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Abstract. This paper studies the Safety Policy Improvement (SPI) problem in 

Batch Reinforcement Learning (Batch RL), which aims to train a policy from a 

fixed dataset without environment interaction, while ensuring its performance is 

no worse than the behavior policy used for data collection. Most existing methods 

often require a substantial amount of historical data to ensure sufficient confi-

dence in the performance of the learned policy. However, the fixed dataset is 

often limited, which causes the learning overly conservative. To address this is-

sue, we investigate the integration of state abstraction into the SPIBB framework 

to improve sample efficiency. While state abstraction has been widely used to 

improve sample efficiency, it traditionally lacks mechanisms for providing per-

formance guarantees. We bridge this gap by deriving theoretical performance 

guarantees of policies learned from SPIBB under state abstraction. Empirical re-

sults show that our method achieves comparable or better policy improvement 

using fewer samples than the original SPIBB algorithm. 
 

Keywords: Batch Reinforcement Learning, Safe policy Improvement with 

Baseline Bootstrapping, State Abstraction. 

1 Introduction 

Reinforcement Learning (RL) has achieved remarkable progress in long-term planning, 

global optimization, and sequential decision-making [1]. Representative advances in-

clude Deep Q-Networks (DQNs) for Atari games, AlphaGo’s victory over the Go world 

champion [2] and RL from Human Feedback (RLHF), a key technique behind aligning 

large language models with human intent [3]. Traditional RL relies on trial-and-error 

interaction with the environment to learn optimal policies. However, this paradigm is 

often infeasible in safety-critical domains such as healthcare, industrial control, and 

finance, where exploration can be costly or risky. Batch RL addresses this limitation by 

enabling policy learning from fixed datasets without requiring further interaction with 

the environment [4, 5]. 

Safe Policy Improvement (SPI) is a fundamental topic in Batch RL, focusing on 

learning a policy from fixed data that performs at least as well as the behavior policy 

that generated it [6-9]. SPI also holds significant practical value. For example, policies 
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may need to be deployed simultaneously across many independent devices (e.g., wide-

spread software updates on smartphones), where failures can lead to extremely high 

repair costs. Moreover, policy evaluation may require a long period of time (e.g., in 

crop management or clinical trials), during which deploying a bad policy could cause 

severe consequences. Research on SPI can greatly reduce the risks associated with such 

scenarios, ensuring the stability and consistency of deployed policies. 

Most SPI approaches focus on the model-based RL paradigm to address this funda-

mental problem in the context of infinite-horizon discounted Markov decision pro-

cesses (MDPs) [6-9]. Safe Policy Improvement with Baseline Bootstrapping (SPIBB) 

is a representative SPI method that has inspired various extensions, including adapta-

tions to different MDP variants  [9, 10] and improved compatibility with diverse be-

havior policies [11, 12]. It that provides confidence bounds on the improvement of the 

learned policy over the behavior policy. For instance, SPIBB ensures with 0.99 proba-

bility that the learned policy outperforms the behavior policy within a performance 

margin of 0.1. Such performance margin serves as a confidence bounds, that is essential 

for practitioners when deciding whether to deploy a new policy in true environments. 

A smaller confidence bound implies that the new policy is more likely to outperform 

the behavior policy.  

SPIBB approach impose constraints that restrict training, allowing policy learning 

only when the constraints are met. Typically, the constraints depend on the available 

data. As sufficient data is needed to accurately capture the agent-environment interac-

tion dynamics. As a result, the learned optimal policy from these samples is more likely 

to perform well in the true environment, thus outperforming the behavior policy. How-

ever, since the available data is usually limited, SPIBB method often result in conserva-

tive training. As a result, improving sample efficiency has become a critical challenge 

for enabling the practical application of SPIBB in the true environment. 

At the same time, state abstraction can reduce the size of an MDP by grouping sim-

ilar states and has been applied in model-based reinforcement learning to lower learning 

complexity and enhance sample efficiency [13-15]. In this work, we adopt approximate 

stochastic bisimulation as the abstraction method, which merges states with similar 

transition dynamics and rewards into abstract states. This approach is naturally suited 

to improving the sample efficiency of the SPIBB algorithm, as it allows the sharing of 

samples across grouped states. Such sharing alleviates the issue of data scarcity and 

helps better satisfy the algorithm's constraints. However, since the similar states are not 

perfectly equivalent, the policies learned from these samples often differ from those 

learned without sharing. Consequently, it is necessary to derive new confidence bounds 

for the performance improvement of the policy learned via SPIBB under the framework 

of state abstraction. 

In this work, we propose a SPIBB algorithm incorporating the state abstraction tech-

nique to improve sample efficiency in the batch reinforcement learning setting. Our 

main contribution is a theoretical confidence bound that quantifies the performance 

guarantee of the learned policy by SPIBB algorithm incorporating the state abstraction. 

We further demonstrate through empirical analysis that the proposed method can 

achieve greater policy improvement using significantly fewer samples than the original 
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SPIBB algorithm. These findings suggest that abstraction can be a powerful tool for 

safe and efficient policy learning in data-limited settings. 

