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Abstract.  A comprehensive and interpretable framework is proposed to   

forecast and analyze Olympic medal distributions by integrating ensemble 

machine learning techniques with statistical concentration diagnostics. 

Utilizing a structured dataset comprising both athlete-level and nation- level 

features—such as performance records, sport-specific metadata, host   advantages, 

and historical patterns—the framework employs the XGBoost   algorithm to 

predict medal counts for the 2028 Summer Olympics. The   model achieves 

strong predictive performance, particularly for gold medal forecasting (RMSE = 

2.42, accuracy = 93.66%), and is validated through   rigorous cross-validation 

procedures. To explore structural disparities in   medal allocation, Gini and 

Herfindahl–Hirschman indices are computed   across multiple disciplines, 

revealing significant concentration in sports   like swimming, gymnastics, and 

athletics, where a limited number of countries consistently dominate podium 

outcomes. Model interpretability is enhanced using SHAP (SHapley Additive 

exPlanations), which identifies the relative contributions of demographic, 

structural, and sport-specific variables to medal predictions. This integrative 

approach not only enables   accurate and explainable Olympic forecasting but 

also provides actionable insights for evaluating competitive equity and 

informing national sports investment strategies. 

Keywords: Olympic Medal Prediction, TOPSIS, XGBoost, Great Coach 

Effect, Gini Index, Herfindahl-Hirschman Index, Data Clustering. 

1   Introduction 

The Olympic medal table serves as a critical indicator of a nation’s sporting 

prowess and overall strength. It draws significant attention from the global 

public, media, and governmental bodies. For instance, at the 2024 Paris Olympics, both 

the United States and China achieved a tie for first place in the gold medal tally, each 



 

 

securing 40 golds. However, the United States surpassed all other nations in the 

overall medal count, accumulating a total of 126 medals. Meanwhile, France, as the 

host nation, demonstrated notable success by securing the fourth position in the total 

medal count. These outcomes underscore the substantial influence of the host 

country effect, historical performance trends, and the specific impact of different 

sports events on national rankings. 

Addressing the challenge of predicting Olympic medal outcomes requires the 

integration of various complex factors, including national economic strength, 

population size, and the number of events in each Olympics. Additionally, the 

host country effect significantly shapes the performance dynamics of participating 

nations. In this study, we utilize several key datasets to build predictive models. 

These datasets encompass historical Olympic medal distributions, which provide 

medal counts across countries over multiple Olympic cycles; athlete data, detailing 

participation and performance metrics in individual events; information about host 

countries, including all summer Olympic host nations and corresponding years; and 

event data, categorizing the number and types of events in each Olympic Games. 

The distribution of Olympic medals is governed by multifaceted and 

interdependent variables, such as economic and demographic factors, the com– 

position and number of sports disciplines, and the strategic influence of host 

nations. Therefore, to develop an accurate model for predicting future medal 

distributions, it is crucial to incorporate these factors into a sophisticated 

mathematical framework. In particular, this study places emphasis on identifying 

nations that are most likely to win their first medals and assessing the strategic 

event selection decisions made by host countries to maximize their medal outcomes 

[1] . 

2   Related Work 

2.1   Traditional statistical models in Olympic medal prediction

Prediction and analysis of competition results is a research process that integrates 

multiple indicators and data. Early studies mainly relied on econometrics and time 

series methods. Forrest et al.[2] pioneered the use of linear regression models, 

combined with macroeconomic variables, using GDP, population size, and the 

number of medals in previous games to construct a linear regression model to 

predict the Olympic performance and medal distribution of various countries. 

However, due to the limitations of linear assumptions, this method cannot capture 

the nonlinear interaction between athlete–level characteristics (such as participation 

frequency, medal probability) and national results. At the same time, due to the 



 

 
2025 International Conference on Intelligent Computing 

July 26-29, Ningbo, China 
https://www.ic-icc.cn/2025/index.php 

 
 

 

rigidity of the parameter structure, it cannot effectively model changes in sports 

events (such as the reduction of skateboarding in Los Angeles in 2028). Baio G. et 

al.[3] proposed a Bayesian hierarchical model to predict the results of football 

matches, taking into account the offensive and defensive strength of the teams, 

home and away factors, and using the MCMC method to estimate the main effects. 

Although the prediction accuracy is 95%, the model only emphasizes teams with 

high goals or concedes, and introduces a hybrid model to reduce over–contraction, 

which increases the model complexity and calculation time, making it unsuitable for 

large–scale systems. 

