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Abstract. Few-shot object detection (FSOD) aims to detect novel objects with 

limited annotated examples, yet existing methods face critical challenges in 

handling low-quality region proposals, leading to suboptimal generalization. 

And current meta-learning approaches often rely on pairwise region-class 

matching, which neglects contextual relationships among proposals and fails to 

leverage cross-class semantic dependencies, resulting in misclassification over 

similar classes and limited adaptability to novel categories. To address these 

limitations, we propose HG-DETR, a novel FSOD framework that integrates 

image-level detection with heterogeneous relational reasoning. Our method 

bypasses error-prone region proposal networks by directly operating on holistic 

image features through a Transformer-based architecture, enabling end-to-end 

optimization. By considering these multi-faceted relationships between 

proposals and classes, we propose(1) a cross-category semantic relationship 

graph that dynamically models semantic dependencies among base and novel 

classes to enhance prototype representations through knowledge transfer, (2) a 

query-level context aggregation graph models spatial relation- ships within a 

query image by connecting top-confidence proposals and a class node, using a 

GCN layer to aggregate features and refine proposals, and (3) bidirectional 

class-query adaptation via attention mechanisms to align feature distributions 

and bridge domain gaps. Qualitative and quantitative results demonstrate that 

our method achieves superior performance in few-shot object detection on 

Pascal VOC and MS COCO datasets compared with existing methods. 

Keywords: Object Detection, Few-Shot Learning, Few-Shot Object Detection, 

Heterogeneous Graph Convolutional Networks. 

1 Introduction 

In recent years, computer vision technology has made remarkable advancements. 

However, a considerable gap remains between current systems and human vision in 

terms of the ability to learn new concepts from only a few examples. Most existing 

methods depend heavily on large volumes of labeled data, whereas humans can 

accurately recognize novel objects with just a handful of examples. Few-Shot Object 

Detection (FSOD), a key task aimed at bridging this gap, seeks to enable efficient 
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object detection using limited annotated samples from novel categories. Although 

meta-learning-based methods [7],[22] have shown progress by integrating region-

based detection frameworks with feature reweighting strategies, their performance 

remains constrained by two critical challenges.  

Firstly, traditional methods rely heavily on region proposal networks to generate 

candidate frames, but the quality of region proposals for new classes significantly 

degrades in low-sample scenarios, because new category proposals under limited 

supervision often contain a large amount of noise or missed detections, hindering the 

effective migration of base class knowledge. Secondly, existing meta-learning 

methods mostly adopt a category-by-category independent processing model, i.e., 

feature matching is performed for a single support category at a time. This isolated 

learning strategy ignores the semantic associations between categories, e.g., the 

similarity between ‘cow’ and ‘horse,’ for example, may exacerbate misclassification, 

while the commonality between ‘sheep’ and ‘cow’ is not used for knowledge transfer. 

This neglect of category relevance makes it difficult for the model to distinguish 

similar categories and limits the ability to generalise across categories. 

To address the above challenges, this paper proposes HG-DETR, an innovative 

few-shot object detector based on heterogeneous relational reasoning. The framework 

is based on DETR, abandons the region proposal mechanism, directly achieves end-

to-end detection through image-level features, and introduces hierarchical graph 

structure modeling to systematically solve the problems of category isolation and 

context fragmentation. Its core innovation contains the fol- lowing two aspects: 1) 

Cross-category semantic relationship graph, a dynamic semantic relationship graph 

that is designed to explicitly model the semantic associations between base categories 

and new categories, and between new categories. The nodes in the graph are 

prototypical features of all categories, and the edge weights are computed by 

prototypical cosine similarity to reflect the semantic tightness between categories. The 

discriminative features of the base class are migrated to the prototypes of the new 

classes through graph convolutional message passing, while the interactions between 

the prototypes of similar new classes enhance the differentiation. 2) Query-level 

context aggregation graph. In the decoding phase, a query-level relationship graph is 

constructed. The graph takes proposals and novel class prototypes as nodes and 

optimizes detection through two connection strategies: one is to establish local 

connections based on the intersection and union ratio (IoU) of prediction frames, 

where spatially overlapping query nodes share localization information to improve the 

detection consistency of occluded or small target scenes; the other is to introduce 

class prototypes, which calibrates the different statistical distribution between the 

proposal feature and the class prototype. 

