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Abstract. With the ongoing advancement of 3D sonar detection technology, re-

search on underwater 3D target detection has gained increasing significance. Cur-

rently, there is substantial research on optical point clouds, while research on 3D 

sonar point clouds remains limited. Underwater 3D sonar recognition differs 

from optical recognition, facing challenges such as high sparsity, strong noise 

intensity, and inter-object coupling.  However, traditional optical-based methods 

struggle with recognizing coupled targets like frogmen and bubbles. This paper 

proposed a detection method based on a dynamic complex encoding transformer. 

By combining the principles of sparse array 3D sonar imaging and complex de-

coupling based on prior knowledge, noise and sidelobe interference are effec-

tively reduced. Addressing the challenges of detecting concealed targets, this pa-

per proposed a novel 3D backbone based on complex-encoding, which effec-

tively enhances additional information around targets, achieving efficient recog-

nition of 3D sonar targets. Finally, our model achieved satisfactory performance 

through both qualitative and quantitative experiments. 

Keywords: Underwater detection, 3D sonar, acoustic pointcloud, transformer, 

complex encoding. 

1 Introduction 

Intelligent underwater detection has gained increasing significance due to the escalating 

demand for ocean exploration resources. Among various techniques, underwater detec-

tion based on 3D sonar[1] has emerged as one of the most compelling technologies, 

exhibiting remarkable potential in environmental research [2], underwater robot vision 

systems, and marine engineering [3]–[5]. Underwater target detection based on 3D so-

nar point clouds [6] presents a critical challenge that has garnered growing attention. 

However, research on 3D sonar point clouds is relatively scarce, especially in the area 

of 3D sonar detection. Compared to optical point clouds, 3D sonar point clouds pose 

challenges such as high noise levels[7], coupling of foreground and background points, 
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and severe loss of target information, as shown in Fig. 1 To address these challenges, 

we propose a dynamic complex encoding-based 3D sonar target detection network that 

can effectively detect high-noise, heavily occluded, and arbitrarily shaped 3D sonar 

point cloud detection tasks. 

 

Fig. 1. Imaging of Baiting spot  based on 3D sonar, where fish is attracted after the bait disperses. 

(a) shows a amount of noise in the scene.(b) shows fishes with variable bubbles and bait.  (c) 

displays fish hidden among bubbles and bait. (d) highlights the issue of target incompleteness in 

the imaging. 

In recent years, with the advent of PointNet [8] and the decreasing difficulty of ac-

quiring 3D data, 3D object detection[9] research has emerged rapidly. For objects on 

the ground, 3D imaging is commonly performed using LiDAR, while underwater [1], 

[10], [11] objects are usually scanned and imaged using 3D sonar. There are three fun-

damental differences between underwater and road targets: the first is their location, 

with road targets typically appearing close to the ground (in a nearly 2.5D scene), while 

underwater targets can appear at any location. The second difference lies in the propa-

gation medium. Due to factors such as different equipment, refractive index, reflectiv-

ity, wavelength, and attenuation, there are significant differences in the point cloud 

properties of underwater and road targets. The third difference is image quality, with 

3D sonar images [12] having higher noise levels and lower resolution than 3D optical 

images, making 3D sonar image target detection more challenging. 

Specifically, sonar targets are often surrounded by various interferences, such as 

side-lobe interference near the main lobe, noise, and other background objects, which 

causes deterioration of image quality. This paper is inspired by human observers who 

typically use factors[13] such as bubbles, wake flows, and side-lobe interference around 

three-dimensional sonar objects to assist in target identification. For example, frogmen 

exhale upward bubbles, while AUVs generate wake flows. Despite the high sparsity of 

3D sonar data, it is also necessary to utilize surrounding information to assist in recog-

nition. Traditional methods, such as [14][15], directly encode point clouds, making it 

difficult to separate target information and leading to model overfitting. Other methods, 

such as [16][17], that simply separate foreground and background points struggle with 

the challenge of insufficient information after separation. Therefore, this paper pro-

poses a complex mixed encoding method for point cloud encoding. The real and imag-

inary parts of each point are defined to decouple the target from its surroundings, and 

features are encoded in parallel, effectively extracting information from both the target 

and surrounding interferences without altering the original point cloud properties. 
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3D sonar images often require surrounding information for additional assistance in 

judgement. For example, human observers usually judge frogmen[18] by the bubbles 

around them and distinguish them from fish through the wake of underwater subma-

rines. Due to the effective application of the swin-transformer[19] in computer vision 

and the introduction of a 3D backbone[20] based on the transformer, global 3D infor-

mation can be effectively extracted. However, it cannot effectively balance the target 

and its surrounding information, resulting in a high error rate in high noise conditions. 

