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Abstract. Multi-contrast magnetic resonance imaging (MRI) is a widely used 

analytical tool for characterizing tissue contrast in neurological disorders. Alt-

hough conventional MRI techniques provide rich contrast information in the di-

agnosis of neurological diseases, their limited spatial resolution often hinders the 

precise identification of subtle pathological regions. Therefore, super-resolution 

(SR) reconstruction of MRI images holds significant importance in the field of 

medical imaging. Traditional end-to-end deep neural network approaches tend to 

learn the average of multiple possible reconstruction outcomes, resulting in 

overly smoothed generated images that lack high-frequency details. In recent 

years, generative models have demonstrated remarkable capabilities in SR tasks 

by synthesizing more realistic high-frequency information, thereby substantially 

mitigating the aforementioned issue. However, generative models generally ex-

hibit considerable randomness, making it challenging to ensure the stability and 

consistency of the results. To address this, we propose a novel MRI SR method 

that integrates the strengths of both generative and discriminative models. Spe-

cifically, we employ a latent diffusion model (LDT) to capture the high-fre-

quency information in real images and utilize the low-frequency information 

from low-resolution (LR) images as conditional input for an autoencoder to gen-

erate high-resolution (HR) images. Quantitative experimental results demon-

strate that our method outperforms existing state-of-the-art MRI SR approaches 

across multiple metrics while maintaining a more lightweight architecture. Fur-

thermore, visualization results further validate the superiority of our method in 

reconstructing high-frequency details. 

Keywords: MRI, Super-Resolution, Diffusion Model, Autoencoder, Wavelet 

Transform, Discriminative Model. 

1 Introduction 

Magnetic resonance imaging (MRI) is a non-invasive imaging technique that plays a 

crucial role in the diagnosis and research of neurological disorders [15]. Multi-contrast  
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MRI enables comprehensive visualization of different brain tissues by capturing vari-

ous contrast-weighted images, making it a fundamental tool in both clinical and re 

Fig. 1. Comparison of different paradigms in super-resolution. (a) Discriminative para-

digms typically adopt end-to-end training with L1/L2 constraints to learn a direct mapping from 

low-resolution to high-resolution images. (b) Generative paradigms, represented by GANs and 

diffusion models, model the data distribution and generate samples accordingly. (c) Our ap-

proach combines the strengths of both generative and discriminative paradigms: the generative 

model captures the distribution of the real image space, while the discriminative model enforces 

consistency constraints, resulting in super-resolved images with both high perceptual quality 

and strong fidelity. 

search settings [34]. However, despite its rich contrast information, the spatial resolu-

tion of conventional MRI is often insufficient to identify subtle pathological changes, 

such as small lesions or microstructural abnormalities. This limitation can significantly 

hinder early and accurate diagnosis [22]. 

Super-resolution (SR) techniques aim to overcome this limitation by enhancing the 

spatial resolution of low-resolution (LR) MRI scans, thereby improving the visibility 

of fine anatomical details. In recent years, deep learning-based SR methods have made 

significant progress in this field [30]. Most existing approaches follow an end-to-end 

supervised learning paradigm [38,5], where deep neural networks are trained to map 

LR images to their corresponding high-resolution (HR) counterparts, as shown in Fig. 

1(a). Although effective to some extent, these methods often produce overly smoothed 

outputs due to convolutional networks' tendency to minimize pixel-level losses (e.g., 

L1 or L2), resulting in the averaging of multiple possible HR reconstructions [27,36]. 

This leads to the loss of high-frequency details that are crucial for clinical inter-

pretation. 

To address this issue, generative models—such as generative adversarial networks 

(GANs [6]) and diffusion models (DMs [7])—have recently been introduced to MRI 

SR tasks [41,10,14,20]. These models can generate perceptually more realistic images 

with sharper textures and finer structures. Among them, latent diffusion models (LDMs 

[28]) have emerged as a promising direction due to their ability to model complex im-

age feature distributions in a compressed latent space. However, despite improvements 

in perceptual quality, generative models often suffer from randomness and output in-

consistency, which is undesirable in medical imaging, where high reliability is essential 

[36]. 