In light of the above analysis, The main contributions of this paper can be 

summarized as follows: 1) We propose the first FSOD framework that integrates 

image-level detection with hierarchical graph inference to systematically address 

region dependency and category isolation. 2) We design a hierarchical category 

semantic propagation network. By combining cross-category semantic graphs with 

query-level context graphs, our method captures inter-category semantic 

dependencies and intra-query spatial associations, thereby significantly improving the 



 

 

differentiation of similar categories and the accuracy of object localization. 3) We 

introduce a Bidirectional Feature Adaptation Mechanism: a symmetric attention 

module is embedded in the Transformer decoder to enable bidirectional interaction 

between category prototypes and query features, dynamically aligning feature 

distributions and reducing the domain gap. 

2 Related Work 

2.1 Object Detection 

Modern object detection architectures are broadly categorized into two-stage, single-

stage, and image-level transformer-based paradigms. Two-stage detectors (e.g., Faster 

R-CNN [15] and its variants employ a Region Proposal Network (RPN) to generate 

candidate regions, followed by region-wise classification and regression. While 

effective in many-shot scenarios, their reliance on proposal quality and multi-stage 

pipelines introduces computational overhead and limits adaptability to few-shot 

settings. Single-stage detectors (e.g., YOLO [14], SSD[11]) bypass the RPN by 

densely sampling anchors, enabling faster inference but sacrificing precision in 

occluded or small-object cases. Recent advancements in Transformer-based models, 

such as DETR [2] and its derivatives [26],[4],[10], have redefined detection 

paradigms through pure image-level frameworks. By replacing handcrafted 

components (e.g., anchors, NMS) with learnable queries and attention mechanisms, 

these methods achieve end-to-end optimization and competitive performance. In the 

context of FSOD, existing frameworks inherit the limitations of their base detectors. 

Two-stage methods struggle with noisy proposals under low-sample regimes, while 

single-stage and transformer-based approaches lack explicit mechanisms to exploit 

inter-class dependencies or contextual coherence. Our work builds upon the strengths 

of image-level detection paradigms, addressing these challenges through structured 

relational reasoning to enable robust generalization with minimal supervision. 

 
2.2 Few-Shot Object Detection 

Few-shot object detection (FSOD) aims to detect novel objects with minimal 

supervision while retaining robustness against background interference and semantic 

confusion among similar categories. Existing approaches predominantly follow meta-

learning or transfer learning paradigms. Meta-learning approaches, aim to learn task-

agnostic feature matching through episodic training. While effective, these methods 

rely on region proposal networks (RPNs), leading to performance degradation due to 

noisy proposals for novel classes. Recent advancements like Meta-DETR [24] 

redefined meta-learning by integrating DETR’s image-level detection framework, 

eliminating proposal dependency, and enabling end-to-end optimization. Transfer 

learning-based methods (e.g., TFA [19], FSCE [16]) fine-tune pre-trained detectors 

on novel classes, balancing simplicity and efficiency. However, they struggle to 

decouple class-agnostic localization from category-specific features, resulting in 

biased generalization. Our work builds on Meta-DETR’s image-level meta-learning 
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paradigm but introduces hierarchical graph reasoning to address its limitations. It is 

the first framework to integrate graph convolutional networks (GCNs) into image-

level meta-learning. 

 

2.3 Graph Convolutional Networks(GCNs) 

Graph Convolutional Networks [8] and their variants, such as Graph Attention 

Networks (GATs) [17], have been widely adopted in computer vision for modeling 

relational structures, including action localization [13], visual relation reasoning [12], 

and object proposal interactions [3]. While existing studies primarily focus on many-

shot scenarios or rely on predefined ontologies [18], their application to Few-Shot 

Object Detection (FSOD) remains limited. Re- cent efforts, such as QA-FewDet [6], 

have pioneered the use of heterogeneous GCNs to model class–proposal and 

proposal–proposal relationships, yet these approaches still depend on region proposal 

mechanisms. In contrast, HG-DETR is the first to integrate hierarchical graph 

reasoning into a proposal-free, image- level detection framework. By combining this 

proposal-free design with two novel modules—Inter-Class Semantic Graphs and 

Intra-Query Context Graphs—our framework explicitly captures cross-category 

dependencies and spatial-semantic coherence, effectively addressing the limitations of 

both region-based and conventional image-level methods. To the best of our 

knowledge, this is the first study to unify GCN-based relational modeling with 

holistic image-level detection in the FSOD setting, enabling robust knowledge 

transfer and accurate localization without the noise introduced by proposal 

mechanisms. The detailed methodology is presented in Section 5. 