To further process the target and surrounding information after complex decoupling, 

this paper proposes a parallel 3D backbone based on the parallel transformer. A pillar-

based sliding window design is used to effectively extract global information, which 

can better connect the features between different targets and enhance the high correla-

tion of features at different levels and locations. The main contributions of this research 

are summarized as follows:  

(1) Inspired by human observation of 3D sonar images, this work proposes an under-

water target detection method based on 3D sonar pointcloud, effectively address-

ing the challenges of high noise and hidden targets in 3D sonar images. 

(2) We propose a complex mixed encoding method, achieving local information en-

hancement and effectively resolving the issue of traditional algorithms being un-

able to disentangle target coupling in small areas. 

(3) We propose a group mapping 3D backbone based on transformer, utilizing com-

plex sparse window attention to effectively leverage global information, reduce 

information loss during the transformation to BEV(bird's-eye view), and enhance 

the recognition of incomplete targets. 

2 Relate Work 

With the groundbreaking work of PointNet[8] on addressing the issues of point cloud 

disorder and permutation invariance, the task of 3D object detection has seen a surge 

in development. One of the first methods was VoxelNet[21], which used 3D convolu-

tions to extract features, but its performance was limited. Subsequently, Yan et al.[22] 

proposed SECOND, pioneering the use of sparse convolutions to reduce complexity. 

Lang et al. introduced PointPillar[23], which further reduced complexity and improved 

performance based on the pillar method, but these methods faced challenges when deal-

ing with objects of varying sizes. Yin et al.[24] proposed CenterPoint, utilizing Gauss-

ian heat maps to eliminate the dependence on anchor sizes, while Wang et al.[20] in-

troduced DSVT, using a dynamic sparse transformer to enhance the performance of the 

3D backbone. However, the aforementioned methods still face challenges when dealing 

with high-noise and target coupling situations. Currently, there is no public 3d sonar 

dataset available, and 3D sonar faces challenges such as high noise, low resolution, and 

hidden targets, which have led to few existing target detection methods based on 3D 

point clouds. He et al. [25] proposed a two-branch point cloud detection network that 

utilizes graph attention and 3D sparse convolutions to extract detailed features. How-

ever, it faces challenges in extracting information from side lobes and noise in sonar 

images. Lee et al.[26] proposed a multi-view 3D detection method based on AlexNet, 



but since it does not directly use point clouds for processing, it can cause significant 

information loss. Kim et al. [27] proposed a PointNet-based method for sonar point 

cloud classification, but it is not applicable to 3D sonar target detection tasks. Hoang et 

al.[28] proposed a network inspired by resonant scattering that effectively classifies 3D 

sonar images, but it is mainly a classification task rather than a detection task. Henley 

et al.[29] proposed a method for 3D voxel recognition using 3D-Unet and 3D-Vet for 

3D forward-looking sonar, but using direct 3D convolution results in weak perfor-

mance.  

3 The Proposed Method 

Our network structure is shown in Fig.2. Considering the significant noise often present 

in 3D sonar point clouds, we utilize a simple preliminary network to decompose the 

original point cloud into real and imaginary parts. To ensure consistency, we assume 

that the square root of the intensities of the real and imaginary part point clouds equals 

the intensity of the original point cloud. Although DSVT[20] has effectively validated 

the usefulness of a transformer-based[19] 3D backbone for point cloud tasks, it faces 

the challenge of targets in 3D sonar being often coupled with noise. To better adapt to 

the characteristics of 3D sonar point clouds, we designed a dual-branch decoupled 

model. Finally, the final proposals are obtained through an anchor-free detection head. 

