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Abstract. In recent years, recommendation systems based on graph neural networks (GNN) have 

achieved remarkable success. Despite their effectiveness, GNN-based methods are often affected 

by noisy interactions in user-item data. Consequently, several approaches have adopted graph 

contrastive learning (GCL)to address this challenge. However, most existing GCL approaches 

construct contrastive views from the user-item graph, without explicitly leveraging high-order 

relational information(i.e., user-user and item-item relationships). Moreover, they often adopt a 

uniform perspective on user-item connections, neglecting the diversity of user interests.To ad-

dress these limitations, we present a graph contrastive recommendation model that incorporates 

an adaptive multi-view fusion strategy,named AdaFCL. Specifically,to more explicitly exploit 

high-order information, we design an adaptive fusion module that fuses edge weights derived 

from both the user-item interaction graph and the high-order collaborative graph(i.e., user-user 

and item-item graph).Then this fusion module introduces a learnable generator based on GCN 

and GAT to generate low-noise contrastive views, as an alternative to traditional random pertur-

bations. Furthermore, we design a interest aggregation module to embed users’ personalized pref-

erences into the representation learning process.Extensive experiments on three public bench-

mark datasets demonstrate the superiority of AdaFCL. Compared to the strongest baselines , our 

model improves performance by up to 9.27% for NDCG@20 and 8.67% for Recall@20. 

Keywords: Information systems, Recommender systems. 

1 Introduction 

Recommendation systems play a pivotal role in mitigating information overload and 

enhancing user experience, and have become a critical component of modern infor-

mation systems. They are extensively applied in e-commerc, social media, and video 

platforms [1], helping users discover relevant content from an overwhelming volume of 

information. Collaborative Filtering (CF) is among the most widely used methods in 

recommendation systems, capturing the preferences of similar users based on implicit 

feedback such as clicks and Browse history [2][3][4][5]. However, GNNs still contend with 

several issues in collaborative filtering [6], such as noisy interactions and a heavy reli-

ance on observed interactions as supervisory signals. Drawing inspiration from self-

supervised learning, Graph Contrastive Learning (GCL) utilizes view comparison and 

consistency constraints to learn more robust user and item representations, and has be-

come a principal methodology in recommendation algorithm research. Conventional 

approaches typically construct contrastive views by applying random perturbations to 

the interaction graph, such as SGL [7] and SLRec [8], or by  perturbing the learned node 

representations, as in SimGCL [9]. Furthermore, some methods generate self-supervised 



 

 

signals by heuristically constructing views and hypergraphs, thereby implicitly exploit-

ing high-order information to some extent, as exemplified by NCL [10] and HCCF [11]. 

Although existing GCL-based recommendation methods have demonstrated consid-

erable potential, they are constrained by the following limitations. To begin with, some 

methods rely predominantly on random perturbations (e.g., node/edge dropping,em-

bedding perturbation) for generating contrastive views . These approaches tend to in-

troduce extraneous noise, undermining key structural information and failing to explic-

itly exploit high-order relations. Furthermore, existing GCL frameworks typically treat 

all user-item interactions as equally significant,thereby overlooking degree of user in-

terest in different items and lacking fine-grained interests modeling. 

To address these challenges, we propose AdaFCL,a graph-contrastive recommenda-

tion method .AdaFCL generates low-noise view and explicitly exploit the use of high-

order information by adaptively fusing representations from adaptive multi-view fusion 

strategy . Specifically, we design a view generator that leverages both Graph Attention 

Networks (GAT) and Graph Convolutional Networks (GCN), which learns dynamic 

edge weights to construct contrastive views from distinct perspectives, thereby avoid-

ing the noise introduced by random perturbations . Subsequently, we employ an adap-

tive multi-view fusion module to fuse the generated representations into a unified view. 

In addition, we introduce an interest aggregation module to quantify user preferences 

for interactive items and inject interest signals into the fusion view. To inject signals of 

user interest intensity into representation learning, we propose an interest aggregation 

loss to serve as an auxiliary learning objective for the main recommendation task. Fi-

nally, AdaFCL effectively improves the performance and robustness of the recommen-

dation system by contrastively learning the initial interaction view and the fused view 

enhanced by interest. Our primary contributions are as follows： 

• We explicitly exploit high-order information from the user–item interaction 

graph through our view fusion strategy. Moreover, instead of relying on ran-

dom perturbations, we employs a view generator composed of GAT and 

GCN to construct contrastive views. As a result, AdaFCL effectively ad-

dresses both view noise and the underutilization of high-order information. 

• We propose an interest aggregation module to capture the degree of user in-

terest in an item and integrate it into the contrastive view to further enhance 

the learned representation. 