2.2   Machine Learning Advances and Interpretability Gaps 

In order to overcome the limitations of traditional statistical models, research in 

recent years has turned to machine learning methods. Schlembach C et al.[4] 

applied two–stage random forests to a dataset of socioeconomic variables for 

prediction, demonstrating higher accuracy. However, this method is highly data –

dependent and prone to overfitting. It also lacks dynamic adaptability and is 

difficult to predict sudden factors (such as the impact of COVID–19 on training). 

Igiri C P et al.[5] used knowledge discovery technology (KDD) and artificial neural 

networks (ANN) to build a more comprehensive system with higher prediction 

accuracy. However, the ANN model has poor interpretability and cannot clearly 

define the meaning of weights. KDD has the problem of feature selection bias at the 

data level. Therefore, even the most advanced machine learning models lack 

insights that can provide specific actionable suggestions and cannot optimize medal 

results. Our research fills this gap through interpretable multi–scale integration. 

2.3   Competitive Imbalance Analysis and Causal Inference Shortfalls 

Research on competitive imbalance is concentrated in the field of economics. Owen 

et al.[6] used the Herfindahl–Hirschman Index (HHI) to quantify the monopoly 

phenomenon in sports leagues, while Davidson[7] refined the calculation method of 

the Gini coefficient. However, these studies have significant flaws. The application 

of the HHI and the Gini coefficient fails to take into account the unique sports event 

clustering phenomenon and the dominance of athletes in the Olympics. Secondly, 

research on "great coaches" mostly remains at the qualitative analysis level and 

lacks differentiation analysis (DID) verification. However, Nachar’s[8] U–test has 

never been applied to the quantitative analysis of coaching effects. Therefore, the 

disconnect between competition indicators and causal mechanisms seriously affects 

the effectiveness of policy making. Our study makes up for these shortcomings by 



 

 

integrating these two fields, innovatively adopting the DID method to evaluate the 

impact of coaching, and enhancing monopoly visualization through t–SNE.

3   Data Description and Preprocessing 

3.1    Data Sources 

We collected the following data from the official website of the Olympic Games[9]:  

–  Medal Table Dataset: Records gold, silver, bronze, and total medal counts for 

all countries from 1988 to 2024. 

– Athlete Dataset: Includes athlete–level participation details, such as coun– try, 

event, year, and medal result. 

–  Event Dataset: Provides year–specific sport and discipline information, with 

counts of all contested events. 

–  Host Nation Dataset: Lists the host country and city for each Olympic year.  

These datasets collectively support both macro–level(country and medal) 

analyses and micro–level(athlete and event)modeling. All analyses in this study are 

strictly based on these datasets, in accordance with the modeling constraints.  

3.2   Data Cleaning and Harmonization 

To ensure consistency and reduce noise, we applied systematic data cleaning and 

integration operations across the four datasets. Country codes were first 

standardized using ISO–3166 conventions to align with IOC usage (e.g., "United 

States" → "USA"). Athlete names and event labels were normalized using 

Levenshtein distance to correct inconsistencies across different years.  

Olympic events were categorized into 25 high–level sport types to address 

structural variations such as weight classes in combat sports. Incomplete or 

irrelevant columns—such as discipline names or sports federations—were removed. 

Missing values caused by historical anomalies or weather disruptions were filled 

with zeros to preserve matrix structure and dimensionality.  

Athlete–level data was aggregated to produce more interpretable and model– 

relevant features, such as participation count, medal probabilities, and last active 

year. Additionally, contextual variables like host city and sport type were retained 

as proxy indicators of national advantage and sport–specific investment. Table 1 

summarizes the derived features used for athlete evaluation.  
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3.3   Feature Extraction and Encoding 

Table 1. Derived Features for Athlete–Level Analysis. 

 

To enhance downstream modeling performance, structured features were 

extracted from the cleaned datasets. These include both categorical and numerical 

fields relevant to predicting Olympic outcomes. Table 2 lists an overview of key 

features. These extracted variables serve as the foundation for both descriptive 

analysis and predictive modeling in subsequent sections.   

Table 2. Key Features Extracted for Medal Modeling. 
 