2 Preliminaries 

2.1 MDPs and Reinforcement Learning 

We briefly introduce the notations for Markov Decision Processes (MDPs) and Rein-

forcement Learning (RL). For a comprehensive introduction, we refer readers to the 

relevant literature [1, 16].  

An MDP is defined by 𝑀 = (𝑆, 𝐴, 𝑇, 𝑅, 𝑠𝑖𝑛𝑖𝑡 , 𝛾), where 𝑆 is the state space, 𝐴 is the 

action space, 𝑅: 𝑆 × 𝐴 → ℝ is the reward function, where 𝑅(𝑠, 𝑎) represents the reward 

the agent receives after taking action 𝑎 in state 𝑠, 𝑠𝑖𝑛𝑖𝑡  is the initial state, and 𝛾 ∈ [0,1) 

is the discount factor. The true environment is modelled as an unknown finite MDP 

𝑀∗ = (𝑆, 𝐴, 𝑅, 𝑇∗, 𝛾, 𝑠𝑖𝑛𝑖𝑡) with unknown transition probability 𝑇∗.  

A policy is defined as 𝜋: 𝑆 → ∆(𝐴), where ∆(𝐴) denotes a probability distribution 

over the action set 𝐴. The value function of a policy 𝜋 in MDP 𝑀 is defined as 𝑉𝑀
𝜋(𝑠) =

𝐸𝜋,𝑀[∑ 𝛾𝑡𝑅(𝑠𝑡 , 𝑎𝑡)𝑡≥0 |𝑠0 = 𝑠, 𝑎𝑡~𝜋(𝑠𝑡)], representing the expected discounted return 

when starting from state s and following π. The value of 𝑀 is denoted as 𝜌(𝜋, 𝑀) =
𝑉𝑀

𝜋(𝑠𝑖𝑛𝑖𝑡) . The optimal policy over all policies Π: {𝜋: 𝑆 → ∆(𝐴)}  is 𝜋∗ =
arg max𝜋∈Π𝜌(𝜋, 𝑀) , while the Π′ -optimal policy over a subset Π′ ∈ Π  is 𝜋Π′

∗ =

arg max𝜋∈Π′𝜌(𝜋, 𝑀). The value function is upper bounded by 𝑉𝑚𝑎𝑥 ≤
𝑅𝑚𝑎𝑥

1−𝛾
, where 

𝑅𝑚𝑎𝑥 is the maximum reward. 

In this paper, we consider the batch RL setting [4], where the algorithm does its best 

at learning a policy from a fixed set of experience. Given a dataset of transitions 𝐷 =

{(𝑠𝑗 , 𝒶𝑗 , 𝑟𝑗 , 𝑠𝑗
′)|𝑗 ∈ [1, 𝑁]}, we denote by 𝑁𝐷(𝑠, 𝑎) the state-action pair counts, and by 

𝑁𝐷(𝑠, 𝑎, 𝑠′) the number of transitions from (𝑠, 𝑎) to 𝑠′. A vanilla batch RL approach, 

referred to as Basic RL, adopts a model-based manner [17] by explicitly constructing a 

Maximum Likelihood Estimation (MLE) MDP 𝑀̂ = (𝑆, 𝐴, 𝑅, 𝑇̂, 𝑠𝑖𝑛𝑖𝑡 , 𝛾), where the es-

timated transition probability is given by: 

∀𝑠, 𝑠′ ∈ 𝑆, 𝑎 ∈ 𝐴, 𝑇̂(𝑠′|𝑠, 𝑎) =
𝑁𝐷(𝑠, 𝑎, 𝑠′)

𝑁𝐷(𝑠, 𝑎)
(1) 

Once the model 𝑀̂ is constructed, the optimal policy can be derived through dynamic 

programming on 𝑀̂ [18], Q-learning with experience replay until convergence [19], etc. 

If the estimated MDP 𝑀̂ closely approximates 𝑀∗, the optimal policy learned from 

𝑀̂ may perform optimal in the true environment. However, datasets are often limited, 

particularly in high-risk fields such as healthcare and finance. With insufficient data, 

the learned policy may lack robustness in state-action pairs with fewer samples, poten-

tially leading to high-risk decisions. 
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2.2 Safe Policy Improvement 

 

Fig.1. Illustration of the SPI problem in Batch RL 

This section reviews the SPI problem and a representative state-of-the-art solution, 

which will subsequently be extended to incorporate state abstraction. 