• Extensive experiments on multiple public datasets demonstrate that the Ada-

FCL framework achieves substantial performance gains over mainstream and 

state-of-the-art baselines. Further ablation studies and analyses confirm the 

effectiveness and necessity of its core components. 
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2 Relatedwork 

2.1 GNN-based recommendation systems 

Graph neural networks (GNNs) have become effective components for modeling 

user-item relationships in recommender systems. The principal focus has been on op-

timizing graph structural modeling, enhancing the efficiency of information interac-

tion, and improving the representational capacity of user-item relationships. Early ef-

forts such as NGCF [12] and LightGCN [5] streamlined non-linear operations within tra-

ditional message-passing frameworks. They achieved this by designing lightweight 

graph convolutional architectures, thereby effectively balancing model performance 

with computational efficiency. To address the layer depth limitation in GNNs, LR-

GCCF [13] introduced residual connections to mitigate the over-smoothing phenome-

non. Meanwhile, models like CAGCN [14] optimized the information aggregation pro-

cess through collaborative signal filtering. Similarly, ApeGNN [15] approached this op-

timization from the standpoint of node-adaptive diffusion weights. 

In the domain of representation learning, models such as DGCF [16] achieved fine-

grained preference modeling by disentangling latent user intents. In contrast, HGCF [17] 

innovatively introduced hyperbolic space to augment the expressive power of embed-

dings. To contend with complex interaction scenarios, MBGCN [18] constructed multi-

relational graph networks to capture the heterogeneity inherent in multi-behavioral in-

teractions. MixGCF [19] proposed a continuous negative sample generation strategy to 

enhance training robustness. Furthermore, SSNet [20] resolved the issue of scale distor-

tion during node neighborhood information fusion through a scale-aware aggregation 

mechanism. Collectively, these technical advancements span the dimensions of graph 

structure optimization, dynamic weight allocation, representation space expansion, and 

training strategy innovation. They have propelled the evolution of GNN-based recom-

mendation systems, furnishing new theoretical frameworks and practical pathways for 

modeling complex user-item relationships. 

2.2 GCL-based recommendation systems 

In recent years, research on recommendation systems based on Graph Contrastive 

Learning (GCL) has achieved significant progress, with its core focusing on enhanc-

ing node representation learning in user-item interaction graphs through multi-view 

contrastive learning. Existing methods mainly revolve around view generation tech-

niques, which can be roughly categorized into two types: manual view generation 

constructs contrastive samples by empirically perturbing the original graph structure 

or features—for example, SGL[7] perturbs the graph structure by randomly dropping 

nodes or edges, while SimGCL[9] and XSimGCL[21] enhance features by introducing 

implicit noise; adaptive view generation, on the other hand, dynamically optimizes 

views through learning mechanisms—for instance, GCARec[22] generates probabilis-

tic connections using Gumbel softmax, and AdaGCL[23] combines graph autoencoders 

with denoising models to generate semantically enhanced views. Meanwhile, GCL 

techniques have been extended to various recommendation scenarios, such as NCL[10], 



 

 

which captures high-order collaborative signals through semantic center node align-

ment. Despite these advances in recommendation accuracy, challenges remain, in-

cluding insufficient modeling of latent factors and coarse-grained preference repre-

sentations. How to decouple user interests and uncover implicit interaction motiva-

tions through fine-grained contrastive objectives remains an important direction for 

future research. 

 

Fig. 1. The overall framework of our proposed AdaFCL model generates information rich 

contrastive views by adaptively fusing low-noise views from GCN and GAT and integrating 

a user interest aggregation module 

3   Methodology 

This section introduces our proposed model AdaFCL. As shown in Figure 1, AdaFCL 

first utilizes an adaptive view fusion mechanism to generate and fuse multi-view rep-

resentations. It then employs the preference information from the interest aggregation 

module to achieve comprehensive multi-view information fusion. Finally, contrastive 

learning is applied to optimize the generated representations, enhancing recommenda-

tion performance. 

3.1 Problem description 

We define the set of users as 𝑈 = {𝑢} and the set of items as 𝐼 = {𝑖}. The observed 

implicit feedback is represented by an interaction matrix 𝑅 ∈ {0,1}|𝑈|×|𝐼|, where 

𝑅𝑢,𝑖 = 1 indicates that an interaction (e.g., a click or purchase) exists between user 𝑢 

and item 𝑖; otherwise, 𝑅𝑢,𝑖 = 0.We use an array 𝐸 of size (2, ℰ) to represent the con-

nected users and items in the interaction graph, where ℰ is the number of edges. 
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Let 𝒢 denote the user-item interaction graph, whose adjacency matrix is defined as: 

𝐴𝒢 = [
0 𝑅
𝑅𝑇 0

], (1) 

furthermore, we introduce a High-order Collaborative Graph, denoted as 𝒢 ′. This 

graph incorporates two types of high-order relations: a user-user similarity graph 𝑆 

and an item-item similarity graph 𝐾. Its adjacency matrix is given by: 

𝐴𝒢′ = [
𝑆 0
0 𝐾

]. (2) 

The primary objective of collaborative filtering is to predict unobserved interactions 

in the matrix 𝑅. Following the formulation in [26], this is typically achieved by esti-

mating the probability that a user 𝑢 will interact with an item 𝑖. 