4   Methodology 

4.1   Motivations 

To address the multifactorial challenge of Olympic medal prediction, this study 

adopts a unified modeling strategy that integrates supervised machine learning with 

structural pattern analysis. Rather than relying on a single predictive model, we 

propose a multi-perspective pipeline designed to capture both the quantitative 

determinants of national performance and the structural dynamics that influence 

competitive outcomes—such as host advantage and event re- structuring. At the 

core of our approach is an ensemble-based predictive model constructed using the 

XGBoost algorithm[10], which is trained on historical Olympic data including 

Feature Description 

Participation Count 

Last Participation Year 

Medal Probability 

Total Medals Gold 

Medals 

Nationality   Sport 

Type 

Host City 

Total number of Olympic appearances per athlete 

Most recent year of participation 

Ratio of medal–winning events to total events 

Number of medals won by the athlete 

Number of gold medals won 

Athlete’s representing country 

Sport category participated in 

City of the Olympic Games participated in 

Feature Example Type 

NOC (Country Code)   

Programs (Sport Code) 

Host City 

USA 

SWA (Swimming) 

Los Angeles, United States 

String 

Categorical 

String 



 

 

medal distributions, event types, host cities, and athlete-level  statistics. XGBoost is 

selected for its robustness to multicollinearity, ability to capture nonlinear feature 

interactions, and strong generalization performance across structured data. This 

predictive model estimates medal counts for each nation in the 2028 Los Angeles 

Olympics and also provides confidence intervals through bootstrapping, enabling 

probabilistic forecasts. To analyze the structural concentration of medal distribution 

across different sports, we compute the Gini coefficient [6] and Herfindahl–

Hirschman Index (HHI) [7] . These statistical indicators measure the extent to 

which a few dominant countries monopolize specific sports disciplines. High values 

in these in- dices indicate reduced competitiveness and increased specialization, 

thereby helping to explain medal inequality in events such as swimming or 

weightlifting, which tend to be dominated by a handful of nations.  

Overall, the methodology aims to solve four core tasks: (1) predict total and 

class-specific medal counts per country in 2028; (2) estimate the likelihood of 

countries winning their first-ever Olympic medals; (3) evaluate how changes in 

event structure and host nation dynamics affect medal outcomes; and (4) assess 

competitive concentration and inequality using structural indicators. All modeling 

is conducted strictly within the constraints of the provided dataset, without 

incorporating external socioeconomic variables such as GDP or population.The 

primary notations used in this study are summarized in Table 3.  

Table 3. Notations. 
 

Symbol                                                                Definition 

Mgold  

Msilver 

Mbronze  

M total 

Sathlete 

Pm e d a l  

β3 

G 

H H I  

d i j 

Tprogram  

Wentropy 

α 

β 

Ccluster 

xi j  

Predicted gold medals for a country. 

Predicted silver medals for a country. 

Predicted bronze medals for a country. 
Total predicted medals (Mgold  + Msi lver  + Mbronze ). 

Athlete’s performance score (TOPSIS). 

Probability of winning a medal. 

Coach impact coefficient (DID model). 

Gini Index for medal inequality. 

Herfindahl–Hirschman Index for monopoly. 

Distance in t–SNE clustering. 

Total events in a sport.    

Weight (entropy method). 

Sigmoid function control parameter. 

Sigmoid function control parameter. 

Cluster index in analysis. 
Value of jth feature for ith athlete/country. 
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4.2   Medal Prediction Using Sport-Intrinsic Features 

To perform the entropy–weighted TOPSIS evaluation[11], we extracted a range of 

athlete–level features from the dataset, including Participation Count (e.g., 30), 

Last Participation Year (e.g., 2016), Gold Medal Count (e.g., 23), Medal-

Winning Probability (e.g., 0.93), Nationality (e.g., USA), and Sport Type (e.g., 

Swimming). This multi–dimensional information forms the basis for computing 

entropy–based weights and determining each athlete’s composite performance score.  

Let m denote the number of athletes and n the number of features.The raw 

decision matrix 𝑋 ∈ ℝm×n is defined as: 

where 𝑥𝑖𝑗  represents the value of the i–th athlete on the j–th feature. 