The Safe Policy Improvement (SPI) problem focuses on guaranteeing the perfor-

mance of policies learned from fixed datasets in the true environment [6-9]. Fig. 1 il-

lustrates the framework of the SPI problem. This problem typically assumes a behavior 

policy 𝜋𝑏, which generates the fixed dataset 𝐷 = {(𝑠𝑗 , 𝒶𝑗 , 𝑟𝑗 , 𝑠𝑗
′)|𝑗 ∈ [1, 𝑁]}. The goal 

of SPI is to learn a policy  𝜋𝐼 from 𝐷 such that, with probability at least 1 − 𝛿, its per-

formance deviates from that of the behavior policy 𝜋𝑏 by no more than an admissible 

performance loss ζ: 

𝜌(𝜋𝐼 , 𝑀∗) ≥ 𝜌(𝜋𝑏 , 𝑀∗) − 𝜁 (2) 

Percentile criterion [6, 7]. Given hyperparameters 𝛿 and 𝜁, the SPI problem can be 

formalized as a percentile criterion optimization problem. As a first step, constructing 

a set of admissible MDPs provides a robust surrogate for the unknown true environment 

𝑀∗. Formally, the admissible MDPs set is defined as: 

𝛯𝑒
𝑀̂ = {𝑀 = (𝑆, 𝐴, 𝑅, 𝑇, 𝛾, 𝑠𝑖𝑛𝑖𝑡)| ∀(𝑠, 𝑎) ∈ 𝑆 × 𝐴, 𝑠′ ∈ 𝑆 

𝑠. 𝑡. ‖𝑇(𝑠′|𝑠, 𝑎) − 𝑇̂(𝑠′|𝑠, 𝑎)‖
1

≤ 𝑒(𝑠, 𝑎)} (3)
 

Here, 𝑒(𝑠, 𝑎) denotes an error function, which captures the maximum 𝐿1 distance be-

tween transition functions across all state-action pairs in the MDP. The 𝐿1 distance is 

defined as the sum of absolute differences between the corresponding components of 

two probability distributions.  

Secondly, an error function 𝑒 is introduced such that the uncertainty set 𝛯𝑒
𝑀̂ contains 

the true MDP 𝑀∗ with high probability at least 1 − 𝛿. This enables the SPI problem to 

be formulated as a percentile criterion optimization problem, where the objective is to 

learn an improved policy 𝜋𝐼 based on the estimated model 𝑀̂, such that 𝜋𝐼 approxi-

mately outperforms the behavior policy 𝜋𝑏 across all MDPs in 𝛯𝑒
𝑀̂. The formal defini-

tion is as follows: 

𝜋𝐼 = arg max
𝜋

𝜌 (𝜋, 𝑀̂), s. t. ∀𝑀 ∈ Ξ𝑒
𝑀̂ , 𝜌(𝜋, 𝑀) ≥ 𝜌(𝜋𝑏 , 𝑀) − 𝜁 (4) 
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Since 𝛯𝑒
𝑀̂ contains the true environment 𝑀∗ with probability at least 1 − 𝛿, any policy 

that satisfies this condition is guaranteed, with probability 1 − 𝛿, to outperform the be-

havior policy in the true environment. 

Finally, a safety constraint is derived from the percentile criterion optimization prob-

lem. This constraint specifies a threshold 𝑁∧ on the number of samples 𝑁𝐷(𝑠, 𝑎) re-

quired for each state-action pair (𝑠, 𝑎) ∈ 𝑆 × 𝐴, defined as follows: 

∀(𝑠, 𝑎) ∈ 𝑆 × 𝐴, 𝑁𝐷(𝑠, 𝑎) ≥ 𝑁∧ =
8𝑉𝑚𝑎𝑥

2

𝜁2(1 − 𝛾)2
log

2|𝑆||𝐴|2|𝑆|

𝛿
(5) 

This constraint restricts the policy learning is permitted only when the sample size ex-

ceeds this threshold. This ensure that the resulting policy is a feasible solution to the 

optimization problem, thereby meeting the requirements of safe policy improvement. 

Safe Policy Improvement with Baseline Bootstrapping (SPIBB) [7]. The bound in 

Equation (5) must hold for all state-action pairs, which may not be satisfied by the 

dataset 𝐷, thereby limiting policy learning. To address this limitation, the SPIBB algo-

rithm relaxes this requirement by permitting the constraint in Equation (5) to be vio-

lated for certain state-action pairs. The set 𝐵 is defined to include all state-action pairs 

whose visitation counts fall below the threshold 𝑁∧： 

𝐵 = {(𝑠, 𝑎) ∈ 𝑆 × 𝐴|𝑁𝐷(𝑠, 𝑎) ≤ 𝑁∧} (6) 

The SPIBB algorithm computes an improved policy 𝜋𝐼 on the estimated MDP 𝑀̂, 

similarly to standard policy optimization, but with an additional constraint: for all state-

action pairs ∀(𝑠, 𝑎)∈𝐵 , the improved policy must match the behavior policy, i.e., 

𝜋𝐼(𝑎|𝑠) = 𝜋𝑏(𝑎|𝑠). Under this constraint, 𝜋𝐼 constitutes a 𝜁-approximately safe im-

provement over the behavior policy 𝜋𝑏 with probability 1 − 𝛿. Based on theoretical 

analysis, an admissible performance loss 𝜁 is derived and defined as follows: 

𝜁 =
4𝑉𝑚𝑎𝑥

1 − 𝛾
√

2

𝑁∧

log
2|𝑆||𝐴|2|𝑆|

𝛿
− 𝜌(𝜋𝐼 , 𝑀̂) + 𝜌(𝜋𝑏 , 𝑀̂) (7) 

SPIBB allows users to set the threshold 𝑁∧ and enables policy learning even when 

some state-action pairs have fewer samples than this threshold, thereby improving ef-

ficiency. Its core is the derivation of the admissible performance loss 𝜁, which bounds 

the performance gap within which the improved policy 𝜋𝐼 is guaranteed to outperform 

the behavior policy 𝜋𝑏. A smaller 𝜁 implies greater confidence in 𝜋𝐼, supporting its safe 

replacement of 𝜋𝑏 in the true environment. 