3.2 High-order Collaborative Graph Construction 

The High-order Collaborative Graph (𝒢 ′) is composed of a user-user relation graph 

and an item-item relation graph. Specifically, we define users with similar preferences 

as collaboratively similar users, and items that share a common group of interacting 

users as collaboratively similar items. To quantify this collaborative similarity, we 

employ the Jaccard Similarity Coefficient [25] to measure the similarity between users 

and item of the same type, 𝑖 and 𝑗. 

Let 𝑁𝑖 denote the set of neighbors for a node 𝑖 in the original interaction graph (i.e., 

if 𝑖 is a user, 𝑁𝑗 is the set of items 𝑖 has interacted with; if 𝑖 is an item, 𝑁𝑖 is the set of 

users who have interacted with it). The Jaccard similarity, 𝑠𝑖𝑚𝑖,𝑗, between two nodes 𝑖 

and 𝑗 is calculated as follows: 

𝑠𝑖𝑚𝑖,𝑗 =
|𝑁𝑖 ∩ 𝑁𝑗|

|𝑁𝑖 ∪ 𝑁𝑗|
, (3) 

where |𝑁𝑖 ∩ 𝑁𝑗| is the number of common neighbors between nodes 𝑖 and 𝑗, and |𝑁𝑖 ∪

𝑁𝑗| is the total number of unique neighbors of both nodes. The value of 𝑠𝑖𝑚𝑖,𝑗 ranges 

from 0 to 1, where a higher value indicates a greater overlap in their neighborhoods 

and thus a stronger collaborative similarity. 

To enhance computational efficiency and filter out noise—such as low-similarity con-

nections resulting from a small number of common neighbors that lack practical signif-

icance—we do not retain all non-zero similarity scores. Instead, we employ a filtering 

strategy that combines Top-K selection with a similarity threshold, 𝛿. as follows: 

𝒢 ′
𝑖,𝑗
= {

𝑠𝑖𝑚𝑖,𝑗 if 𝑗 ∈ Top-K and 𝑠𝑖𝑚𝑖,𝑗 ≥ 𝛿

0 otherwise
, (4) 

where Top-K(𝑖) denotes the set of K nodes with the highest similarity to node 𝑖. 



 

 

3.3  Learnable View Generation 

Current Graph Contrastive Learning (GCL) methods primarily rely on heuristic-based 

perturbations of graph structures or node features to construct contrastive views. Such 

strategies are prone to introducing noise or discarding critical topology information, 

thereby undermining the effectiveness of contrastive learning. To address this limita-

tion, we employ a learnable view generation mechanism that adaptively extracts in-

formation from the original graph to produce high-quality, information-rich views. 

GCN-based View Generation.The structural information of the original interaction 

graph is crucial, as it can guide the generation of views with less noise. To leverage the 

structural features captured by Graph Neural Networks (GNNs), we adopt the message-

passing strategy proposed in LightGCN[5]. 

Specifically, we utilize fused node representations from the final (𝐿-th) layer of GNN 

propagation. This fused representation, ℎ𝐿
𝑖 , integrates information aggregated from 

both the original graph 𝐺 and the high-order graph 𝐺′: 

ℎ𝐺,𝐿
𝑖 = ∑

1

√|𝒩𝐺(𝑖)||𝒩𝐺(𝑗)|
𝑗∈𝒩𝐺(𝑖)

ℎ𝐿 − 1𝑗 , (5) 

ℎ𝐺′,𝐿
𝑖 = ∑

1

|𝒩𝐺′(𝑖)|
𝑗∈𝒩𝐺′(𝑖)

ℎ𝐿−1
𝑗

. (6) 

The final 𝐿-th layer representation ℎ𝐿
𝑖  is defined as the sum of these two components: 

ℎ𝐿
𝑖 = ℎ𝐺,𝐿

𝑖 + ℎ𝐺′,𝐿
𝑖 . These fused embeddings 𝑖 and an item 𝑗, denoted as ℎ𝐿

𝑖  and ℎ𝐿
𝑗
, are 

then used to compute the edge weight 𝑊GCN𝑖,𝑗
: 

𝑊GCN𝑖,𝑢
= 𝜎(𝐡𝑖

𝐿 ⋅ 𝐡𝑗
𝐿), (7) 

where the edge connects user 𝑖 and item 𝑗. This design enables the integration of long-

range dependencies (from 𝐺′) learned by the GNN, facilitating the generation of more 

informative and context-aware views. 

GAT-based View Generation.Recognizing the inherent heterogeneity in user-item in-

teractions—i.e., different items hold varying degrees of relevance for a user—we adopt 

an attention-based method for edge weight generation, inspired by Graph Attention 

Networks (GAT) [26]. This mechanism allows the model to infer context-aware edge 

importance. 