To address the heterogeneity in feature scales and distributions, we employ the 

Entropy Weight Method to compute objective weights for each feature. These 

weights are then integrated into the TOPSIS framework to derive a comprehensive 

performance score for each athlete. We first normalize the decision matrix using 

vector normalization: 

𝑟𝑖𝑗 =
𝑥𝑖𝑗

√∑ ·𝑚
𝑖=1 𝑥𝑖

2
, 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛. (2)

 

The normalized proportion 𝑝𝑖𝑗  is computed as 𝑝𝑖𝑗 =
𝑟𝑖𝑗

∑ 𝑟𝑖𝑗
𝑚
𝑖=1

. The entropy 𝑒𝑗 of each 

feature j quantifies its information diversity across athletes.The weight  𝑤𝑗  derived 

from feature 𝑗 is expressed as 𝑤𝑗 =
1−𝑒𝑗

∑ (𝑛
𝑘=1 1−𝑒𝑘)

. 

 

 𝑒𝑗 = −
1

ln 𝑚
∑ 𝑝𝑖𝑗

𝑚
𝑖=1 ln 𝑝𝑖𝑗 ,   𝑤ℎ𝑒𝑟𝑒 0 ≤ 𝑒𝑗 ≤ 1. (3)

 

Features with higher entropy (i.e., more uniform distribution across athletes) 

receive lower weights, while those with lower entropy (greater discriminatory 

power) are assigned higher weights. Feature Classification for TOPSIS 

Evaluation We classify each feature based on its relationship with athletic 

performance: 

Benefit-type features ( 𝐽1 ): Higher values indicate better performance 

⚫ Participation Count: More Olympic appearances reflect experience 

⚫ Gold Medal Count: Direct measure of elite success 

⚫ Medal Probability: Success rate in medal-winning events 

𝑋 = [

𝑥11 𝑥12 ⋯ 𝑥1𝑛

𝑥21 𝑥22 ⋯ 𝑥2𝑛

⋮ ⋮ ⋱ ⋮
𝑥𝑚1 𝑥𝑚2 ⋯ 𝑥𝑚𝑛

] (1)
 



 

 

Cost-type features ( 𝐽2): Lower values indicate better performance 

⚫ Years Since Last Participation: Computed as (2024-Last Participation Year), 

where lower values indicate recent activity 

This classification ensures proper determination of ideal solutions 𝐴+ and 𝐴−. 

We define the ideal solution 𝐴+  (best possible performance) and the negative ideal 

solution 𝐴− (worst possible performance) as: 

𝐴+ = (𝑚𝑎𝑥
𝑖

 𝑟𝑖𝑗  |𝑗 ∈ 𝐽1, 𝑚𝑖𝑛 
𝑖

𝑟𝑖𝑗| 𝑗 ∈ 𝐽2), (4)
 

𝐴− = (𝑚𝑖𝑛 
𝑖

𝑟𝑖𝑗  |𝑗 ∈ 𝐽1,  𝑚𝑎𝑥
𝑖

 𝑟𝑖𝑗| 𝑗 ∈ 𝐽2), (5)
 

where  𝐽1 and  𝐽2represent benefit–type and cost–type features, respectively (e.g., 

medal counts are benefit–type, while recency may be cost–type). For each athlete 𝑖, 
we compute the distances from the ideal and negative ideal solutions:  

𝑑𝑖
+ = √∑

𝑛

𝑗=1

𝑤𝑗(𝑟𝑖𝑗 − 𝑟𝑗
+)2, 𝑑𝑖

− = √∑

𝑛

𝑗=1

𝑤𝑗(𝑟𝑖𝑗 − 𝑟𝑗
−)2 (6)

 

where rj
+  and rj

−  are the normalized values of the ideal and negative ideal 

solutions for feature 𝑗. The final TOPSIS score for athlete 𝑖 is given by: 

TOPSIS_Score
𝑖

=
𝑑𝑖

−

𝑑𝑖
++𝑑𝑖

−. (7)
 

This score ranges from 0 to 1, with higher values indicating better overall 

performance relative to other athletes. The TOPSIS evaluation obtained by 

processing dataset is as follows: TOPSIS_Score: The comprehensive performance 

score for each athlete, reflecting their relative strength across all features. 

Total_Score: Sum of TOP -SIS_ Scores for all athletes from a country. Mean_Score: 

Average TOP1SIS_ Score per athlete in the country. Min_Score: Minimum 

TOPSIS_Score among the country’s athletes. Max_Score: Maximum TOPSIS_Score 

among the country’s athletes. Variance_Score: Variance of TOPSIS_Scores, 

indicating consistency in performance. The Olympic Games evolve not only in 

athletic performance but also in pro– gram structure. Due to regional preferences and 

international policy trends, changes in the number and type of Olympic events are 

expected. For instance, the 2028 Olympics will be hosted in Los Angeles, and 

American sports such as cricket (CKT) are likely to gain prominence. In contrast, 

sports with higher risks like skateboarding (SKB) may experience a reduction. The 

simulated changes in program counts between 2024 and 2028 are shown in Figure 1.  