In this paper, we employ wavelet transform to decompose LR and HR images into 

frequency-domain representations and perform downsampling. We train a frequency 

autoencoder to further downsample the frequency-domain inputs. Then, using the low-

frequency information from LR images as conditioning, we leverage a DM to learn the 
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distribution of HR high-frequency components. Finally, the low-frequency information 

from LR images serves as a conditioning input for the autoencoder's decoder, while the 

high-frequency information sampled from the conditional DM is used to reconstruct 

high-fidelity and consistent MRI SR results. 

Specifically, we first apply wavelet transform to both low-resolution (LR) and high-

resolution (HR) MRI images, decomposing them into frequency-domain representa-

tions to explicitly separate low- and high-frequency components while achieving spa-

tial downsampling. In the frequency domain, we design and train a frequency autoen-

coder to further compress and model frequency-domain features, obtaining a more com-

pact yet expressive high-frequency representation. This autoencoder embeds the origi-

nal frequency-domain features into a low-dimensional latent space, facilitating subse-

quent modeling of complex high-frequency distributions [12]. Next, we use the low-

frequency information extracted from LR images as conditioning and employ a diffu-

sion probabilistic model to learn the generative distribution of the corresponding high-

frequency components in HR images. Through the conditional diffusion process, we 

iteratively sample high-frequency details from noise while ensuring consistency with 

the given low-frequency conditioning, thereby generating high-quality textures. Fi-

nally, the high-frequency information synthesized by the DM is fed as input to the de-

coder of the frequency autoencoder, while the low-frequency components from the LR 

image serve as additional conditioning. This enables the reconstruction of high-fidelity 

and structurally consistent HR images. As shown in Fig. 1(c), our approach effectively 

combines the strengths of generative models in producing high-quality details and dis-

criminative models in maintaining structural consistency, significantly improving the 

quality of MRI SR reconstruction. 

2 Related Work 

2.1 The Paradigm of Discriminative Models 

Over the past decade, the field of image SR based on convolutional neural networks 

(CNNs) has witnessed significant evolution [39,37,33]. This end-to-end supervised 

learning paradigm typically involves designing hierarchical feature extraction and up-

sampling modules (e.g., SRCNN [2], EDSR [16], RCAN [42]) to drive pixel-level map-

ping from LR to HR images, driven by L1/L2 loss functions. The field has evolved 

from shallow networks to deep residual structures, from local perception to global at-

tention mechanisms, and from single-scale to multi-scale fusion. With the increasing 

demand for high-precision diagnosis in medical imaging, SR technology has demon-

strated unique value in modalities such as MRI. For instance, Pham et al. [25] innova-

tively introduced a multi-scale training strategy. This approach not only addressed the 

issue of anisotropic resolution but also validated the feasibility of multi-modal super-

resolution and clinical low-quality image enhancement. Furthermore, lyu et al. [19] uti-

lized a two-stage progressive architecture to fuse multi-contrast information in the high-

level feature space, combined with a composite loss function design, significantly im-

proving cross-modal reconstruction performance. More recently, ji et al. [[9] broke 

through the local limitations of traditional CNNs by integrating deformable 



convolutions with state-space models, enabling long-range dependency modeling of 

complex anatomical structures. These advancements collectively have propelled the 

translation of medical SR from theoretical methods to clinical implementation. 

2.2 The Paradigm of Generative Models 

MRI SR techniques based on Generative Adversarial Networks (GANs) [41,10] have 

evolved from early simple reconstructions relying on single-modality data to high-fi-

delity reconstructions that integrate multi-modal information [11] and attention mech-

anisms (e.g., hybrid architectures of Transformer [3,44] and UNet [31]). This evolution 

has significantly enhanced the recovery quality of edge details and biological tissues. 