Specifically, for an edge connecting user 𝑖 and item 𝑢, we first compute an unnor-

malized attention coefficient, 𝛼𝑖,𝑢. This coefficient acts as a compatibility score derived 

from the initial node embeddings, 𝐞𝑖
𝑢 and 𝐞𝑢

𝑣 . It is calculated by projecting the embed-

dings with a shared learnable vector 𝐠 ∈ ℝ𝑑 and then applying a nonlinear activation 

function 𝜎: 
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𝛼𝑢,𝑖 = 𝜎((𝐠𝑇𝐞𝑖
𝑢) ⋅ (𝐠𝑇𝐞𝑢

𝑣)). (8) 

To ensure the weights are comparable, these raw coefficients are normalized across 

the neighborhood of user 𝑚 using the softmax function. The final edge weight, 

𝑊GAT𝑢,𝑖
, is computed for all items 𝑘 that user 𝑚 has interacted with (i.e., where 

𝐴𝑚,𝑘 = 1): 

𝑊GAT𝑢,𝑖
=

exp(𝛼𝑢,𝑖)

∑ exp𝑘∣𝐴𝑖,𝑘=1
(𝛼𝑖,𝑘)

. (9) 

3.4 Adaptive Multi-View Representation Fusion. 

We design an adaptive multi-view fusion module that enables the flexible integration 

of representation from different views. 

View refinement.View-shared representations are essential for understanding user–

item relationships commonly endorsed across different views. This shared representa-

tion is denoted as the view-shared edge weights 𝑊𝑣. To compute 𝑊𝑣, we employ a mul-

tilayer perceptron (MLP) [27] that directly learns and infers the shared edge weights from 

the edge weights of individual views. The computation is as follows:  

𝐡𝑗
(𝑙)

= 𝜎(𝐖(𝑙)𝐡𝑗
(𝑙−1)

+ 𝐛(𝑙)), (10) 

in this formulation, 𝐖(𝑙) and 𝐛(𝑙) are shared across all edges 𝑒𝑗 in the graph. The set 

of shared edge weights for all edges is expressed as: 

𝑤𝑣𝑗 = 𝐡𝑗
(𝐿)
, (11) 

𝑊𝑣 = {𝑤𝑣𝑗}𝑗=1
𝑀 . (12) 

In addition, due to their distinct construction paradigms (e.g., 𝑊GNN emphasizes topo-

logical structure, whereas 𝑊GAT focuses on interactions revealed through attention 

mechanisms), each view is expected to retain information beyond the shared weights 

𝑊𝑣.  

𝑊‾𝑛 = 𝑊𝑛 −𝑊𝑣 . (13) 

To effectively identify and exploit these view-specific signal components, we intro-

duce the notion of view-specific edge weights, denoted as 𝑊‾𝑛. The computation of 𝑊‾𝑛 

follows a differencing logic, aiming to isolate view-specific information by subtract-

ing the shared component 𝑊𝑣 from the view edge weights 𝑊𝑛. 

View Fusion.Finally, the extracted shared and specific representations are integrated 

to form 𝑊𝑑. For each edge 𝑒𝑗 in the graph, the final aggregated weight 𝑤𝑑𝑗  is defined 



 

 

as the sum of its shared weight and the corresponding view-specific weights. Accord-

ingly, the aggregated edge weight set 𝑊𝑑 is given by: 

𝑊𝑑 = 𝑊𝑣 +∑𝑊‾𝑛
𝑛∈𝑁

, (14) 

these aggregated edge weights 𝑊𝑑 are further combined with the graph topology rep-

resented by the edge index 𝐸 to yield the weighted adjacency matrix 𝐴𝑑:  

𝐴𝑑 = Φ(𝑊𝑑 , 𝐸), (15) 

this process generates the contrastive view 𝐴𝑑 based on the given edge index 𝐸 and 

the associated learned edge weights 𝑊𝑑. 

3.5 Interest Aggregation 

Most existing graph neural network-based recommendation methods rely on static ad-

jacency matrices for representation learning. While effective, such approaches often 

overlook the heterogeneity in user interests toward different items, thereby limiting 

the expressiveness of the resulting representations. To address this, we introduce a 

learnable interest aggregation module designed to incorporate user interest signals 

into the contrastive view, enhancing the personalization and robustness of the struc-

tural representations. 

The core of this mechanism lies in constructing an interest aggregation matrix 𝐏, which 

quantifies a user’s degree of preference for their interacted items. 