To ensure that our model effectively handles these dynamic inputs, categorical 

variables such as nationality, host city, and sport type are processed   using one–hot 

encoding. For medal counts, we apply a  log(𝑥 +  1) transformation to reduce data 

skew, smooth variability, and enhance model generalizability.  At the country level, 

athlete performance is first aggregated using the TOP– SIS method[12] .From this, we 
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calculate national statistics including total score (Total_Score), mean score 

(Mean_Score), and extremal values (Min_Score and Max_Score). Using these 

aggregated features, we train an XGBoost model to predict gold, silver, and bronze 

medal counts. XGBoost, an efficient ensemble method based on gradient boosting of 

decision trees, is particularly suitable for structured tabular data with both numerical 

and categorical features. 
 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Fig. 1. Comparison of the number of programs in 2024 and 2028. 

Algorithm 1 Difference– in–Differences Analysis 

1:  Input: Dataset containing: 

2: TOPSIS Mean Score: TOPSIS score for each athlete 

3: Medal Count: The number of medals in a certain event.For example, gold, silver 

and bronze in swimming. 

4: Is Coached: Binary treatment indicator (1=coached by coach, 0=otherwise) 

5: Step 1: Prepare the data 

6: Construct interaction term group
i × timet 

7: if Parallel trend assumption is satisfied then 
8: Plot pre–treatment trends of Medal Count by Is Coached group 

9: end if 

10: Step 2: Define the DID model 

11: 𝑌𝑖𝑡 = 𝛽0 + 𝛽1 ⋅ 𝑔𝑟𝑜𝑢𝑝𝑖 + 𝛽2 ⋅ 𝑡𝑖𝑚𝑒𝑡 + 𝛽3 ⋅ (𝑔𝑟𝑜𝑢𝑝𝑖 × 𝑡𝑖𝑚𝑒𝑡) 

12:    +β4 ⋅ trendt + β5 ⋅ (trendt × groupi) + ϵit 

13: Step 3: Estimate the model 

14: Apply OLS regression to obtain coefficient estimates 

15: Step 4: Evaluate the results 



 

 

4.3   Structural Inequities in Olympic Medal Distribution 

The Olympic Games are often perceived as a celebration of global diversity and fair 

competition. However, our analysis reveals that beneath the surface lies a set of 

structural inequities that significantly affect the distribution of medals. In particular, 

we identify patterns of monopoly of specialization in certain sports, where a 

limited number of countries or individual athletes dominate  the podium. To 

quantify these inequalities, we employed the Gini index and the Herfindahl–

Hirschman Index (HHI), both of which are widely used in economics to measure 

concentration and inequality. These metrics were computed for each sport based on 

historical medal distributions, providing a lens into competitive balance across 

disciplines. To evaluate the inequality of medal distribution across countries in each 

sport, we computed both the Gini index and the Herfindahl-Hirschman Index (H Hl). 

The Gini index is defined as 𝐺 =
∑ ∑𝑛

𝑗=1
𝑛
𝑖=1 |𝑥𝑖−𝑥𝑗|

2𝑛2𝑥
, where 𝑥𝑖 represents the number of 

medals won by the i–th country, n is the number of participating countries, and  𝑥 is 

the average medal count. A Gini index of 0 indicates perfect equality, while a value 

close to 1 implies severe concentration. Complementarily, the HHI is calculated as 

HHI = ∑ 𝑠𝑖
2𝑁

𝑖=1 , where 𝑠𝑖  denotes the share of medals earned by country i. The HHl 

ranges from 
1

𝑁
 , representing a highly from competitive field, to 1, indicating a 

complete monopoly. The key interaction term 𝛽3 in Equation 8 captures the causal 

effect of elite coaching: 

𝑌𝑖𝑡 = 𝛽0 + 𝛽1 ⋅ 𝑔𝑟𝑜𝑢𝑝𝑖 + 𝛽2 ⋅ 𝑡𝑖𝑚𝑒𝑡 + 𝛽3 ⋅ (𝑔𝑟𝑜𝑢𝑝𝑖 × 𝑡𝑖𝑚𝑒𝑡)  
+β4 ⋅ trendt + β5 ⋅ (trendt × groupi) + ϵit 