SPIBB is an important method for learning policies with performance guarantees 

while maintaining effective learning. It has inspired numerous extensions, including 

adaptations to various MDP variants and improved compatibility with a wide range of 

behavior policies. 
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2.3 RL with State Abstraction 

State abstraction technique could maps the original states space 𝑆  in an MDP into 

smaller abstract state 𝑆̅ in an abstract MDP, which reduces the problem complexity 

while maintaining a bounded loss with respect to the original problem [20, 21]. Re-

cently, fueled by rapid advancements in reinforcement learning, approximate stochastic 

bisimulation, an approximate state abstraction technique, has been integrated into the 

RL paradigm to enhance sample efficiency [13, 15, 22, 23]. In their setting, there exits 

an approximate stochastic bisimulation function 𝜙: 𝑆 → 𝑆̅. And the agent acts in an 

MDP that returns states 𝑠, but instead of observing the true state 𝑠, the agent observes 

abstract states 𝜙(𝑠).  

    In this section, we introduce the notion of approximate stochastic bisimulation and 

discuss how to learn policies in RL based on approximate stochastic bisimulation. 

Definition 1 (approximate stochastic bisimulation, 𝜙) [20, 21]. Given two states 

𝑠1, 𝑠2 ∈ 𝑆, if for any action 𝑎 ∈ 𝐴, the difference in their transition probabilities to any 

abstract state 𝑠̅′ ∈ 𝑆̅ is bounded by 𝜂, then 𝑠1 and 𝑠2 can be mapped into the same ab-

stract state under the function 𝜙, i.e.: 

𝜙(𝑠1) = 𝜙(𝑠2) ⟹  ∀𝑠̅′ ∈ 𝑆̅, 𝑎 ∈ 𝐴: |𝑇(𝑠̅′|𝑠1, 𝑎) − 𝑇(𝑠̅′|𝑠2, 𝑎)| ≤ 𝜂 (8) 

Under the approximate stochastic bisimulation function 𝜙: 𝑆 → 𝑆̅, the original da-

taset 𝐷 = {(𝑠𝑗 , 𝒶𝑗 , 𝑟𝑗 , 𝑠𝑗
′)|𝑗 ∈ [1, 𝑁]} collected from the underlying MDP can be trans-

formed into an abstracted dataset 𝒟 = {(𝑠̅𝑗 , 𝒶𝑗 , 𝑟𝑗 , 𝑠̅𝑗
′)|𝑗 ∈ [1, 𝑁]} , where 𝑠̅𝑗 = 𝜙(𝑠𝑗) 

and 𝑠̅𝑗
′ = 𝜙(𝑠𝑗 , 𝒶𝑗 , 𝑟𝑗 , 𝑠𝑗

′). This dataset captures the transitions between abstract states, 

thereby enabling policy learning in the abstracted state space. 

An abstract policy 𝜋̅: 𝑆̅ → ∆(𝐴) can be optimized using batch RL algorithm in a 

model-based manner. Specifically, we consider the estimated abstract MDP 𝑀̂̅ =

(𝑆̅, 𝐴, 𝑇̂̅, 𝑅, 𝑠̅0, 𝛾), where 𝑇̂̅ denotes the transition dynamics over the abstract states, 

which can be derived from the abstracted dataset 𝒟 as follows: 

∀𝑠̅, 𝑠̅′ ∈ 𝑆, 𝑎 ∈ 𝐴, 𝑇̂̅(𝑠̅′|𝑠̅, 𝑎) =
𝑁𝒟(𝑠̅, 𝑎, 𝑠̅′)

𝑁𝒟(𝑠̅, 𝑎)
(9) 

Where 𝑁𝒟(𝑠̅, 𝑎) denotes the number of samples in 𝒟 where action 𝑎 is taken in 𝑠̅, and 

𝑁𝒟(𝑠̅, 𝑎, 𝑠̅′) denotes the number of samples transitioning to 𝑠̅′. The value of abstract 

MDP, 𝜌(𝜋̅, 𝑀̂̅), naturally mirrors that of the original MDP. The optimal abstract policy 

is defined as 𝜋̅∗ ∈ arg max𝜋∈Π𝜌(𝜋̅, 𝑀̂̅), and can be directly learned by vanilla batch 

RL algorithms[18, 19, 24]. 

