed Attention 

Mechanism module to extract the feature weights of channels and spatial aspects. It 

also incorporates the SSM module to capture global context features for each sample, 

and finally outputs sleep stage results. The proposed MHASSNet model is an end-to-

end spatiotemporal feature fusion network, achieving accuracy rates of 84.29% and 

82.13% in five-fold cross-subject classification tasks on the Sleep-EDF-20 and Sleep-

EDF-78 datasets, demonstrating the outstanding capability of the proposed deep learn-

ing model. Furthermore, the paper also analyzes the effectiveness of each module's fu-

sion in the MHASSNet model through ablation experiments. This model holds promise 

for designing efficient and accurate real-time brain-machine interface frameworks. 
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