(8)
 

While existing research attributes Olympic medal counts to macroeconomic 

indicators such as national GDP, this study identifies a significant yet over– looked 

factor: the impact of exceptional coaching. Although GDP remains a  fundamental 

predictor of a nation’s sporting success, we argue that coaching quality constitutes a 

critical yet underexplored determinant. To empirically validate this hypothesis, we 

employ the Difference–in–Differences (DID) method to isolate and measure the 

causal effect of coaching on medal performance.  Our empirical analysis follows a 

16: if 𝛽3 > 0 and 𝑝 < 0.1 then 

17: Conclude significant positive coaching effect on medals 

18: else 

19: Find no statistically significant coaching effect 

20: end if 

21: Output: Treatment effect 𝛽3 and model diagnostics 
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structured DID framework as outlined in Algorithm 1. The methodology is as shown 

above. 

4.4   Uncovering the Non-Economic Drivers of First-Time Olympic Medals 

The proposed scoring model employs an entropy–weighted fusion approach 

combined with logistic calibration to predict the probability of a nation winning its 

first Olympic medal. This probabilistic framework enables developing countries to 

assess the potential return on short–term Olympic investments. The model operates 

through three key computational steps. The model’s working mechanism can be 

comprehensively described as follows: The algorithm first computes feature weights 

based on statistical significance. For each feature  i, the weight 𝑤𝑖  is determined 

by: 𝑤𝑖 =

1

𝑝𝑖

∑
1

𝑝𝑗

𝑛
𝑗=1

,  where the p value was obtained through the Mann–Whitney U 

test[8]. This entropy– weighting approach assigns higher weights to features with 

smaller p–values (𝑝𝑖), reflecting greater statistical significance in predicting first–

medal outcomes. The normalization ensures the weights sum to unity.The weighted 

features are combined into a composite score through linear aggregation:  Score =
∑ 𝑤𝑖

𝑛
𝑖=1 ·  𝑥𝑖

′, where 𝑥𝑖
′  represents the normalized feature values, and 𝑤𝑖 are the 

computed weights from Step 1. This step produces a dimensionless score that 

synthesizes all predictive information while accounting for feature importance. The 

final probability of winning a first medal is obtained by mapping the composite 

score through a logistic function: 𝑃( Medal ) =
1

1+𝑒−𝛼⋅( 𝑆𝑐𝑜𝑟𝑒 −𝛽)  . The parameters α 

(steepness) and β (inflection point) control the probability transformation. A threshold 

of 0.5 is typically used to classify nations into "likely" or "unlikely" to win their first 

medal. This three–stage pipeline effectively transforms raw input features into 

probabilistic predictions while maintaining interpretability through its transparent 

weighting and calibration mechanisms. The model’s design particularly benefits 

developing countries by quantifying their Olympic medal potential based on 

measurable indicators, thereby informing strategic investment decisions.

5   Experiments and Results 

5.1   Medal Prediction Using Sport-Intrinsic Features 

To assess the predictive quality of our model, we define and calculate five evaluation 

metrics including Root Mean Square Error (RMSE), M1, which measures perfect 

prediction accuracy, M2 which evaluates the model’s ability to identify all genuine 



 

 

medalists, M3 which quantifies correct predictions for countries that realistically 

won’t medal, M4 which reflects robustness against small prediction errors, showing 

correct classification within a practical 2 medal range. These metrics are summarized 

in Table 4. The performance results for each medal type are detailed in Table 5. It 

demonstrates strong predictive capability for gold and silver medals, achieving exact  

match rates exceeding 35% and confidence–interval accuracy above 93%. Predictions 

for bronze medals are slightly less accurate, likely due to higher dispersion in lower–

tier podium finishes. Notably, the model achieves over 65% accuracy in predicting 

countries that will not win medals, indicating good sensitivity to sparse outcomes. 

The high M4 values across all medal types confirm the model’s robustness within a 

practical error (±2). 

Table 4. Evaluation Metrics for Medal Prediction. 
 

Table 5. Evaluation Metrics for Medal Predictions. 
     