While approximate stochastic bisimulation improves sample efficiency, it inevitably 

introduces a performance gap between the policy learned from the abstracted dataset 

and that learned from the original dataset, thereby presenting challenges in providing 

confidence in the performance of the abstracted policy. For simplicity, we refer to ap-

proximate stochastic bisimulation as state abstraction in the remainder of this paper. 
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3 SPIBB with State Abstraction 

 

Fig.2. Illustration of the SPI with State Abstraction 

Fig. 2 illustrates the framework of the SPI problem with state abstraction. It assumes 

the existence of an approximate stochastic bisimulation function 𝜙: 𝑆 → 𝑆̅, which maps 

the original dataset 𝐷 = {(𝑠𝑗 , 𝒶𝑗 , 𝑟𝑗 , 𝑠𝑗
′)|𝑗 ∈ [1, 𝑁]}  into an abstract dataset 𝒟 =

{(𝑠̅𝑗 , 𝒶𝑗 , 𝑟𝑗 , 𝑠̅𝑗
′)|𝑗 ∈ [1, 𝑁]}, where 𝑠̅𝑗 = 𝜙(𝑠𝑗) and 𝑠̅𝑗

′= 𝜙(𝑠𝑗
′). The objective is to design 

constraints that allow learning an abstract policy 𝜋̅𝐼 from 𝒟 such that it outperforms a 

behavior policy 𝜋𝑏 in the true environment 𝑀∗. Formally, the goal is to learn a policy 

𝜋̅𝐼 that, with high probability at least 1 − 𝛿, satisfies: 

𝜌(𝜋̅𝐼 , 𝑀∗) ≥ 𝜌(𝜋𝑏 , 𝑀∗) − 𝜁 (10) 

Where 𝜌(∙, 𝑀∗) denotes the expected return (also called performance) in the true envi-

ronment 𝑀∗, and 𝜁 is admissible performance loss that quantifies the confidence level 

in the performance of 𝜋̅𝐼. 

3.1 SPIBB based on State Abstraction 

In this section, we introduce how to learn an abstract policy 𝜋̅𝐼 using the SPIBB algo-

rithm based on state abstraction.  

To begin with, we define the set of abstract state-action pairs with insufficient data, 

as directly learning a policy from such data may lead to unstable performance. To mit-

igate this issue, the learned policy is constrained to match the behavior policy on these 

pairs. Specifically, the set ℬ of abstract state-action pairs is defined as: 

ℬ = {(𝑠̅, 𝑎) ∈ 𝑆̅ × 𝐴|∀𝑠̅ ∈ 𝑆̅, 𝑎 ∈ 𝐴 𝑠. 𝑡. 𝑁𝒟(𝑠̅, 𝑎) ≤ 𝑁∧} (11) 

where 𝑁𝒟(𝑠̅, 𝑎) denotes the number of samples of the abstract state-action pair (𝑠̅, 𝑎) ∈
𝑆̅ × 𝐴 in the dataset 𝒟, and 𝑁∧ is a threshold parameter. 

     Next, we define the policy search space based on the set ℬ. The searchable policy 

space Π̅𝑏 consists of abstract policies 𝜋̅𝑠𝑝𝑖𝑏𝑏: 𝑆̅ → 𝐴, where each policy 𝜋̅𝑠𝑝𝑖𝑏𝑏 adheres 

to the abstract baseline policy 𝜋̅𝑏 on state-action pairs with insufficient data (i.e., those 

in ℬ). Formally, the search space is defined as: 

Π̅𝑏 = { 𝜋̅𝑠𝑝𝑖𝑏𝑏(𝑎|𝑠̅) = 𝜋̅𝑏(𝑎|𝑠̅)|∀𝑠̅ ∈ 𝑆̅, 𝑎 ∈ 𝐴 𝑠. 𝑡. (𝑠̅, 𝑎) ∈ ℬ} (12) 
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Here, 𝜋̅𝑏 denotes the abstract policy induced by the behavior policy 𝜋𝑏 through the 

state abstraction mapping 𝜙. A formal definition is provided in Appendix A. 

Finally, the optimal policy is obtained by searching within the constrained policy 

space Π̅𝑏, and is denoted by 𝜋̅𝑠𝑝𝑖𝑏𝑏
⊙

. Following the model-based RL paradigm, we first 

construct a maximum likelihood estimate of the abstract MDP 𝑀̂̅ = (𝑆̅, 𝐴, 𝑇̂̅, 𝑅, 𝑠̅0, 𝛾) 

based on the abstract dataset 𝒟 = {(𝑠̅𝑗 , 𝒶𝑗 , 𝑟𝑗 , 𝑠̅𝑗
′)|𝑗 ∈ [1, 𝑁]}. We then apply a standard 

policy iteration procedure to identify the optimal policy  𝜋̅𝑠𝑝𝑖𝑏𝑏
⊙

 within Π̅𝑏.  