 

Fig.2. Overview of proposed framework. Here, R is the grouping radius. If the effective distance 

from the center point C is less than R, the points are grouped together. If the number of groups 

exceeds the maximum allowed, a new set is created directly. Tokens of different colors represent 

the pillars at corresponding positions, while the same color indicates the same set. The groups 

shown in the figure only illustrate the grouping situation within a single window. 

3.1 Complex mix encoding 

Due to the imaging principles of the sparse array, the sidelobes away from the main 

lobe are elevated across all sections. These sidelobes often contain rich target features, 

rather than being simply regarded as noise to be removed. The far-field BP of the index 

(m,n) can be represented as: 
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where ω(m,n) indicate the weight coefficients of indices(m,n); c is the acoustical wave 

speed in water; u is the unit vector. The expression within the exponential function can 

be represented as: 
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and φx(α,m) and φy(β,n) indicate the phase shift parameters in the horizontal (x-axis) 

and vertical (y-axis) directions, which can be represented as follows: 
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Considering the specificity of 3D sonar point clouds, a simple network Γ is used to 

perform complex decomposition on the original point cloud P based on prior 

knowledge. To ensure consistency, let 2 2( ) ( )R IP P P= + . The stacked voxel feature en-

coding (VFE)[21] is used, where feature encoding is performed separately on the im-

aginary and real point clouds.
 3.2 Group Mapping 3D transformer 

Due to the sparsity of the sonar point cloud, most pillars are empty, which can lead to 

significant overhead when directly performing feature extraction. Additionally, the 

number of non-empty pillars within each sliding window of the same size varies, mak-

ing it challenging to use traditional transformer architectures directly. Unlike traditional 

methods, when considering the sidelobes and noise in the 3D sonar point cloud, tradi-

tional methods cannot effectively extract sidelobe features. This paper proposes a cen-

ter-based expansion token division method that efficiently processes the features after 

complex decoupling in the previous stage, achieving dynamic parallel 3D sparse back-

bones. 

Specifically, after converting the original point cloud into pillars, we further divide 

it into multiple non-overlapping sliding windows of length W and width L, and there 

are K non-empty pillars: 
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where (x,y) are the coordinates of the sparse pillars, and R and I are the real and imag-

inary features of the complex encoding in the sparse pillars, both of dimension s. Then, 



to ensure that the non-overlapping subsets are of the same size, the number of sets in 

the window is: 
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where ⌈·⌉ is ceiling function and δ is a hyper-parameter that allocates the maximum 

number of non-empty pillars. Due to the sparsity of sonar point clouds, we adopt a 

sparse partitioning approach. For a given set of non-empty pillars PLi={p1,p2,...,pn} in 

the sliding window Wi, the non-empty centroid C0 is taken as the first center of set: 

 
( ){ }, ( , )j i jset i p ds c p R

 (7) 

where ds(c,k) is the connected distance from the centroid c to p, meaning that empty 

pillars cannot be traversed when calculating the distance. R is the expansion radius, 

those below δ are completed using mask token. For the grouped real and imaginary 

parts of the set, they are composed of RT block and IT block through multi-head atten-

tion layers, including Position-wise Feed-Forward Networks(FFN)[20] and Layer Nor-

malization. 

After the 3D backbone, we concatenate the features of the real and imaginary parts, 

map them to the BEV, and perform detection using anchor-free[24] 2D backbone to 

obtain the final results. 

 

Fig. 3. Different methods for displaying 3D sonar point cloud images. Each row represents the 

comparison of different methods on the same point cloud, while each column shows the compar-

ison of the same method on different point clouds. The boxes in different colors indicate different 

prediction results: white represents person, green represents bubble, blue represents chain, yellow 

represents ladder, and red represents bicycle. 
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4 Experiments 

In this section, we provide quantitative and qualitative experimental results and analy-

sis. Due to the current lack of publicly available 3D sonar point cloud datasets, we used 

our self-collected dataset as the training set and compared it with mainstream methods. 