3 Problem Definition 

In few-shot object detection (FSOD), we consider two disjoint sets of object classes: 

base classes Cbase and novel classes Cnovel, where: 

𝐶𝑏𝑎𝑠𝑒 ∩ 𝐶𝑛𝑜𝑣𝑒𝑙 = ∅ 

The goal is to train a detector using: 

A richly annotated base dataset Dbase (with abundant instances for each c ∈ 

Cbase) 

A novel dataset Dnovel (with only K annotated instances per c ∈ Cnovel) such 

that the model can generalize to detect objects from Cnovel in unseen query images. 

Formally, for each class c, the annotations include instance labels and bounding 

boxes: 

𝑇𝑐 = {(𝑐, 𝑢, 𝐼) ∣ 𝑢 ∈ 𝑈, 𝐼 ∈ ℝ𝐻𝐼×𝑊𝐼×3} 

where U defines the bounding box coordinates (x, y, w, h). In the K-shot setting, each 

novel class has exactly K support instances in Dnovel. Given a query image Iq the 

task is to output a set of detections： 



 

 

𝑆𝑞 = {(𝑐, 𝑢) ∣ 𝑐 ∈ 𝐶𝑛𝑜𝑣𝑒𝑙, 𝑢 ∈ 𝑈} 

accurately localizing and classifying novel-class objects while suppressing 

background regions. 

4 The Baseline FSOD Model 

Our baseline few-shot object detection (FSOD) framework, Meta-DETR [24], 

employs the Deformable DETR [26], a fully end to-end Transformer-based detector, 

as the basic detection framework. The model begins by extracting features from both 

the query image and support images using a shared backbone network (ResNet101). 

For the query image, multi-scale features are encoded through the backbone, while 

support images are processed to generate class prototypes via global average pooling, 

aggregating features from the limited annotated instances of each novel class. These 

prototypes represent the semantic essence of novel categories. The query features are 

then fed into a Transformer encoder to model global spatial dependencies via self-

attention, capturing long-range contextual relationships critical for detecting occluded 

or small objects. 

In the decoding phase, learnable object queries—initialized with positional 

encodings—interact with the encoded query features through cross-attention layers. 

Task-specific embeddings are injected into the decoder to align queries with the 

support class prototypes adaptively, guiding the model to focus on novel-class 

instances while suppressing background regions. The decoder directly predicts 

bounding box coordinates and class probabilities, bypassing traditional region 

proposal networks (RPNs) entirely. 

While Meta-DETR [24] eliminates the noise introduced by RPN-based proposals 

and leverages global attention for robust context modeling, it faces challenges 

outlined in Section 2, including fragmented semantic reasoning and limited 

adaptability to domain shifts. These issues arise from isolated class matching and 

static prototype alignment. In Section 5, we introduce a hierarchical graph- 

augmented framework that addresses these challenges through Cross-category 

semantic relationship graph and Query-level context aggregation graph, 

systematically bridging the gaps in the baseline model. 

5 Methodology 

5.1 Overview 

Our HG-DETR framework extends the DETR architecture into a unified pipeline for 

few-shot object detection, eliminating region proposals while integrating hierarchical 

context modeling and dynamic feature adaptation. As depicted in Fig.1, the model 

begins by processing a query image and (K)-shot support images through a shared 

ResNet-101 backbone, extracting visual features. Class prototypes for novel 

categories are initialized by averaging support features, forming the foundation for 
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subsequent relational reasoning. The class prototypes then flow into the Cross-

category semantic relationship graph, which constructs a global graph over all base 

and novel classes. Here, edges encode semantic correlations through sparse top-(k) 

connections (k=20) based on cosine similarity, allowing a GCN layer to propagate 

features across classes. This global enhancement mitigates prototype bias caused by 

the limited number of novel-class samples. 