 

 

 

 

 

 

 

 

 

Fig. 2. Predicted Total Medals for Top 15 Countries in 2028 (Reference: 2024) 

Metric                                                        Description 

M 1  

M 2  

M 3  

M 4  

Percentage of countries for which the predicted medal count is exactly correct 
Percentage of countries with correct non–zero medal predictions 

Percentage of countries where the model predicts exactly the same and non–zero 

Accuracy of predictions within a ±2 medal margin (95% confidence)  

Metric Gold Silver Bronze 

RMSE (medal) 2.42 2.09 2.52 
M1  (%) 37.32% 35.21% 22.89% 
M2  (%) 24.49% 25.25% 21.30% 
M3  (%) 65.91% 59.76% 27.94% 

M4  (%) 93.66% 93.31% 94.72% 



 

 
2025 International Conference on Intelligent Computing 

July 26-29, Ningbo, China 
https://www.ic-icc.cn/2025/index.php 

 
 

 

Figure 2 presents the projected total medal counts for the top 15 countries, 

comparing 2024 (Paris) with the expected outcomes in 2028 (Los Angeles), along 

with 95% confidence intervals. The United States maintains its dominant position but 

is expected to experience a slight decline in total medals, dropping from 126 in 2024 

to 122 in 2028. China is projected to see a modest increase, rising from 91 to 93 

medals. Other traditional powerhouses such as the United Kingdom and France show 

stable medal projections, suggesting consistent performance despite potential changes 

in event structures or athlete rosters. These outcomes reflect a strong historical 

momentum and stable athlete pipelines within these nations. 

To better understand shifts in Olympic performance, we visualize net changes in 

total medal counts for the same set of top–performing countries (Figure 3). Spain 

shows the largest projected gain (+10 medals), possibly driven by improvements in 

team sports and niche disciplines. Germany, Canada, and Brazil each gain 

approximately 4 medals, highlighting progress in athlete development  programs. 

Conversely, the United States is forecasted to lose four medals, reflecting increased 

competition from emerging countries and possible saturation in dominant sports. 

Other nations with anticipated medal losses include Romania, Kyrgyzstan, and 

Sweden, each facing declines due to lower event–level competitiveness or structural 

changes in qualifying rules. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Net Change in Medal Counts (2024 vs. 2028): Top 15 Nations.



 

 

To enhance interpretability, we also applied SHAP (SHapley Additive 

exPlanations) to quantify each feature’s contribution. The Total_Score was the most 

important predictor across all medal types.In gold medal predictions, sport– specific 

features such as SWM (swimming) and control variables like CTR showed 

positive influence. For silver and bronze medals, nationality–based factors like 

NOC_BAH and performance metrics like SHO (shooting) and GLF (golf) played key 

roles. The global SHAP feature importance values are visualized in Figure 4, showing 

the relative influence of features for each medal type. To further elucidate the model’s 

reasoning at the individual prediction   level, we present SHAP force plots for single 

sample predictions in Figure 5. These plots highlight how different features contribute 

positively or negatively to the final prediction score.The global SHAP feature 

importance values are visualized in Figure 4, highlighting relative contributions 

across all features. To further interpret the model’s decision–making at the instance 

level, we present SHAP force plots in Figure 5, which illustrate how individual 

variables drive specific national predictions upward or downward. These tools 

collectively enhance transparency and offer practical guidance for national sports 

strategies. 

 

 

 

 

 

 

 

 

 

 

 

(a) Gold                                        (b) Silver                                  (c) Bronze 

Fig. 4. SHAP feature importance for gold, silver, and bronze medal predictions. 

 

 

(a) Gold Medal Prediction 
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(b) Silver Medal Prediction 
 

 

 

 

 

(c) Bronze Medal Prediction 

Fig. 5. Local SHAP Explanation for Individual Country Predictions. 

5.2   Structural Inequities in Olympic Medal Distribution

Olympic medal distributions reveal persistent structural inequities across sports 

disciplines and nations. Our findings indicate that events such as swimming, 

gymnastics, and track and field consistently exhibit high values of the Gini index 

and Herfindahl-Hirschman Index (HHI), metrics that capture concentration and 

inequality. For instance, in swimming, over 60% of the gold medals  from 2000 to 

2024 were claimed by only three countries, resulting in an HHI above 0.35 and a 

Gini index consistently exceeding 0.6. These figures point to entrenched advantages 

enjoyed by a select group of nations, often due to historical investments in coaching 

pipelines, sports infrastructure, and youth training systems. To gain deeper insights 