To enhance the model's generalization ability, our model was pre-trained using the 

KITTI dataset. We divided the 7481 training samples into a training set, with 3712 

samples in the train set and 3769 samples in the validation set. The test set contains 

7518 samples. The point cloud is clipped within the range of (-8,8)m along the X-axis, 

(-8,8)m along the Y-axis, and (0,15)m along the Z-axis. For our model, the pillar size 

is (0.16,0.16,15)m.  

In the process of group mapping within the model, we optimized the parameter de-

tails. By dividing the point cloud into imaginary and real parts, we observed that noise 

in the imaginary part is more dispersed, while targets in the real part are more concen-

trated. Therefore, we set the group radius for the imaginary part slightly smaller than 

that for the real part, with Ri=2, Rr=3. 

Table 1 Performance comparison on 3D sonar dataset test-set with mean average precision(mAP) 

Method Person Bubble Chain Ladder Bicycle mAP↑ 

VoxelRCNN[30] 18.6 60.8 80.4 50.4 88.9 59.8 

SECOND[22] 5.6 1.8 63.7 36.6 57.6 33.0 

PointRCNN[16] 26.3 47.3 69.0 5.5 26.0 34.8 

PartA2[17] 46.0 59.3 48.2 48.8 87.5 58.0 

DSVT[20] 57.7 73.2 90.6 90.6 90.8 80.6 

Proposed 62.5 76.7 87.6 88.6 94.8 82.3 

Table 1. shows the comparison of different mainstream methods. The current meth-

ods are primarily optimized for autonomous driving datasets, where the sizes of vehi-

cles and pedestrians are relatively stable. However, in 3D sonar dataset, issues such as 

occlusion make it necessary to preset the sizes of anchors, which results in less effective 

outcomes. Consequently, the recognition rates for targets like persons and bubbles are 

relatively low. 

Table 3 shows the 3d backbone with other methods and Table 4 shows the 2d back-

bone with other methods. Fig. 3 displays the visualization results of different methods. 

Fig. 4 shows the detection performance vs speed of different methods, the size of the 

sphere is parameters of each methods. 

Fig. 5 illustrates the different shapes of various targets in the 3D sonar dataset col-

lected from Qiandao Lake. It is evident that bubbles and chains are quite similar in 

appearance, with chains exhibiting different forms in the water. Objects like bicycles, 

ladders, and squares maintain relatively stable shapes underwater, whereas divers are 

more challenging to identify due to various interferences and their smaller size. 

 



 

Fig. 4. Detection performance(mAP) vs speed(Hz) of different methods on 3d sonar datasets, the 

size of the sphere represents parameters of each models. All speeds are evaluated on an NVIDIA 

2080ti GPU. 

Table 2. Ablation Studies on Test-set 

 

Fig. 5. Different categories and different shapes of targets within the annotation box 

after manual annotation, (a)Bubble, (b)Frogman, (c)Chain, (d)U-chain, (e)Cube, (f)Bi-

cycle, (g)Ladder. 

Method 
Complex 

Decoupling 

3D parallel 

Transformer 

Result 

Easy Hard mAP 

(a) ✘ ✘ 77.7 54.6 68.5 

(b) ✔ ✘ 84.2 64.8 74.5 

(c) ✘ ✔ 86.3 65.2 75.8 

(d) ✔ ✔ 90.3 69.6 82.3 
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Table 3 Comparison with other methods. Only switch the 3D backbone while other components 

remain unchanged. 

Table 4 Comparison with other methods. Only switch the 2D backbone while other components 

remain unchanged. 

5 Conclusion 

In this paper, we very first propose a 3D sonar object detection method based on dy-

namic complex encoding. Our design mainly includes complex decoupling encoding 

and a group mapping 3D transformer backbone. Through qualitative and quantitative 

experiments, the effectiveness of the method is demonstrated. To enhance the general-

ization ability, pre-training was conducted based on datasets such as KITTI. This work 

effectively solve challenge such as object occlusion and inter-object coupling in 3D 

sonar detection. In our practical experience, we have observed significant differences 

in results based on different objectives. Detection rates are higher for rigid objects such 

as wooden frames and bicycles, while the performance is poorer for objects that easily 

change shape, such as divers and fish. In future work, we will focus on enhancing gen-

eralization capability. 
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