Algorithm 1 Greedy Projection of 𝑄(𝑖) on Π̅𝑏 

Input: Baseline Policy 𝜋̅𝑏 

Input: Last iteration value function 𝑄(𝑖) 
Input: Set of bootstrapped abstracted state-action pairs ℬ 
Input: Current abstracted state 𝑠 and action set 𝐴 

1: Initialize 𝜋̅𝑠𝑝𝑖𝑏𝑏
(𝑖)

= 0 

2: for (𝑠̅, 𝑎) ∈ ℬ do 𝜋̅𝑠𝑝𝑖𝑏𝑏
(𝑖)

= 𝜋̅𝑏(𝑎|𝑠̅) 

3: 𝜋̅𝑠𝑝𝑖𝑏𝑏
(𝑖)

(𝑠̅, argmax𝑎|(𝑠̅,𝑎)∉ℬ𝑄(𝑖)(𝑠̅, 𝑎)) = ∑ 𝜋̅𝑏(𝑎|𝑠̅)𝑎|(𝑠̅,𝑎)∉ℬ  

4: Return 𝜋̅𝑠𝑝𝑖𝑏𝑏
(𝑖)

 

Algorithm 1 shows the policy iteration process under the constraint imposed by Π̅𝑏: 

given the Q-values from the previous iteration, the policy and Q-values for the abstract 

state-action pairs in ℬ are kept fixed (line 2), while updates are performed only on the 

remaining pairs (line 3). 

3.2 Theoretical Analysis 

In this section, we show that the policy 𝜋̅𝑠𝑝𝑖𝑏𝑏
⊙

, learned via SPIBB with state abstraction, 

is guaranteed with high probability to perform no worse than the baseline policy 𝜋𝑏, up 

to an acceptable performance loss 𝜁. The primary objective of this section is to derive  

a theoretical bound for 𝜁, which quantifies the confidence in whether 𝜋̅𝐼 outperforms 

𝜋𝑏, and serves as a decision criterion for replacing 𝜋𝑏 with 𝜋̅𝐼. 
Theorem 1. Let Π̅𝑏 denote the set of abstract policies that are constrained to follow 

the abstract baseline policy 𝜋̅𝑏 for all (𝑠̅, 𝑎) ∈ ℬ. Then, the optimal policy 𝜋̅𝑠𝑝𝑖𝑏𝑏
⊙ ∈Π̅𝑏  

is, with probability at least 1 − 𝛿, an approximate improvement over the baseline policy 

𝜋𝑏, with an acceptable performance loss bounded by: 

𝜁 = (𝜂|𝑆̅| + √
8

𝑁∧

ln
|𝑆̅||𝐴|2|𝑆̅|

𝛿
)

2𝛾𝑅𝑚𝑎𝑥

(1 − 𝛾)2
− 𝜌(𝜋̅𝑠𝑝𝑖𝑏𝑏

⊙ , 𝑀̂̅) +  𝜌(𝜋̅𝑏 , 𝑀̂̅) (13) 

Here, 𝜌(𝜋̅𝑠𝑝𝑖𝑏𝑏
⊙ , 𝑀̂̅) and 𝜌(𝜋̅𝑏 , 𝑀̂̅)denote the performances of 𝜋̅𝑠𝑝𝑖𝑏𝑏

⊙
 and 𝜋̅𝑏 , respec-

tively, in the maximum likelihood estimate abstract MDP 𝑀̂̅. 

The proof is provided in Appendix B. Given a user-defined threshold 𝑁∧, Theorem 

1 provides a bound on the acceptable performance loss 𝜁, ensuring that policies learned 

under state abstraction still enjoy performance guarantees. A key advantage of state 
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abstraction is that it enables sample sharing across similar states. For instance, if two 

original states 𝑠0 and 𝑠1 are both mapped to the same abstract state 𝑠̅0, then the sample 

count in the abstract dataset satisfies 𝑁𝒟(𝑠̅0, 𝑎) = 𝑁𝐷(𝑠0, 𝑎) + 𝑁𝐷(𝑠1, 𝑎). This aggre-

gation allows a safe policy update at 𝑠̅0 if the total count exceeds 𝑁∧, whereas the orig-

inal SPIBB framework would require each state-action pair to meet the threshold indi-

vidually. However, it is generally difficult to quantify the confidence that a learned 

policy outperforms the baseline policy. A key contribution of this work is to derive such 

a confidence 𝜁, enabling users to assess whether the learned policy can be safely de-

ployed in the true environment. 

4 Empirical Analysis 

In the previous section, we provided a confidence bound on the performance of pol-

icies learned using the SPIBB algorithm under state abstraction. In this section, we 

demonstrate empirically that our approach yields higher sample efficiency, achieving 

greater policy improvement with less data.  

4.1 Experimental Setup 

We design a Markov Decision Process (MDP) with 9 fine-grained states and 2 ac-

tions, abstracted into 5 abstract states. Each abstract state groups nearby locations (e.g., 

rooms within the same functional zone), and transitions between states within the same 

abstract group are constrained to have probabilities below 0.2. This setup could model 

environments where a robot rarely moves between positions within the same region, 

such as in structured indoor patrol or building inspection tasks with sparse intra-region 

movement.  

Our evaluation covers three methods: the standard SPIBB algorithm (𝜋𝑏-SPIBB), a 

variant incorporating state abstraction (Abstract 𝜋𝑏-SPIBB), and a basic reinforcement 

learning baseline (BasicRL) for comparison. Our implementation is based on the orig-

inal SPIBB algorithm [7]. The source code and the corresponding MDP models can be 

found at: https://github.com/Fishee998/SPIBB_abstraction. 