Specifically, for a user 𝑖 and an item 𝑗, we compute this preference score using the 

dot product of their final embedding vectors, normalized by the sigmoid function:  

𝑃𝑖𝑗 = {
sigmoid((𝐡𝐿

𝑖 )𝑇𝐡𝐿
𝑗
), if 𝐴𝑖𝑗 = 1

0, otherwise
, (16) 

𝐡𝐿
𝑖 and 𝐡𝐿

𝑗
is from initial view, learning to say, 𝐴𝑖𝑗 = 1said observed the interaction be-

tween them. The sigmoid function maps the dot product to a [0,1] interval, providing 

a probabilistic interpretation of the interaction strength:  

sigmoid(𝑥) =
1

1 + 𝑒−𝑥
. (17) 

Subsequently, we apply element-wise multiplication to inject these interest signals 

into the aggregated contrastive view 𝐀𝑑, yielding a refined, interest-aware view:  

𝐀‾𝑑 = 𝐀𝑑 ⊙𝐏. (18) 

This operation preserves the graph structure while adjusting edge weights to empha-

size high-interest interactions during message passing. To further steer the model, we 
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introduce an interest aggregation loss that encourages higher weights for observed 

user-item pairs:  

ℒ𝐼𝐴 = − ∑ log

(𝑖,𝑗)∣𝐴𝑖𝑗=1

(𝐴‾𝑖𝑗
𝑑 ), (19) 

by maximizing the log-probability of observed interaction edges, this loss term ena-

bles the model to encode user interests effectively. This final, refined contrastive 

view, 𝐀‾𝑑, is then used for multi-layer message passing in the graph neural network. 

3.6 Contrastive Learning 

Existing stochastic perturbation-based view generation strategies may introduce noise 

into the original graph and typically employ two augmented views for contrastive 

learning. As a result, the original view does not directly contribute to the contrastive 

loss. In our method, we utilize adaptively fused contrastive views with integrated in-

terest aggregation, which substantially reduces the risk of noise. Therefore, we per-

form contrastive learning between the generated contrastive views and the original 

graph representation. 

We adopt the InfoNCE loss [28], denoted as 𝐿𝑐𝑙 , to maximize the agreement between 

the same node across different views:  

𝐿𝑐𝑙
𝑢 = ∑ −

𝑢∈𝒰

log
exp(𝜙(𝑧𝑢 , 𝑔𝑢)/𝜏)

∑ exp𝑢′∈𝒰 (𝜙(𝑧𝑢, 𝑔𝑢′)/𝜏)
, (20) 

𝑧𝑥 and 𝑔𝑥 denote the representations of node 𝑥 in the original view 𝑍 and the gener-

ated contrastive view 𝐺, respectively. 𝜙(⋅,⋅) is a similarity function, and 𝜏 is a temper-

ature hyperparameter. 

3.7 Loss function 

The final training objective of the model is a multi-task loss function 𝐿, which inte-

grates the primary recommendation loss, contrastive learning loss, interest aggrega-

tion loss, and an L2 regularization term. Recommendation loss: We adopt the Bayes-

ian Personalized Ranking (BPR) loss 𝐿𝑏𝑝𝑟:  

𝐿𝑏𝑝𝑟 = ∑ −

(𝑢,𝑖,𝑗)∈𝒪

log𝜎(𝑦̂𝑢,𝑖 − 𝑦̂𝑢,𝑗), (21) 

where 𝒪 denotes the set of training triples (user, positive item, negative item), and 𝜎 

is the sigmoid function.Total loss: 

𝐿 = 𝐿𝑏𝑝𝑟 + 𝜆1𝐿𝑐𝑙 + 𝜆2𝐿𝑖𝑎 + 𝜆3 ∥ Θ ∥2
2, (22) 



 

 

where Θ denotes all trainable parameters in the model, and 𝜆1, 𝜆2, 𝜆3 are hyperparam-

eters that balance the contributions of each loss component. The model is trained end-

to-end by minimizing the total loss 𝐿. 

4  Experimental results and analysis  

In this section, we conduct extensive experiments for model evaluation to answer the 

following key research questions: 

1. How effective is our AdaFCL compared to various state-of-the-art (SOTA) 

recommendation models? 

2. Do the designed key components benefit the representation learning of our 

AdaFCL in achieving performance improvement? 

3. How effective is our proposed fusion strategy? 

4. How do key parameters affect the model performance? 

4.1 Experimental settings 

Datasets.We evaluate AdaFCL on three publicly available real-world datasets: 

Gowalla, Amazon-book, and Tmall. The Gowalla dataset, collected from the Gowalla 

platform, captures user check-in behaviors at various locations. The Amazon-book da-

taset consists of user rating behaviors on book-category products from the Amazon 

platform. The Tmall dataset focuses on customer purchase behaviors observed on the 

Tmall online retail platform. 

Following the preprocessing procedure described  [31], we extract user–item interac-

tions from the raw data and split them into training, validation, and test sets with a ratio 

of 7:2:1. Detailed statistics of the datasets are summarized in Table 1. 

Table 1: Statistics of the experimental datasets 

Dataset  #Users #Items #Interactions Density 

Gowalla 50,821 57,440 1,172,425 4.0𝑒−4 

Amazon-book 78,578 77,801 2,240,156 3.7𝑒−4 

Tmall 47,939 41,390 2,357,450 1.2𝑒−3 

4.2 Baseline methods 

To comprehensively evaluate the performance of AdaFCL, we compare it against 

three categories of state-of-the-art baselines, encompassing a broad range of collabo-

rative filtering techniques. 
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Traditional Collaborative Filtering Methods: 

1) NCF [30]: Utilizes multilayer perceptrons (MLPs) to model user–item interactions, 

demonstrating strong performance on implicit feedback recommendation tasks. 

