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Abstract. Surface electromyography (SEMG) signals hold considerable promise
for predicting human motion prior to its actual execution. However, a major chal-
lenge in SEMG-based intention recognition lies in the severe noise interference
and high inter-subject variability inherent in traditional myoelectric time-series
signals. These issues hinder accurate alignment with corresponding actions and
constrain model learning capacity. To address these challenges, this study pro-
poses a dual-modal contrastive learning framework based on Contrastive Lan-
guage-Audio Pretraining (CLAP). By introducing textual prompts as auxiliary
guidance for interpreting SEMG signals, the proposed method enhances recogni-
tion accuracy while reducing redundant training. In addition, a k-layer hierar-
chical processing algorithm is developed to expand the training dataset to a quad-
ratic scale of its original size, thereby mitigating the problem of limited data
availability and facilitating integrated prediction. The proposed approach is eval-
uated on public benchmark datasets, including Ninapro DB1, DB2, DB5, and
CapgMyo. Experimental results show that the model outperforms state-of-the-art
(SOTA) methods by 2-3%.

Keywords: Surface Electromyograph, Gesture Recognition, Segmentation Pa-
rameters, Multimodal learning, Contrastive Learning.

1 Introduction

Surface electromyography (SEMG) signals are collected using electrodes attached
to the skin’s Surface [1]. Due to their advantages of motion anticipation and non-inva-
siveness, SEMG-based intent recognition typically involves three key steps: data pre-
processing, feature extraction, and model training [2]. This technique has been widely
applied in medical diagnostics, exoskeleton control, and human-computer interaction.
SEMG signals are highly susceptible to noise interference, such as power line inter-
ference, motion artifacts, and baseline drift. Preprocessing aims to enhance signal qual-
ity and standardize data. This includes filtering and denoising, where band-pass filter-
ing is used to remove high-frequency noise and low-frequency baseline drift, while
notch filters eliminate 50/60 Hz power line interference [3]. Signal segmentation is
performed using a sliding window to divide continuous signals into short segments,
balancing real-time processing and information integrity [4]. Standardization methods,



such as Z-score normalization, eliminate individual differences in muscle strength and
the influence of equipment gain [5].

Feature extraction involves identifying key characteristics from the preprocessed
signal that represent muscle activity patterns while balancing computational efficiency
and classification performance. These features can be categorized as follows: time-do-
main features, such as Mean Absolute Value, Root Mean Square, and Zero Crossing
Rate, which reflect signal amplitude and complexity [5,6] , frequency-domain features,
where Fourier transform extracts parameters like Median Frequency and Mean Power
Frequency to indicate muscle fatigue states; time-frequency features, such as Wavelet
Transform or Short-time Fourier Transform, which capture the dynamic changes in the
signal [7], and higher-order features, such as entropy measures (e.g., sample entropy,
approximate entropy), which further enhance the representation of muscle activity pat-
terns [8,9] .

Based on the extracted features, intent recognition models are constructed. Tradi-
tional machine learning methods, such as support vector machines, random forests, and
linear discriminant analysis, rely on handcrafted feature engineering and are well-suited
for small-sample scenarios [10,11] . Deep learning approaches, such as convolutional
neural networks (CNNs), automatically learn spatial and temporal features, making
them effective for multi-channel SEMG signals. Recurrent neural networks (RNN) and
long short-term memory networks (LSTM) capture the temporal dependencies in sig-
nals, improving dynamic motion recognition accuracy [12]. Hybrid models, such as
CNN-LSTM architectures, combine spatial and temporal features, while graph neural
networks model muscle coordination relationships [13,14] .

Despite significant advancements, challenges remain in SEMG-based gesture recog-
nition, including individual signal variability, dynamic environmental interference, lim-
ited labeled data, and insufficient model generalization [15]. Research efforts have ex-
plored solutions such as transfer learning, data augmentation using generative adver-
sarial networks to synthesize realistic data, and multimodal fusion [16,17] . The ulti-
mate goal is to transition from controlled laboratory environments to practical applica-
tions with high robustness and low latency, providing critical technological support for
intelligent rehabilitation and human-computer interaction.