4.2 Performance Evaluation 

The algorithms are then evaluated using the mean performance of the policies they pro-

duced. 

RQ1. Can the SPIBB method incorporating state abstraction achieve greater mean 

performance with fewer samples? 

𝑁∧ = 5 𝑁∧ = 7 

https://github.com/Fishee998/SPIBB_abstraction
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Fig.3. Mean Performance of Various Algorithms 

Fig. 3 presents the mean performance comparison of various algorithms across dif-

ferent sample sizes and threshold values 𝑁∧. The orange line indicates the performance 

of the behavior policy  𝜋𝑏, while 𝜋∗ represents the optimal policy, which is learned by 

solving the true MDP model using dynamic programming. We observe that the ab-

stracted SPIBB variant (Abstract 𝜋𝑏-SPIBB) consistently achieves higher or compara-

ble mean performance to the original 𝜋𝑏-SPIBB method, particularly in low-data re-

gimes (e.g., fewer than 100 trajectories). This demonstrates that incorporating state ab-

straction allows the algorithm to generalize from fewer samples, leading to earlier and 

more robust policy improvement. 

As 𝑁∧ increases (from 5 to 100), the confidence threshold for safe improvement be-

comes more conservative. In this case, both SPIBB variants become more cautious, but 

the abstracted version continues to outperform the flat SPIBB baseline in most settings, 

particularly when the number of trajectories is limited. Notably, Abstract 𝜋𝑏-SPIBB 

approaches the performance of the optimal policy 𝜋∗ more quickly than the other base-

lines. These results support the hypothesis that combining SPIBB with state abstraction 

improves sample efficiency, enabling better policy learning under smaller data. 

5 Related Works 

Batch reinforcement learning (Batch RL)[4], also known as offline reinforcement 

learning [5], focuses on how to learn a policy from pre-collected fixed dataset when the 

agent cannot directly interact with the environment. This paper addresses the safety 

policy improvement (SPI) problem in batch RL [6-9], which involves learning a policy 

from a fixed dataset and guaranteeing that the learned policy outperforms the behavior 

policy used to generate those samples. In reinforcement learning, the concept of 

"safety" can have multiple meanings [25], including parameter uncertainty [26], model 

𝑁∧ = 10 

𝑁∧ = 20 𝑁∧ = 70 𝑁∧ = 100 
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uncertainty [27], external interruptibility [28, 29], and safety concerns in exploration in 

risky environments [30, 31]. The SPI problem primarily concerns safety related to pa-

rameter uncertainty.  

Early approaches to the SPI problem mainly used the model-free RL paradigm, 

where policies are learned from a dataset without constructing an environment model 

[32, 33]. These methods work well only when nondeterministic parameters, like tran-

sition probabilities, follow a uniform distribution. Otherwise, they return the behavior 

policy and cannot generate the target policy. The paper [6] adopts a model-based ap-

proach, minimizing robust baseline regret, which transforms the SPI problem into a 

state-action pairs version, allowing it to handle nondeterministic parameters that don't 

follow a uniform distribution. It proves that the SPI problem is NP-hard and introduces 

constraints to approximate target policy learning, though scalability remains limited. 

Paper [7] proposes the baseline-guided SPI method (SPIBB), which builds on [6] by 

adding constraints for different state-action pairs, ensuring performance even when 

some pairs don't satisfy the constraints. Other works either improve effectiveness [21, 

22] or extend SPI to more complex settings, such as partially observable MDPs [9]. A 

common feature of these works is their reliance on the i.i.d. assumption of fixed dataset. 

6 Conclusion and Future 

In this paper, we studied the problem of safe policy improvement under state abstraction 

in the context of batch reinforcement learning. We proposed a method that integrates 

state abstraction into the SPIBB framework and provided theoretical confidence bounds 

on the performance of the learned policy under this setting. Empirical results demon-

strate that our approach achieves better policy improvement with significantly fewer 

samples compared to the original SPIBB method, highlighting the effectiveness of ab-

straction in improving sample efficiency while maintaining safety guarantees. 

There are two promising directions for future research. The first is to adaptively learn 

the state abstraction function from different datasets, and further derive corresponding 

training constraints under such learned state abstraction function. The second is to ex-

tend our framework to more complex models, such as partially observable Markov de-

cision processes (POMDPs), to improve sample efficiency. 
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Appendix 

A． Definition of the Abstract Behavior policy 

We define an abstract behavior policy 𝜋̅𝑏 that preserves the action choices of the 
original behavior policy 𝜋𝑏  under the ε-bisimulation function 𝜙: 𝑆 → 𝑆̅. Specifi-
cally, for any abstract state 𝑠̅ ∈ 𝑆̅, 𝜋̅𝑏(𝑠̅) selects an action consistent with 𝜋𝑏 over 
the set of original states mapped to  𝑠̅, i.e., 

∀𝑠̅ ∈ 𝑆̅, 𝜋̅𝑏(𝑠̅) = {
𝑎𝑖 , 𝑖𝑓 𝑠𝑖 ∈ 𝜙−1(𝑠̅) 𝑎𝑛𝑑 𝜋𝑏(𝑠𝑖) = 𝑎𝑖

𝑎𝑗 , 𝑖𝑓 𝑠𝑗 ∈ 𝜙−1(𝑠̅) 𝑎𝑛𝑑 𝜋𝑏(𝑠𝑗) = 𝑎𝑗

⋯

 

By construction, 𝜋̅𝑏 can be viewed as the abstraction of 𝜋𝑏 in the abstract MDP. 
Consequently, 𝜋̅𝑏 and 𝜋𝑏 are performance-equivalent in their corresponding 
models. 
 