 

Fig. 1: The overall architecture of our proposed model. Query Image and Sup- port Images are 

processed by a weight-shared feature extractor to generate query image features and few-shot 

class prototypes. Next, in order to capture semantic dependencies between categories, a cross-

category semantic relationship graph is designed to enhance few-shot class prototypes. Finally, 

the Transformer Encoder & Decoder is used to implement few-shot detection, with a query-

level context aggregation graph designed to refine proposal features by leveraging the 

contextual relationships between proposals 

Next, a Transformer decoder generates 300 candidate proposals from the query 

features, with the top 100 proposals feeding into the Query-level context aggregation 

graph. This component builds a query-level graph, incorporating the enhanced class 

prototype and candidate proposals. Edges model spatial relationships and scene-level 

context, enabling a GCN to refine proposal features by aggregating local neighbor 

information. 

Finally, the bidirectional adaptation module dynamically aligns the enhanced 

prototypes and refined proposals through dual cross-attention pathways. The resulting 

features are processed by a lightweight detection head to predict bounding boxes and 

class labels. 

 

 

 



 

 

 

Fig. 2: The architecture of the Cross-category semantic relationship graph(CSRG). Nodes in 

the graph represent class prototypes for both base and novel classes. Edges between nodes are 

determined by calculating the cosine similarity between each pair of class prototypes, with edge 

weights normalized using a softmax function over the top-K highest similarities. This results in 

a sparsely connected graph that emphasizes the most semantically related classes. 

5.2 Cross-category semantic relationship graph 

To mitigate prototype bias in novel classes under limited supervision, we construct a 

Cross-category semantic relationship graph that globally models semantic 

relationships between base and novel classes. As shown in Fig.2, we define a 

heterogeneous graph Ginter = (Vinter, Einter) where: Nodes Vinter are class 

prototypes {f(ci)}, Edges Einter encode semantic correlations through sparse 

connections. 

The semantic similarity between categories ci and cj is measured using cosine 

similarity: 

𝑒(𝑐𝑖 , 𝑐𝑗) =
𝑓(𝑐𝑖)

⊤𝑓(𝑐𝑗)

‖𝑓(𝑐𝑖)‖2‖𝑓(𝑐𝑗)‖2
(1) 

Edge weights are calculated using a softmax function over the top-20 highest 

similarities: 

𝐴𝑖𝑛𝑡𝑒𝑟
𝑗𝑖

=
𝑒𝑥𝑝(𝑒(𝑐𝑖 , 𝑐𝑗))

∑ 𝑒𝑥𝑝(𝑘∈𝑇𝑜𝑝𝐾(𝑒(𝑐𝑖,⋅))
𝑒(𝑐𝑖 , 𝑐𝑘))

(2) 

where TopK(e(ci , ·)) is the set of indices for the top-K similarity scores of 

category ci. 

A single-layer Graph Convolutional Network (GCN) then propagates features 

across the graph: 

𝑓(𝑐𝑖) =∑𝐴𝑖𝑛𝑡𝑒𝑟
𝑗𝑖

𝐶

𝑗=1

⋅ 𝑓(𝑐𝑗) + 𝑓(𝑐𝑖) (3) 

The enhanced prototype aggregates knowledge from semantically related classes 
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(e.g., refining "cow" using "horse" and "sheep"), significantly reducing prototype bias 

compared to isolated class processing. 

 

Fig. 3: The architecture of the Query-level context aggregation graph(QCAG). It consists of 

novel class nodes and proposal nodes. Edges connect proposals with an IoU > 0.7 and link the 

novel class node bidirectionally to all proposals. A GCN layer aggregates features from the 

novel class node and neighboring proposals, enhancing the proposal features by integrating 

local spatial relationships, thereby improving detection accuracy in few-shot scenarios. 

5.3 Query-level context aggregation graph 

To refine noisy candidate proposals, we design the Query-level context aggregation 

graph that models spatial relationships within a query image. As depicted in Fig.3, for 

ach novel class c, we build Gintra = (Vintra, Eintra), where: Nodes Vintra: Top 100 

proposals {pi} (by confidence), Class node (enhanced by Eq.3); Edges Eintra: 

Proposal-Proposal: Connect pi and pj if  IoU(pi, pj) > 0.7 (following [23]), Class-

Proposal: Bidirectional edges between fˆ(c) and all pi. 