2) AutoRec [31]: A compact and easy-to-train autoencoder-based framework de-

signed for collaborative filtering. 

Graph Neural Network-Based Methods: 

3) NGCF [32]: Employs a three-layer autoencoder architecture to learn and enhance 

user and item embeddings by reconstructing interaction signals. 

4) LightGCN [5]: Simplifies NGCF by removing nonlinear activations and feature 

transformations, leveraging neighborhood information via linear propagation. 

5) DisenGCN [16]: Improves GCN-based CF by eliminating nonlinearities and incor-

porating a residual architecture to extend LightGCN. 

6) MultiGCCF [33]: Constructs multiple graphs to explicitly represent user–item, 

user–user, and item–item relationships. 

Contrastive Learning-Based Methods: 

7) DGCF [34]: Models intent-aware graphs via intention distribution over interac-

tions to learn disentangled representations. 

8) DGCL [35]: Employs a factor-disentanglement mechanism to learn decoupled 

node representations; inner product is used for prediction. 

9) SLRec [38]: Treats node representations as contrastive views to enhance collabo-

rative filtering performance. 

10) SGL-ED/ND [7]: Constructs views of interaction structures via random walks 

and edge/node dropout for contrastive learning. 

11) HCCF [11]: Relies on constructing both global and local hypergraph-based views 

to perform contrastive learning. 

12) NCL [10]: A neighborhood-enhanced contrastive learning method using EM-

based user clustering, followed by intra-cluster contrastive training. 

13) LightGCL [36]: A lightweight contrastive learning framework that generates 

augmented views via singular value decomposition. 

14) DCCF [29]: A disentangled contrastive CF framework that adaptively separates 

latent user intents and performs data augmentation. 

15) SimGCL [9]: Discards traditional graph augmentation and introduces noise in-

jection at each embedding layer to generate contrastive views. 

16) XSimGCL [21]: Further simplifies contrastive learning by eliminating subopti-

mal graph augmentations and applying simple noise-based embedding perturbations to 

learn uniform user and item representations. 



 

 

4.3 Evaluation 

Table 2: Recommendation performance of all compared methods. R and N are abbre-

viations for Recall and NDCG, respectively. 

Data Gowalla Amazon-book Tmall 

 Metrics R@20 R@40 N@20 N@40 R@20 R@40 N@20 N@40 R@20 R@40 N@20 N@40 

NCF 0.1247 0.1910 0.0659 0.0832 0.0468 0.0771 0.0336 0.0438 0.0383 0.0647 0.0252 0.0344 

AutoRec 0.1409 0.2142 0.0716 0.0905 0.0546 0.0914 0.0354 0.0482 0.0336 0.0611 0.0203 0.0295 

NGCF 0.1413 0.2072 0.0813 0.0987 0.0532 0.0866 0.0388 0.0501 0.0420 0.0751 0.0250 0.0365 

MultiGCF 0.1458 0.2093 0.0845 0.0999 0.0554 0.0883 0.0402 0.0531 0.0442 0.0788 0.0285 0.0377 

LightGCN 0.1799 0.2577 0.1053 0.1255 0.0732 0.1148 0.0544 0.0681 0.0555 0.0895 0.0381 0.0499 

DisenGCN 0.1379 0.2003 0.0798 0.0961 0.0481 0.0776 0.0353 0.0451 0.0422 0.0688 0.0285 0.0377 

DGCF 0.1784 0.2515 0.1069 0.1259 0.0688 0.1073 0.0513 0.0640 0.0544 0.0867 0.0372 0.0484 

DGCL 0.1793 0.2483 0.1067 0.1247 0.0677 0.1057 0.0506 0.0631 0.0526 0.0845 0.0359 0.0469 

SLRec 0.1529 0.2200 0.0926 0.1102 0.0544 0.0879 0.0374 0.0490 0.0549 0.0888 0.0375 0.0492 

SGL-ED 0.1809 0.2559 0.1067 0.1262 0.0774 0.1204 0.0578 0.0719 0.0574 0.0919 0.0393 0.0513 

SGL-ND 0.1814 0.2589 0.1065 0.1267 0.0722 0.1121 0.0542 0.0674 0.0553 0.0885 0.0379 0.0494 

HCCF 0.1814 0.2589 0.1065 0.1267 0.0722 0.1121 0.0542 0.0674 0.0553 0.0885 0.0379 0.0494 

NCL 0.1831 0.2624 0.1089 0.1293 0.0846 0.1318 0.0656 0.0802 0.0647 0.0986 0.0446 0.0568 

LightGCL 0.1825 0.2601 0.1077 0.1280 0.0836 0.1280 0.0643 0.0790 0.0632 0.0971 0.0444 0.0562 