Our starting point is that the existence of domain differences leads to individual
model variations [18]. However, the basic movements of each subject can serve as a
text prompt to enhance gesture prediction accuracy. With the development of large
time-series models, which demonstrate strong feature extraction capabilities [19-21].
One of the key research directions in SEMG-based gesture recognition is how to achieve
high accuracy based on individual subject data. The contributions of this paper are as
follows:

1. To address individual difference in SEMG signals, We introduce a multimodal ap-
proach based on CLAP, and design a novel learning framework for gesture recogni-
tion. This framework combines the feature extraction capabilities of large time-se-
ries models and text encoders, which serve as a text prompt-based guidance.
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2. To address data deficiencies in the SEMG signals, we design a new processing algo-
rithm called k-layer window-based algorithm. This algorithm can enhance data di-
versity during pre-processing through data augmentation, and also improve predic-
tion accuracy during post-processing via ensemble learning.

3. We conduct experimental validation on multiple datasets, demonstrating the effec-
tiveness of our model and algorithm. Our model achieves 1-2% higher accuracy than
previous approaches, while our algorithm, as a plug-and-play module, significantly
enhances classifier performance.

2 Related Work

2.1  sEMG-based Gesture Recognition

The key to SEMG gesture recognition lies in extracting effective features from raw
EMG signals. Existing research primarily focuses on time-domain, frequency-domain,
and time-frequency domain feature extraction [5-9]. Time-domain features offer high
computational efficiency, making them suitable for real-time applications. Frequency-
domain features reflect the frequency characteristics of muscle contractions. Regarding
classification algorithms, traditional machine learning methods such as support vector
machines, random forests, and k-nearest neighbors have been widely used [10,11] .
However, these methods rely on manually designed features and have limitations when
dealing with noisy SEMG signals.

In recent years, deep learning approaches, including CNNs, LSTM networks, and
transformers, have gradually become mainstream. Hu et al. propose an attention-based
hybrid CNN-RNN architecture with a new SEMG image representation method[22].
Ma et al. proposed a short connected autoencoder long short-term memory based sim-
ultaneous and proportional scheme [14]. Zhu et al. proposes an improved PCA-based
CNN-LSTM model for accurate lower limb activity prediction from SEMG signals, en-
abling real-time myoelectric control of exoskeletons [13]. In conclusion, CNNs effec-
tively extract spatial features, while LSTMs are well-suited for handling sequential in-
formation, enhancing dynamic gesture recognition performance. Moreover, hybrid
models such as CNN-LSTM combine spatial and temporal information, achieving high
recognition accuracy across multiple datasets[10-12].

2.2 Times Series Model and Prompt Finetuning

As a type of time-series signal, SEMG differs from other time signals in its strong non-
linearity, non-stationarity, low signal-to-noise ratio, and significant susceptibility to
factors such as muscle fatigue and electrode displacement. However, the recent devel-
opment of advanced time-series models has demonstrated strong feature extraction ca-
pabilities and generalization performance, offering new perspectives for addressing the
challenges in SEMG signal processing [21,23,24]. Thus, how to effectively adapt large
pre-trained models for downstream tasks has become a key research focus.

Recent studies explore prompt-based fine-tuning approaches without full retraining.



2.3 Motivation

Due to the individual variability of SEMG signals and the inevitability of concept drift,
contrastive learning can adapt to various changes while optimizing data and knowledge
accumulation. However, the inherent complexity of contrastive learning algorithms, the
influence of data noise, and the limited volume of SEMG data pose major challenges to
their application in SEMG-based gesture recognition.