into the manifestation of such concentration at the individual level, we performed a 

detailed case study on swimming, a discipline with high medal density and frequent 

repeat participation. The structure of swimming events — spanning freestyle, 

butterfly, medley, and relays—enables a small number of exceptional athletes to 

accumulate medals at a much higher rate than others. We clustered Olympic 

swimmers using a modified Canopy–KMeans algorithm based on performance 

statistics and metadata[13], and employed t – distributed stochastic neighbor 

embedding (t–SNE) for dimensionality reduction and visualization. As shown in 

Figure 6, the left subfigure presents a box plot of gold medal counts per swimmer, 

highlighting a highly skewed distribution. While most athletes win only one or two 

medals, a few outliers dominate the record books. Notably, Michael Phelps (USA) 

stands out with an unprecedented 23 gold medals, followed by Caeleb Dressel (USA) 

with 9 golds, forming distinct high–density clusters in the embedding space. In 

contrast, swimmers such as George Hodgson (CAN), Marcus Leembruggen (AUS), 

and Federica Pellegrini (ITA) each secured only one or two gold medals, clustering 

in the low – dominance region. This distribution underscores the monopolistic 

nature of elite performance in swimming, where a small cohort of athletes—often 

from a few dominant nations—account for a disproportionate share of Olympic 

success. Notably, Michael Phelps of the USA demonstrates an unparalleled level of 



 

 

domin-ance, securing 23 Olympic gold medals—far exceeding his closest peers. The 

t–SNE projection in the right panel shows well–separated clusters, with elite 

performers such as Phelps and Dressel forming isolated nodes away from the dense 

core of average competitors. These athlete–level patterns reinforce the macro–level 

findings of structural   concentration and resource disparity. In terms of actionable 

insights, national Olympic committees (NOCs) should consider fostering cooperative 

programs   that promote shared access to elite coaching, data infrastructure, and 

cross–border training camps. Furthermore, the International Olympic Committee 

(IOC) may explore mechanisms to maintain competitive diversity, such as introducing 

athlete participation caps per event, expanding event quotas for underrepresented 

countries, or rotating event formats to disrupt entrenched advantages.  By addressing 

both the structural and individual dimensions of medal monopolization, the Olympic 

movement can move closer to its ideals of fairness, inclusivity, and global 

representation. 
 

 

 

 

 

 

 

 

 

 

 

 

 

(a) Box plot of the gold distribution                         (b)  t–SNE  Visualization  of     

Swimming Clusters with Gold Leaders 

Fig. 6. Comparison of Gold Distribution and t–SNE Visualization in Swimming. 

5.3   Predictive Analysis of Nations Likely to Secure Their First Olympic Medal 

A crucial aspect of Olympic forecasting lies in identifying nations poised to earn 

their first–ever medal—an indicator of expanding global competitiveness. Using a 

binary XGBoost classifier trained on sport–intrinsic features (e.g., athlete count, 

qualification breadth) while excluding socioeconomic factors, we estimate each 

non–medalist country’s likelihood of medal success. Two standout candidates 

emerge: AIN (Athletes under a Neutral Flag) with a high probability of 0.81 and 

odds of 1.24, driven by consistent cross–discipline performance and near–podium 

finishes; and EOR (Refugee Olympic Team) with a probability of 0.53 and odds of 
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1.89, reflecting growing parity in qualification and support systems. As shown in 

Figure 7, both cases highlight the rising competitiveness of previously 

underrepresented entities. These results bear important policy implications. By 

directing mentorship, funding, and global cooperation toward such emerging 

contenders, the IOC and NOCs can reinforce values of inclusion and equity. More 

broadly, this analysis offers a strategic tool for monitoring competitive diffusion in 

Olympic sport and guiding targeted development interventions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Predicted Probabilities and Odds for First–Time Medal–Winning Nations. 

6   Conclusion 

This study proposes a robust and interpretable framework for predicting Olympic 

medal distributions by integrating machine learning, causal inference, and structural 

analysis. The XGBoost model, informed by carefully engineered features, 

demonstrates high predictive accuracy, while SHAP enhances interpretability of key 

drivers across medal types. Moreover, concentration metrics and athlete clustering 

reveal persistent structural inequalities, with a small group of nations and individuals 

dominating high–multiplicity events. These findings highlight the interplay 

between talent, institutional investment, and leadership, offering actionable insights 

for national sports policy and future research in sports analytics. 
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