A GCN layer aggregates contextual features: 

𝑓(𝑝𝑖) = (𝐴𝑖𝑛𝑡𝑟𝑎
𝑐𝑝𝑖 ⋅ 𝑓(𝑐) + ∑ 𝐴

𝑖𝑛𝑡𝑟𝑎

𝑝𝑗𝑝𝑖

𝑝𝑗∈𝒩(𝑝𝑖)

⋅ 𝑓(𝑝𝑗))𝑊 + 𝑓(𝑝𝑖) (4) 

In this formula, we aggregate features from the class node and neighboring 

proposals. The class node’s influence on proposal pi is weighted by  Aintra
cpi , while the 

summation term aggregates features from neighboring proposals pj , weighted by 

A
intra

pjpi
. The learnable weight matrix W transforms these aggregated features, and the 

original proposal features f(pi) are added back to preserve the initial information. 

Here, N (pi) denotes neighboring proposals. This process effectively integrates local 

spatial context to suppress inconsistent detections. 

The Query-level context aggregation graph effectively refines the quality of 

candidate proposals by integrating local context, leading to more accurate and reliable 

object detection in few-shot scenarios. 

 



 

 

5.4 bidirectional class-query adaptation via attention 

To address unidirectional alignment limitations in Meta-DETR, we propose 

Bidirectional Adaptation for mutual feature calibration. Given enhanced prototypes  

and refined proposals: 

Class-to-Query Attention Prototypes attend to proposals to inject classaware 

semantics: 

𝑓𝑐𝑙𝑠2𝑞 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑓(𝑐)(𝑓(𝑝))⊤

√𝑑
) 𝑓(𝑝) (5) 

Query-to-Class Attention Proposals attend to prototypes to adapt prototypes 

to query context: 

𝑓𝑞2𝑐𝑙𝑠 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑓(𝑝)(𝑓(𝑐))⊤

√𝑑
) 𝑓(𝑐) (6) 

Adaptive Fusion A learnable weight α balances both pathways: 

𝑓𝑓𝑖𝑛𝑎𝑙 = 𝛼 ⋅ 𝑓𝑐𝑙𝑠2𝑞 + (1 − 𝛼) ⋅ 𝑓𝑞2𝑐𝑙𝑠 , 𝛼 ∈ [0,1] (7) 

This bidirectional design reduces distribution shifts between support and query 

domains, decreasing misclassification for similar classes (e.g., "cat" vs. "dog") 

compared to unidirectional approach. 

6 Experimentals 

6.1 Dataset 

We evaluate our method on two widely adopted datasets for few-shot object 

detection: PASCAL VOC dataset and MS COCO dataset, following the established 

protocols from prior works [7],[22],[19]. Both datasets are split into base classes (with 

abundant annotations) and novel classes (with limited annotations) to simulate real-

world scenarios where novel objects are sparsely annotated. 

For PASCAL VOC dataset, we use the 20-class dataset with three predefined splits of 

15 base classes and 5 novel classes. The novel classes in each split are: 1. bird, bus, 

cow, motorbike, sofa; 2. aeroplane, bottle, cow, horse, sofa; 3. boat, cat, motorbike, 

sheep, sofa. The model is trained on the ‘trainval’ sets from VOC 2007 and 2012 and 

evaluated on the ‘test‘ set of VOC 2007. For few-shot evaluation, we randomly 

sample K-shot (K = 1, 2, 3, 5, 10 ) support images for each novel class and report the 

mean average precision at IoU 0.5 (mAP@0.5) averaged over 10 independent runs. 

For MS COCO dataset, we adopt the 20 PASCAL VOC classes as novel classes 

and the remaining 60 classes as base classes. Training is performed on the ’train2017’ 

subset, and evaluation is conducted on ’val2017’. In order to ensure compatibility 

with real-world data scarcity, we evaluate under (K = 1, 3, 5, 10, 30)-shot settings, 
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where even 30-shot results remain far below fully supervised performance. We report 

standard COCO metrics (AP, AP50, AP75) averaged over 5 runs. 