In terms of network architecture, the efficiency of the generator and discriminator has 

been optimized through Residual Dense Blocks, local attention modules, and region-

specific reconstruction strategies [29,18,10], while improving the PSNR and SSIM 

metrics. Moreover, the integration of GANs with other techniques such as compressed 

sensing and dynamic contrast-enhanced imaging (e.g., DLCS-SR [17]) has broken 

through the limitations of spatial and temporal resolution. This has enabled the detec-

tion of small lesions (e.g., pituitary microadenomas) and dynamic monitoring of pa-

thology in clinical applications. In recent years, diffusion models have emerged as a 

powerful alternative, demonstrating stability and high fidelity in MRI SR tasks. Xie et 

al. [35] proposed a Measurement-conditioned Denoising Diffusion Probabilistic Model 

based on the measurement domain and conditioned on undersampling masks for the 

reconstruction of undersampled medical images. Peng et al. [24] utilized the observed 

signals and pre-trained diffusion models to generate diverse solutions, employing ac-

celerated coarse-to-fine Monte Carlo sampling to approximate optimal reconstruction 

results. Li et al. [14] designed an efficient diffusion model for multi-contrast MRI su-

per-resolution. This model generates high-frequency detail priors in a compact latent 

space to reduce the number of iterations and employs a Prior-guided Large-window 

Transformer to avoid distortions. 

3 Method 

This paper proposes a novel MRI image SR method, as illustrated in Fig. 2. The overall 

framework consists of four key modules: a Wavelet Transform (WT) module, a fre-

quency encoder-decoder, a Latent Diffusion Transformer (LDT [[23]), and an Inverse 

Wavelet Transform (Inverse WT) module. 

Specifically, both the low-resolution (LR) and corresponding high-resolution (HR) 

images are first decomposed into four frequency sub-bands—one low-frequency and 

three high-frequency components—via wavelet transform. These sub-bands exhibit ex-

plicit frequency structures, which facilitate accurate modeling of structural edges and 

texture details in the frequency domain. We design and train a frequency autoencoder 

to extract latent representations of these sub-bands and to perform conditional decod-

ing. Subsequently, a LDT is trained to generate the high-frequency latent representa-

tions conditioned on the low-frequency latent representation. It is noteworthy that, 
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unlike diffusion-based MRI SR methods that mainly learn mappings and sampling be-

tween LR and HR spaces—often at the cost of prior fidelity—our model directly learns 

to generate real high-frequency components. During the reconstruction phase, the dis-

criminator-constrained super-resolution-aware decoder conditions on low-frequency 

latent features to jointly decode both low- and high-frequency features. The final SR 

image is obtained through the inverse wavelet transform. Given that LR images typi-

cally retain most of the low-frequency information while losing crucial high-frequency 

details in the frequency domain, our method capitalizes on this property. By extracting 

low-frequency information through the autoencoder and leveraging the LDT to faith-

fully recover realistic high-frequency details, our approach achieves higher-quality re-

construction results. 

Fig. 2. Overall framework of the algorithm. WT denotes the Wavelet Transform. LDT refers 

to the Latent Diffusion Transformer model. 𝑠 is the downsampling scale hyperparameter of the 

Autoencoder. 

3.1 Wavelet Transform and Frequency Autoencoder 

To effectively separate structural information from textural details in an MRI image, 

we employ the Discrete Wavelet Transform (DWT) to perform frequency-domain de-

composition of the input image. DWT decomposes the image into four sub-bands: one 

low-frequency sub-band (𝐿𝐿) and three high-frequency sub-bands (𝐿𝐻, 𝐻𝐿, and 𝐻𝐻), 

which correspond to the image's contours, vertical edges, horizontal edges, and diago-

nal details, respectively. Given an input image 𝐈 ∈ ℝ𝐻×𝑊×𝐶 , the wavelet decomposition 

can be formulated as follows: 