This paper proposes a constractiv learning-based SEMG gesture recognition frame-
work inspired by the CLAP architecture. The framework adopts a multimodal contras-
tive learning structure that integrates a temporal large model with a text encoder,
thereby reducing the burden of purely contrastive learning while enhancing its applica-
bility to SEMG scenarios. Additionally, a K-layer window-based internal algorithm is
designed to increase data diversity and volume. Our method is shown in Fig. 1.
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Fig. 1. Overview of the Proposed Framework: Fine-tuning a temporal large model to leverage
its generalization capability, the framework integrates both explicit and implicit features. A con-
trastive learning strategy is employed to extract semanticrepresentations from label-referenced
textual prompts, while soft prompt learning is utilized to align the feature distributions of labels
and SEMG signals in a shared representation space, thereby enabling accurate intention recogni-
tion.

3 Methodology

3.1  Data Processing

Before training the model, the electromyography (EMG) data x; € R¢ undergoes pre-
process. Since the effective frequency range of EMG signals is 20 — 500 Hz , we fol-
low the conventional approach of applying a 4th-order Butterworth filter and a 1st-
order low-pass filter. Typically, min-max normalization is used, but some studies have
demonstrated the effectiveness of u -law normalization, which is a nonlinear method
commonly applied in audio signal processing.
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Specifically, it is defined as:

ln(1+u- X1 ) .
Xnorm = M(Txlr:;ax : Slgl‘l(X) (1)

where u is the compression parameter (default value 255), X,,,.x represents the maxi-
mum absolute value of the input signal, and sign(X) retains the sign of the original
data.

Studies have shown that longer window lengths provide richer information, improv-
ing recognition accuracy. However, excessively long windows may affect the respon-
siveness during prosthetic limb usage. Therefore, we adopt the windowing settings used
in previous studies.

3.2  Contrastive Learning Based on Prompts

Suppose there are T subjects, and their SEMG data sample spaces are D =
{D,D?,...,DT}. For the ¢ -th subject, the data is D¢ = {X,,Y;}, where X, = {x;}},
and Y; = {y;}1f, . Let the text prompt be [py, p,, ..., p,] . The prediction model is de-
noted as f(-) , and its output can be guided using the text prompt. In SEMG based intent
recognition, the goal of contrastive prompt learning is to learn a model based on text
prompts for subjects to make similar sample representations closer. By incorporating
text prompts as a soft prompt method, a specific topic model with strong adaptability
can be trained with minimal increase in model parameters. The formal statement is as
follows:

minE(yy)-p[£(f (i p), )] )

where £ represents the loss function, such as cross-entropy loss. In CLIP or CLAP
based models, contrastive loss is typically used.

3.3 Intention Recognition Based on CLAP

Let the temporal prediction model be E ;. , the text encoder be E , , and K . be the
hierarchical preprocessing, which will be detailed in the next section. For a given sam-
ple from a subject, i.e., an SEMG window signal x; € R, the intention label is
y; €Y, . Under the CLAP framework, similar to Section 3.1, we also introduce an in-
tention text Prompt Pool [p, p,, ..., pp] , but this pool is directly related to the intention
labels. During training, the data is first processed hierarchically as follows:

R
(Y, = Kpre () = Ol xf, o 6D (3)

where K = @ (see Section 3.4). Each x[* is then processed by the two encoders.

The time model is as follows:

fe = Etime (xin; Pt) (4)



Here, f, € R¢ume represents explicit features. To achieve domain adaptation and
feature fusion, after the model extracts implicit features, we introduce explicit features
using a traditional feature extractor FT :

fi = FT(x}) (5)
ffuse = Concat(fe' fl) (6)

where fpe. € REtme*Cre To achieve dimension alignment and further fuse explicit
and implicit features, we use an MLP fully connected layer:

Q = MLP(ffuse) (7)

such that Q € R? . Simultaneously, the intention label y; is used to guide the training
of the text encoder prompt:

K = Ep (P! [INILNAME]) (8)

where K, € R? . Now, Q and K can be compared using cosine similarity: The cosine
similarity is computed as:
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Fig. 2. Schematic diagram of K-layer Window-based Algorithm
Our loss function is designed as:

Leg = —— 2P logp(y; = ¢ 1 %) (10)

[Del

where the probability is calculated by:
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— N = exp(QuKe)/D)
p(yi =clx) Ty, X000 1/7) (11)

where t is the temperature parameter that controls the model output.