DCCF 0.1876 0.2644 0.1123 0.1323 0.0889 0.1343 0.0680 0.0829 0.0668 0.1042 0.0469 0.0598 

SimGCL 0.1927 0.2699 0.1139 0.1344 0.0907 0.1365 0.0696 0.0839 0.0680 0.1053 0.0480 0.0609 

XSimGCL 0.1933 0.2709 0.1145 0.1350 0.0911 0.1368 0.0701 0.0844 0.0693 0.1072 0.0489 0.0621 

AdaFCL 0.2056 0.2869 0.1236 0.1448 0.0990 0.1476 0.0766 0.0922 0.0734 0.1129 0.0518 0.0656 

improve 6.36% 5.91% 7.95% 7.26% 8.67% 7.89% 9.27% 9.24% 5.92% 5.32% 5.93% 5.64% 

Parameter setting.To implement our proposed model, we adopt the PyTorch frame-

work. For parameter optimization, we use the Adam optimizer with an initial learning 

rate set to 0.001. Regarding general hyperparameters, we set the embedding dimension 

to 𝑑 = 32, the temperature coefficient to 𝜏 = 0.2, and the batch size to 𝐵 = 4096. The 

hyperparameters 𝜆1 and 𝜆2 are tuned within the ranges [0.1,0.5] and [0,1.0], respec-

tively. 

We employ full ranking evaluation: for each user, we rank their positive items in the 

test set against all items they have not interacted with. When reproducing baseline 

methods, we follow the hyperparameter settings reported in their original papers, sup-

plemented with further tuning to achieve optimal performance. For GNN-based meth-

ods, the number of layers 𝐿 is selected from {1,2,3}. 

We evaluate recommendation performance using the widely adopted Recall@K and 

NDCG@K metrics [39], where 𝐾 = {20,40}. Recall@K measures the proportion of cor-

rectly predicted interactions among the ground truth, while NDCG@K further consid-

ers the ranking order of these correct predictions. All experiments are conducted on a 

24GB NVIDIA 3090 GPU. 

Performance Comparison (RQ1) .We present the performance comparison of recom-

mendation methods in table 2 and draw the following conclusions: Based on a compre-

hensive evaluation with multiple baseline methods across three datasets, the experi-

mental results demonstrate that AdaFCL consistently outperforms all baselines under 
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both top-20 and top-40 settings. Compared to state-of-the-art models, our method 

achieves relative improvements of 6.36%, 8.67%, and 5.92% in Recall@20, and 7.95%, 

9.27%, and 5.93% in NDCG@20, respectively. Specifically, compared with models 

employing random perturbations(e.g., SGL[7] and SimGCL[9]) , we achieve improve-

ments of 27.91% and 9.15% in Recall@20 on the Amazon-book dataset, which we 

attribute this improvement to the view generator’s ability to avoid introducing the noise 

in random perturbation methods. When compared with models that implicitly utilize 

high-order information(e.g., HCCF[11] and NCL[10]), AdaFCL shows improvements of 

37.12% and 17.02% in Recall@20 on the Amazon-book dataset. The results indicate 

that explicitly leveraging high-order information via adaptive view fusion enables a 

more accurate capture of complex user-item relations, resulting in richer representa-

tions for both users and items. 

 

Moreover, the results show that baseline models incorporating self-supervised learn-

ing (SSL)(e.g., LightGCL[36] and DCCF[29]), generally outperform their counterparts 

without SSL(e.g., NGCF[32] and LightGCN[5]). This is likely due to the inherent sparsity 

of labeled data in recommendation systems, where SSL helps alleviate the issue by 

extracting additional supervision signals from limited observed interactions. More im-

portantly, under sparse data conditions, the application of SSL effectively reduces the 

risk of overfitting commonly found in user representations, especially in GNN-based 

models, thereby enhancing the quality and generalization of recommendation embed-

dings. Interestingly, although MultiGCCF[33] also explicitly models high-order rela-

tions, its performance is suboptimal. We speculate that this is because it does not em-

ploy an interest aggregation module to capture users’ personalized interests in items. In 

addition, MultiGCCFstill applies linear transformations and activation functions within 

the GNN framework, which may introduce unnecessary complexity and fail to effec-

tively enhance the propagation of collaborative signals, potentially limiting its overall 

performance. 

4.4 Ablation experiment (RQ2)  

To further investigate the impact of each module in AdaFCL on overall performance, 

we conducted extensive ablation studies on several variants of AdaFCL. In these ex-

periments, we constructed different model variants by removing or replacing specific 

components in AdaFCL to precisely evaluate the effectiveness of each design choice. 