 

6.2 Comparison with State-of-the-Art Methods 

All results are averaged over 10 runs for PASCAL VOC and 5 runs for MS COCO to 

reduce randomness, respectively. For fair comparison, we use the same support 

images and evaluation protocols as [7]. 

PASCAL VOC We evaluate our method on the PASCAL VOC benchmark under K 

= 1, 2, 3, 5, 10 -shot settings and compare it against state-of-the-art approaches, 

including FSRW [7], and TFA [19]. As shown in Table 1, Table 2, Table 3. our 

method achieves superior performance in most Few-shot settings. However, in the 1-

shot setting, the performance is not as high as expected. This may be due to the 

limited novel-class samples, which can lead to unstable graph structure initialization, 

and the limited base classes in this dataset may also restrict the functionality of the 

cross-category semantic relationship graph. As the number of samples increases, the 

advantages of our method become more prominent. 

MS COCO On the more challenging MS COCO benchmark, our method achieves 

strong performance under K = 1, 2, 3, 5, 10, 30 -shot settings. As shown in Table 4, 

Table 5, Table 6, our model outperforms region-based methods like MPSR [21] by 

significant margins. The performance gap widens in extremely low- shot scenarios. 

For 1-shot detection, our method achieves 13.7% AP50, +9.6% improvement over 

Meta-DETR. 

 
6.3 Ablation Studies 

We conduct comprehensive ablation studies on PASCAL VOC (Split 1: bird, bus, 

cow, motorbike, sofa) to validate the design choices in HG-DETR. All results are 

averaged over 10 independent runs with different support sets, and we report mean 

average precision at IoU 0.5 (mAP@0.5) for novel classes unless otherwise specified. 
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Table 1. Few-shot detection performance (mAP@0.5) on Pascal VOC for novel classes - Class 

Split 1  

Method \ Shots 1 2 3 5 10 

FSRW [7] 14.8 15.5 26.7 33.9 47.2 

Meta Det [20] 18.9 20.6 30.2 36.8 49.6 

Meta R-CNN [22] 19.9 25.5 35.0 45.7 51.5 

TFA w/ fc [19] 36.8 29.1 43.6 55.7 57.0 

TFA w/ cos [19] 39.8 36.1 44.7 55.5 56.0 

MPSR [21] 41.7 43.1 51.4 55.2 61.8 

Retentive R-CNN [5] 42.4 45.8 45.9 53.7 56.1 

CME [9] 41.5 47.5 50.4 58.2 60.9 

SRR-FSD [25] 47.8 50.5 51.3 55.2 56.8 

FSCE [16] 44.2 43.8 51.4 61.9 63.4 

QA-FewDet [6] 42.4 51.9 55.7 62.6 63.4 

Meta-DETR [24] 40.6 51.4 58.0 59.2 63.6 

FS-DETR [1] 45.0 48.5 51.5 52.7 56.1 

HG-DETR (OURS) 39.1 53.3 54.3 63.2 64.6 

 

 

 

Table 2. Few-shot detection performance (mAP@0.5) on Pascal VOC for novel classes - Class 

Split 2 

Method \ Shots 1 2 3 5 10 

FSRW [7] 15.7 15.3 22.7 30.1 40.5 

Meta Det [20] 21.8 23.1 27.8 37.7 43.0 

Meta R-CNN [22] 10.4 19.4 29.6 34.8 45.4 

TFA w/ fc [19] 18.2 29.0 33.4 35.5 39.0 

TFA w/ cos [19] 23.5 26.9 34.1 35.1 39.1 

MPSR [21] 24.4 29.5 39.2 39.9 47.8 

Retentive R-CNN [5] 21.7 27.8 35.2 37.0 40.3 

CME [9] 27.2 30.2 41.4 42.5 46.8 

SRR-FSD [25] 32.5 35.3 39.1 40.8 43.8 

FSCE [16] 27.3 29.5 43.5 44.2 50.2 

QA-FewDet [6] 25.9 37.8 46.6 48.9 51.1 

Meta-DETR [24] 37.0 36.6 43.7 49.1 54.6 

FS-DETR [1] 37.3 41.3 43.4 46.6 49.0 

HG-DETR (OURS) 35.4 46.6 50.9 52.6 61.3 
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Table 3. Few-shot detection performance (mAP@0.5) on Pascal VOC for novel classes - Class 