3.4  K-layer Window-based Algorithm

The internal hierarchical voting algorithm consists of two parts: the preprocessing stage
K,y Tor training the model and the post-processing stage K, for aggregating results.
For the k -th layer, there exist K sub-windows to augment training data.

{xi"}lk(zl =K e () = {x}, %2, ..., xK} (12)

Specifically, for data of length 1, each k -layer can augment k pieces of data. The
step length is determined by an overlap ratio of approximately 20% , given by:

L =|L-(1/K) x 1.2] (13)

Algorithm 1 K-layer Window-based Algorithm

Input: Sample data x; € R ; number of layers K ; model M ; current stage S
Output: Trained model M or predicted result ;

Initialize {x{‘}:=1 = {x;} Obtain initial window length [,
fork =2toK do
Compute window length: [, = l% X 1.2] Set stride: s = 0.2 X [

Slice x; into k samples:
Slice(k) = {x;[0: L], x; [l — s: 2L, — 5], ...}
Append slices: {xi"}f:l - {x{‘}::l U Slice(k)
end
if S is training then
Train model M until convergence:
M « Model. training(M, {xlk})
return Trained model M
end
else
for k =1to K do
9% = Model. predict(M, x¥)
end
Aggregate predictions:

R . Y ¢
9: = Voting ({yik}k:l)
return Prediction result ¥;
end

This step-length-adjusted data slicing operation is applied to each channel of x . The
schematic diagram of our method is shown in Fig. 2 The specific implementation of
the algorithm is shown in Algorithm 1.



Through operations, each window can be divided into multiple sub-windows. In ac-
tual training, we use k2 sub-windows for training, which allows the training set to be
increased by a factor of R . If only the preprocessing stage K ;. is used to train the
model, the algorithm’s complexity remains O(1) during testing. However, if post-pro-
cessing K o is applied to aggregate the results, the algorithm’s time complexity be-
comes O(K?) .

Deep learning models generally require inputs of the same size. To achieve this, we
employ Center Padding, defined as:

x¥ = Padding(x¥; 1 (14)
L g(xi

Here, padding preserves the existing data at the center by filling zeros before and
after the data to reach the target length.

When the chosen number of layers reduces the window length to half of the original
length, i.e., [, < 0.5 x [, it adversely affects the training process. This is analogous to
introducing a Dropout layer at the input level with a rate of 0.5, whereas the typical
value ranges from 0 to 0.5 . Therefore, we set the maximum number of layers K to 5,
as demonstrated in the subsequent ablation experiments.

4 Experiments and Results Analysis

4.1  Experimental Setup

SEMG datasets settings

We validate our model and algorithm using commonly used SEMG datasets: Ninapro
DB1, DB2, DB5 and Capmygo.

Ninapro dataset [25] is the largest data collection effort for SEMG signals, com-
prising 10 extensive databases collected from both amputees and intact subjects using
various sensors. In our experiments, we utilized NinaPro DB1, DB2, and DBS5 for val-
idation, with sampling rates of 100 Hz, 2000 Hz, and 200 Hz, respectively.

Capmygo DB-a [26] consisted of recordings of 8 finger gestures, using the 128
channels HD-sEMG signals recorded by our non-invasive wearable device with sam-
pling rates of 1000Hz .