B． Proof of Theorem 1 

To begin with, we introduce two lemmas that are required for Theorem 1. 
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Lemma 1. For any abstract policy 𝜋̅ ∈ Π̅𝑏, the performance difference between 
its execution in the abstract MDP 𝑀̅𝜔

∗  and in the true MDP 𝑀∗ is bounded as fol-
lows: 

|𝜌(𝜋̅, 𝑀̅𝜔
∗ ) − 𝜌(𝜋̅, 𝑀∗)| ≤

𝛾𝜂|𝑆̅|𝑅𝑚𝑎𝑥

(1 − 𝛾)2
(14) 

Proof. Follows identically to the proof of Lemma 6 in [10]. 
Lemma 2. For any abstract policy 𝜋̅ ∈ Π̅𝑏, the performance difference between 

its evaluation in the estimated abstract MDP 𝑀̅𝜔
∗  and in the abstract MDP 𝑀∗ satis-

fies the following bound： 

|𝜌(𝜋̅, 𝑀̅𝜔
∗ ) − 𝜌(𝜋̅, 𝑀̂̅)| ≤

𝛾𝑅𝑚𝑎𝑥

(1 − 𝛾)2
√

8

𝑁∧
ln

|𝑆̅||𝐴|2|𝑆̅|

𝛿
(15) 

Proof. Follows identically to the proof of Lemma 8 and Theorem 2 in [10]. 
Subsequently, using equations (14) and (15), we can derive that for any abstract 

policy 𝜋̅ ∈ Π̅𝑏, the discrepancy in performance between the true MDP 𝑀∗ and the 

estimated abstract MDP 𝑀̂̅ is upper bounded by: 

|𝜌(𝜋̅, 𝑀∗) − 𝜌(𝜋̅, 𝑀̂̅)| ≤ (𝜂|𝑆̅| + √
8

𝑁∧
ln

|𝑆̅||𝐴|2|𝑆̅|

𝛿
)

𝛾𝑅𝑚𝑎𝑥

(1 − 𝛾)2
(16) 

Substituting 𝜋̅𝑠𝑝𝑖𝑏𝑏
⊙  and 𝜋̅𝑏 into equation (16) yields the following: 

|𝜌(𝜋̅𝑠𝑝𝑖𝑏𝑏
⊙ , 𝑀∗) − 𝜌(𝜋̅𝑠𝑝𝑖𝑏𝑏

⊙ , 𝑀̂̅)| ≤ (𝜂|𝑆̅| + √
8

𝑁⋀
ln

|𝑆̅||𝐴|2|𝑆̅|

𝛿
)

𝛾𝑅𝑚𝑎𝑥

(1 − 𝛾)2
(17) 

|𝜌(𝜋̅𝑏 , 𝑀∗) − 𝜌(𝜋̅𝑏 , 𝑀̂̅)| ≤ (𝜂|𝑆̅| + √
8

𝑁⋀
ln

|𝑆̅||𝐴|2|𝑆̅|

𝛿
)

𝛾𝑅𝑚𝑎𝑥

(1 − 𝛾)2
(18) 

By adding both sides of equations (17) and (18), we obtain: 

𝜌(𝜋̅𝑠𝑝𝑖𝑏𝑏
⊙ , 𝑀∗) − 𝜌(𝜋̅𝑏 , 𝑀∗) ≥ 𝜌(𝜋̅𝑠𝑝𝑖𝑏𝑏

⊙ , 𝑀̂̅) −  𝜌(𝜋̅𝑏 , 𝑀̂̅) − (𝜂|𝑆̅| + √
8

𝑁∧
ln

|𝑆̅||𝐴|2|𝑆̅|

𝛿
)

2𝛾𝑅𝑚𝑎𝑥

(1 − 𝛾)2
(19) 

Then, the acceptable performance loss 𝜁 can be defined as: 

𝜁 = (𝜂|𝑆̅| + √
8

𝑁⋀
ln

|𝑆̅||𝐴|2|𝑆̅|

𝛿
)

2𝛾𝑅𝑚𝑎𝑥

(1 − 𝛾)2 − 𝜌(𝜋̅𝑠𝑝𝑖𝑏𝑏
⊙ , 𝑀̂̅) +  𝜌(𝜋̅𝑏 , 𝑀̂̅) (20) 

We have  

𝜌(𝜋̅𝑠𝑝𝑖𝑏𝑏
⊙ , 𝑀∗) ≥ 𝜌(𝜋̅𝑏 , 𝑀∗) − 𝜁 

This concludes the proof. 
 

 

 
 

 

 

 