Split 3 

Method \ Shots 1 2 3 5 10 

FSRW [7] 21.3 25.6 28.4 42.8 45.9 

Meta Det [20] 20.6 23.9 29.4 43.9 44.1 

Meta R-CNN [22] 14.3 18.2 27.5 41.2 48.1 

TFA w/ fc [19] 27.7 33.6 42.5 48.7 50.2 

TFA w/ cos [19] 30.8 34.8 42.8 49.5 49.8 

MPSR [21] 35.6 40.6 43.2 48.0 49.7 

Retentive R-CNN [5] 30.2 37.6 43.0 49.7 50.1 

CME [9] 34.3 39.6 45.1 48.3 51.5 

SRR-FSD [25] 40.1 41.5 44.3 46.9 46.4 

FSCE [16] 37.2 41.9 47.5 54.6 58.5 

QA-FewDet [6] 35.2 42.9 47.8 54.8 53.5 

Meta-DETR [24] 41.6 45.9 52.7 58.9 60.6 

FS-DETR [1] 43.8 47.1 50.6 52.1 56.9 

HG-DETR (OURS) 39.5 48.4 50.4 58.8 61.0 

Table 4. Few-shot detection performance on COCO for novel classes - 1-shot and 2-shot 

 1-Shot 2-shot 

method AP0.5:0.95 AP0.5 AP0.75 AP0.5:0.95 AP0.5 AP0.75 

TFA w/ fc [19] 2.9 5.7 2.8 4.3 8.5 4.1 

TFA w/ cos [19] 3.4 5.8 3.8 4.6 8.3 4.8 

MPSR [21] 2.3 4.1 2.3 3.5 6.3 3.4 

QA-FewDet [6] 4.9 10.3 4.4 7.6 16.1 6.2 

Meta-DETR [24] 7.5 12.5 7.7 - - - 

FS-DETR [1] 7.0 13.6 7.5 8.9 17.5 9.0 

HG-DETR (OURS) 7.9 13.7 7.8 9.3 16.4 9.2 

Table 5. Few-shot detection performance on COCO for novel classes - 3-shot and 5-shot 

 3-Shot 5-shot 

method AP0.5:0.95 AP0.5 AP0.75 AP0.5:0.95 AP0.5 AP0.75 

TFA w/ fc [19] 6.7 12.6 6.6 8.4 16.0 8.4 

TFA w/ cos [19] 6.6 12.1 6.5 8.3 15.3 8.0 

MPSR [21] 5.2 9.5 5.1 6.7 12.6 6.4 

QA-FewDet [6] 8.4 18.0 7.3 9.7 20.3 8.6 

Meta-DETR [24] 13.5 21.7 14.0 15.4 25.0 15.8 

FS-DETR [1] 10.0 18.8 10.0 10.9 20.7 10.8 

HG-DETR (OURS) 13.5 22.5 13.2 15.5 26 16 
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Table 6. Few-shot detection performance on COCO for novel classes - 10-shot and 30-shot 

 10-shot 30-shot 

method AP0.5:0.95 AP0.5 AP0.75 AP0.5:0.95 AP0.5 AP0.75 

FSRW [7] 5.6 12.3 4.6 9.1 19.0 7.6 

Meta Det [20] 7.1 14.6 6.1 11.3 21.7 8.1 

Meta R-CNN [22] 8.7 19.1 6.6 12.4 25.3 10.8 

TFA w/ fc [19] 10.0 19.2 9.2 13.4 24.7 13.2 

TFA w/ cos [19] 10.0 19.1 9.3 13.7 24.9 13.4 

MPSR [21] 9.8 17.9 9.7 14.1 25.4 14.2 

CME [9] 15.1 24.6 16.4 16.9 28.0 17.8 

SRR-FSD [25] 11.3 23.0 9.8 14.7 29.2 13.5 

FSCE [16] 11.1 - 9.8 15.3 - 14.2 

QA-FewDet [6] 11.6 23.9 9.8 16.5 31.9 15.5 

Meta-DETR [24] 19.0 30.5 19.7 22.2 35.0 22.8 

FS-DETR [1] 11.3 21.7 11.1 - - - 

HG-DETR (OURS) 18.8 30.1 19.3 21.5 35.2 22.7 

Component Ablation on Graph Modules To further assess the individual 

contributions of the proposed Cross-category semantic relationship graph(CSRG) and 