Their specific designs are shown in Table 1. Dataset settings:

Table 1. Dataset settings

Dataset  Subjects Rounds Train Test  Channels
DB1 27 10 1,257,10 3,6,9 10
DB2 40 6 1,356 2,4 8
DB5 10 6 1,356 2,4 8
Mygo 18 10 125710 3,6,9 128

We conducted experimental operations on the SEMG signals of each subject in all
datasets and report the final average accuracy and standard deviation for different mod-
els.
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Pretrained model for CLAP

Table 2. Average Accuracy (%) of Different Models on Upper Limb Datasets

Upper
DB1-100 DB5-200
CNN+LSTM 2018 81.23 73.23

LightTS 2024 80.67 69.34
DLinear 2024 74.05 67.45
iTransformer 2024 83.47 72.31
TDCT 2024 85.15 72.23
Ours 2025 87.78 74.83

Model Year

For the time series model, in order to achieve good implicit feature extraction capa-
bility while implementing Prompt, we adopt the Transformer-based large model
MOMENT,.; Vversion. This model has a high feature extraction capability and has
been trained on certain SEMG datasets, demonstrating strong zero-shot ability. We set
the prompt length for each subject in the Subject Pool to 1 and use a Prefix-based ap-
proach for guidance.

For the text model, we use the text generator of the CLAP model, namely BERT,
specifically the BERT base uncased version implemented by Hugging-Face. For com-
putational efficiency, we limit the maximum text sequence length to 100 characters.
The [CLS] token from the last layer of BERT is used as the text embedding.

Comparison Methods

Regarding model comparisons, to verify the intent recognition capability of various
time series models on SEMG data, we compare results using CNN+LSTM, LightTsS,
DLinear, iTransformer, and TDCT. Additionally, to validate the effectiveness of the K-
layer window-based algorithm, we introduce traditional classifiers such as SVM, RF,
and KNN for comparison in explicit feature classification.

Explicit Feature Selection
Time-domain feature set: Mean Absolute Value(MAV), Root Mean Square(RMS),
Waveform Length(WL).

MAV = = %F || (15)
1
RMS = -3 x7 (16)
L
WL = lei = X4l (17)
i=2

where x; denotes the SEMG data with a window length of L .

Parameter settings for K



This algorithm does not introduce additional parameters. If only hierarchical parti-
tioning is performed, the training data increases, leading to longer model training time,
while the inference speed remains unchanged. However, if hierarchical voting is ap-
plied, the number of inferences for a single window will also increase, making it un-
suitable for practical applications. Therefore, considering model inference speed, we
only investigate the results for K = 1,2,3,4,5 .

Training Settings and Parameters

We conducted our experiments using four GTX 4090 GPUs. For traditional classi-
fiers, we used t he default parameters unless otherwise specified. During model train-
ing, the batch size was set to 256, and the model was trained for 30 epochs.

During training, only the Intention Pool, the MLP layer within MOMENT, and the
fused MLP layer were updated, while all other components remained frozen. The num-
ber of trainable parameters is summarized as follows:

Table 3. Effect of Module Combination on Model Performance (%)

Upper Limb Datasets
DB1-100 DB5-200
Baseline (Only E e ) 83.89 72.04

Model Description

W E oy 85.75 73.47

w Fg 85.32 73.00

WE o + Fg 86.13 73.91

W E oy + K -level 86.84 74.00
Full Model 87.78 74.83

Note: "w" denotes that the corresponding module is included.

42 Result

According to the above experimental results in Table 2. Average Accuracy (%) of
Different Models on Upper Limb Datasets, the intention recognition model proposed
in this study demonstrates outstanding performance across different datasets, achieving
the highest accuracy on all four datasets used. Specifically, on the upper limb dataset
DB1-100, the proposed model reaches an average accuracy of 87.78%, and on the da-
taset collected in this study, it achieves an average accuracy of 93.03%, significantly
outperforming other comparison models. This indicates that the approach of fine-tuning
the temporal large model and integrating explicit and implicit features offers a clear
advantage.
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5 Ablation Study

5.1  General Ablation

We conducted ablation studies on the components of the model. In Table 3. Effect
of Module Combination on Model Performance (%), the results show that each com-
ponent contributes to the optimization of the model, leading to better performance com-
pared to the baseline.

5.2  K-layer Window-based Algorithm Ablation

Different K of K -layer Window-based Algorithm

As shown in the Fig. 3, we present the accuracy variations of traditional classifiers
and deep learning classifiers as K changes, exploring the impact of different K values
across various datasets. The changes after hierarchical voting are illustrated.