The variant w/o Specific denotes the use of only shared weights, while w/o Share re-

fers to using only specific weights. The detailed results are presented in Figure 2, 

from which we observe the following: 

 



 

 

 

Fig. 2. Performance on datasets under in terms of Recall@20 

 

• w/o G’: In this setting, we remove 𝐺′  from the model input, allowing the 

model to utilize only the original user-item interaction graph 𝐺. The experi-

mental results validate our hypothesis: removing the high-order interaction 

view 𝐺′ leads to performance degradation. This directly confirms that incor-

porating high-order interaction information plays a crucial role in capturing 

complex user behavior patterns, enhancing recommendation quality, and im-

proving overall system effectiveness. 

• w/o GAT: In this variant, we modify the view generation module by removing 

the graph attention network (GAT)-based view generator and replacing it with 

a simple GCN applied to the two input graphs. The results clearly demonstrate 

that the graph attention mechanism is essential for denoising view generation. 

• w/o IA: This variant completely removes the interest aggregation module 

from AdaFCL. The results show that AdaFCL outperforms w/o IA, highlight-

ing the benefits of the interest aggregation module in capturing and interpret-

ing users’ personalized preferences, enabling more accurate user modeling, 

and providing finer-grained and dynamic user interest representations for sub-

sequent recommendation generation and interaction. 

4.5 Study on Fusion Strategy (RQ3) 

We conduct a systematic comparison between our proposed adaptive fusion strategy 

and two mainstream fusion methods: sum fusion (Sum) and attention-based fusion 

(Attention). The quantitative results in Table 3 demonstrate that, compared with sim-

ple summation, our method explicitly leverages the shared weights between views 

(𝑊𝑣), effectively mitigating the risk of over-amplifying common signals caused by re-

dundant information. This mechanism preserves fine-grained features that exist exclu-

sively in specific views. 

In contrast to the attention mechanism, which applies global weighting across entire 

views—potentially leading to a “winner-takes-all” effect that neglects information from 
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certain views—our strategy operates at a finer granularity. It ensures that each view’s 

unique contribution (𝑊‾𝑛) is retained in the final representation, thus preserving repre-

sentational completeness.Consequently, our approach achieves optimal performance 

while maintaining model efficiency, validating its effectiveness and robustness in fea-

ture representation learning. 

Table 3: Results from different fusion strategies only 

Variants Metric Gowalla Amazon-book Tmall 

Sum Recall@20 0.2021 0.0976 0.0699 

NDCG@20 0.1217 0.0723 0.0489 

Att Recall@20 0.2013 0.0902 0.0679 

NDCG@20 0.1185 0.0701 0.0426 

Ada (Ours) Recall@20 𝟎. 𝟐𝟎𝟓𝟔 𝟎. 𝟎𝟗𝟗𝟎 𝟎. 𝟎𝟕𝟑𝟒 

NDCG@20 𝟎. 𝟏𝟐𝟑𝟔 𝟎. 𝟎𝟕𝟔𝟔 𝟎. 𝟎𝟓𝟏𝟖 

 

 

Fig. 3. Analyzing the hyper-parameters for Recall@20 and NDCG@20 on three datasets. 



 

 

4.6  Hyper-parameter Analysis (RQ4) 

This section aims to rigorously examine the sensitivity of the AdaFCL model to two 

critical hyperparameters: the loss weights 𝜆1 and 𝜆2. Specifically, the tuning effects of 

the contrastive learning loss weight 𝜆1 and the preference-aware loss weight 𝜆2 are il-

lustrated in Figure 3. i) Regarding the loss weight 𝜆1 (for contrastive learning), we ob-

serve that the AdaFCL model achieves optimal performance when 𝜆1 is increased to 

0.2. Further increases in 𝜆1 lead to a decline in performance. This highlights the im-

portance of precisely balancing 𝜆1, suggesting that the auxiliary contrastive learning 

task should not be overly emphasized to avoid negatively impacting the primary rec-

ommendation task. ii) In addition, a similar pattern is observed for the loss weight 𝜆2 

(for interest aggregation): the model performance peaks when 𝜆2 reaches 0.5, and de-

clines with further increases. iii) We identify 𝜆1 = 0.2 and 𝜆2 = 0.5 as the optimal 

hyperparameter configuration. Under this setting, the model achieves effective coordi-

nation and balance among the primary recommendation task, the auxiliary contrastive 

learning task, and the interest aggregation task, thereby enhancing the overall optimi-

zation process in both comprehensiveness and efficacy. 

5    Conclusion  

We propose AdaFCL, a novel adaptive fusion graph contrastive learning model. This 

framework adaptively fuses views by integrating multi-graph information (user-item 

graph, user-user similarity graph, item-item similarity graph) to construct information-

rich and less noisy contrastive views, replacing traditional random perturbation strate-

gies. Furthermore, we innovatively design an interest aggregation module. This module 

fuses user interests and injects this personalized information into the final fused con-

trastive view. By performing contrastive learning between views, AdaFCL can learn 

representations that better capture the user’s true interests. Extensive experimental re-

sults demonstrate that AdaFCL significantly outperforms current state-of-the-art base-

line models on multiple real-world datasets, validating its effectiveness in enhancing 

recommendation performance and robustness.  
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