Query-level context aggregation graph(QCAG), we conduct a detailed component 

ablation study on Pascal VOC Split 1, evaluating performance under 1, 2, 3, 5, and 

10-shot settings using mAP@50. As shown in Table 7, using only the Cross-category 

semantic relationship graph yields solid performance, indicating that modeling 

semantic correlations among class prototypes benefits the support-to-query transfer, 

especially in low- data regimes. In contrast, employing only the Query-level context 

aggregation graph achieves slightly lower performance across all settings, suggesting 

that contextual modeling within the query image is helpful but less dominant on its 

own. When both modules are enabled, we observe consistent and noticeable 

improvements across the board, confirming that inter-class semantic reasoning and 

intra-image relational reasoning are complementary in enhancing few-shot object 

detection. These results demonstrate the necessity of jointly modeling both class-level 

and spatial-level structures to maximize generalization in few-shot detection tasks. 

Table 7. Ablation studies on Pascal VOC Split 1 

 

CSRG QCAG 1-shot 2-shot 3-shot 5-shot 10-shot 

× × 36.2 45.8 51.3 58.0 60.5 

✓ × 38.6 51.9 53.7 62.6 63.8 

× ✓ 37.5 49.4 52.4 58.8 62.0 

✓ ✓ 39.1 53.3 54.3 63.2 64.6 
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Effect of Bidirectional Class-Query Adaptation To validate the design of our 

Bidirectional Class-Query Adaptation (BCQA) mechanism, we conduct an ablation 

study on Pascal VOC Split 1. Specifically, we isolate the two directional interactions: 

(1) Class-to-Query adaptation, and (2) Query-to-Class adaptation. Table 8 reports the 

results. Experimental results show that the bidirectional design consistently 

outperforms both single-direction counterparts across all few-shot settings, 

highlighting the benefit of mutual and iterative feature alignment. This confirms the 

effectiveness of our design and the necessity of bidirectional adaptation for enhancing 

few-shot generalization. 

Table 8. Bidirectional adaptation ablation on Pascal VOC Split 1 

 

1-shot 2-shot 3-shot 5-shot 10-shot 

Class-to-Query Only 37.8 50.5 51.5 61.2 63.4 
Query-to-Class Only 38.6 52.4 53.0 62.6 63.6 

Full Bidirectional 39.1 53.3 54.3 63.2 64.6 

 

6.4 Experimental Results Visualization 

To demonstrate the superiority of our HG-DETR method, we visualize the con- fusion 

matrices of both the baseline model and our approach under the 10-shot setting on the 

PASCAL VOC split1. The results are presented in Figure 4. 

 

Fig. 4. Confusion matrices comparing the baseline model and HG-DETR method in a 10-shot 

setting on PASCAL VOC split1. Our HG-DETR demonstrates superior detection performance, 

particularly in distinguishing similar classes such as cow vs. sheep, motorbike vs. bicycle. 

The confusion matrix of our HG-DETR method demonstrates remarkable detection 

performance. Particularly, the advantage becomes more pronounced when dealing 

with similar classes such as cow vs. sheep, motorbike vs. bicycle, and horse vs. cow. 

This enhanced performance in distinguishing similar categories can be attributed to 



  

 

the Cross-category semantic relationship graph we introduced, which effectively 

captures the relationships between different classes and improves the model’s 

detection accuracy for objects with similar visual features. 

7 Conclusion 

In this paper, we present HG-DETR, a novel few-shot object detection frame- work 

that unifies image-level detection with hierarchical graph reasoning. Our method 

eliminates region proposals and introduces three key components: a cross-category 

semantic relationship graph to model cross-category dependencies, enhancing 

prototype discrimin ability by transferring knowledge from base classes; a query-level 

context aggregation graph to aggregate local overlaps and class prototype, refining 

proposals; and bidirectional feature adaptation to align prototypes and queries through 

attention mechanisms, reducing domain gaps. Our model, HG-DETR, outperforms 

existing methods, and we hope this work can offer good insights and inspire further 

researches in few-shot object detection and other related topics. 
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