- SVM RF ~®- KNN —o— CNN+LSTM ®— iTransformer —e— Ours
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(a) Ninapro DB1 (b) Ninapro DB2 (c) Ninapro DBS (d) Capgmyo
Fig. 3. Results of several methods at different K values

It can be observed that for feature-based traditional classifiers, increasing K signifi-
cantly improves accuracy, especially for SVM, which can achieve up to a 10% im-
provement. However, for deep learning-based models, classification results generally
improve when K is between 1 and 3. Yet, as K continues to increase, issues related to
Padding Pooling, discussed in Section 3, cause the training performance of some clas-
sifiers to deteriorate, leading to a decline in accuracy.

Pre and Post Process Ablation of Algorithm

To verify the effectiveness of preprocessing and post-processing, we conducted val-
idation experiments with K = 3, and the obtained results are shown in Table 4. Com-
parison of Different Models with and without Preprocessing across Four Datasets (Ac-
curacy %, Standard Deviation).

The above experimental results demonstrate the effectiveness of the hierarchical al-
gorithm. For feature-based classifiers, this algorithm enriches feature diversity, thereby
expanding the training sample space. For deep learning-based models, it enhances gen-
eralization performance. Based on the algorithm process and experimental results, we



can conclude that even when only preprocessing is applied-by increasing the amount
of training data without adding any inference time - accuracy can still be improved.

Table 4. Comparison of Different Models with and without Preprocessing across Four Datasets
(Accuracy %, Standard Deviation)

Model Setting DB1-100 DB2-200 DB5-200  Capgmyo
- 56.2+6.3 554465 53.6+6.1 928+42
SVM Preprocessing 60.0 £5.4 60.3+£6.0 599459 93442

Postprocessing 63.7 £5.8 64.6 £59 64.1+6.0 93.2+3.8

- 73.2+5.0 747451 725440 92.8+3.6

RF Preprocessing 75.4 £4.2 76446 754x49 93.4+34
Postprocessing 76.6 £4.8 76.6 £4.7 76.6 5.0 93932

- 59.8 +6.2 60.7 6.6 58.8+6.1 92544

KNN Preprocessing 65.5 +6.1 67.3+6.1 66.1+6.2 93.4+39
Postprocessing 67.1 6.3 68.5+6.1 688+6.4 93935

- 82.7 6.7 812+6.8 81.3+69 923=+27

CNN+LSTM Preprocessing 83.4+5.1 83.1+55 835+54 93.1+23
Postprocessing 840+48 841453 849451 943+21

- 83.9+3.0 823+44 835%47 929*27

iTransformer Preprocessing 84.4 3.7 84241 848+42 94124
Postprocessing 85.0 £3.4 85.3+44 854+41 94521

6 Conclusion

To address key limitations in lower-limb intention recognition using SEMG and
FMG signals, this study presents an integrated framework that encompasses data ac-
quisition, parameter optimization, and model design. A multimodal biosig-nal acquisi-
tion system was developed to collect synchronized SEMG and FMG data with visual
prompts for lower-limb movements, enabling real-time, multichannel recording and fa-
cilitating comparative analysis of signal performance. To improve efficiency and inter-
pretability in temporal window parameter selection, a novel method was introduced
that identifies optimal combinations of window length and overlap by sampling mini-
mal data and evaluating the trace of between-class and within-class scatter matrices,
thereby avoiding extensive classifier retraining. In addition, a K-layer windowing al-
gorithm was designed to enhance data diversity and robustness, with experimental re-
sults confirming its effectiveness. Furthermore, to overcome the generalization limita-
tions of conventional intention recognition models, a contrastive learning framework
was constructed that leverages temporal large models for implicit feature extraction and
integrates explicit features for improved discriminability. Experimental validations
demonstrate that the proposed framework significantly enhances recognition accuracy
and fine-tuning efficiency, offering a scalable and interpretable solution for real-world
applications.
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