 𝒲(𝐼) = {𝐿𝐿, 𝐿𝐻,𝐻𝐿, 𝐻𝐻} (1) 

where 𝒲(⋅) denote the wavelet transform operator and  𝒲(𝐼) ∈ 𝐻/4 ×𝑊/4 × 𝐶. We 

apply wavelet decomposition to the low-resolution image 𝐈LR and the high-resolution 

image 𝐈HR , resulting in the low-frequency sub-band 𝐿𝐿LR  for the LR image and the 

high-frequency sub-bands {𝐿𝐻HR, 𝐻𝐿HR, 𝐻𝐻HR}  for the HR image. These high-fre-

quency sub-bands serve as inputs to the subsequent decoder and diffusion model, facil-

itating multi-scale structural modeling of the image across different frequency levels. 

After obtaining the high-resolution frequency components, we construct Frequency 

Autoencoder to extract latent representations for each sub-band. The encoder 



architecture is inspired by the structure of the Stable Diffusion model [26], consisting 

of multiple convolutional layers, residual connections, and attention mechanisms. Un-

like the original Stable Diffusion model, which encodes images into a 4-channel latent 

representation, we modify the output to produce 3 channels to better align with the 

inherent structure of natural images. To reduce the overall model size and computa-

tional cost, we decrease both the depth and width of the network while preserving its 

multi-scale feature extraction capability, thereby enhancing the model’s efficiency and 

suitability for lightweight deployment. The decoder mirrors the encoder in structure, 

with an input channel size three times that of the encoder and additional conditioning 

information. This condition is first converted to grayscale and then injected into the 

final convolutional block to provide structural guidance. The encoder, denoted as ℰ(⋅), 
takes the high-frequency sub-bands {𝐿𝐻HR, 𝐻𝐿HR, 𝐻𝐻HR} as input and maps them into 

a latent space: 

 𝐿𝐿LR
𝐿 , 𝐿𝐻HR

𝐿 , 𝐻𝐿HR
𝐿 , 𝐻𝐻HR

𝐿 = ℰ(𝐿𝐿LR), ℰ(𝐿𝐻HR), ℰ(𝐻𝐿HR), ℰ(𝐻𝐻HR) (2) 

The superscript 𝐿 on the left-hand side of the equation denotes that the variables lie in 

the latent space. These latent features are subsequently fed into the LDT for further 

modeling. Compared to modeling directly in the image domain, processing high-fre-

quency components in the frequency domain allows for more explicit separation of 

texture levels, thereby enabling the model to more effectively capture edge and detail 

information. During the decoding stage, the frequency decoder 𝒟(⋅) maps the recon-

structed latent features back to the frequency image space: 

 {𝐿𝐿̂LR, 𝐿𝐻̂HR, 𝐻𝐿̂HR, 𝐻𝐻̂HR} = 𝒟(𝐿𝐿̂𝐿𝑅
𝐿 , {𝐿𝐻̂𝐻𝑅

𝐿 , 𝐻𝐿̂𝐻𝑅
𝐿 , 𝐻𝐻̂𝐻𝑅

𝐿 }). (3) 

Finally, the reconstructed high-frequency sub-bands are combined with the low-fre-

quency sub-band and passed into the Inverse DWT, denoted as 𝒲−1, to complete the 

image reconstruction: 

 𝐈̂SR = 𝒲−1({𝐿𝐿̂LR, 𝐿𝐻̂HR, 𝐻𝐿̂HR, 𝐻𝐻̂HR}). (4) 

3.2 Latent Diffusion Modeling of High-Frequency Priors 

In this work, the LDT model is from Peebles et al. [23], and the input and output di-

mensions have been changed. To model the complex distribution of high-frequency 

features in a compact latent space while ensuring high-fidelity details and structural 

consistency in the generated images, we introduce a latent conditional diffusion model 

that operates on the latent representations produced by a frequency-domain encoder. 

Diffusion models are a class of generative models that learn data distributions by sim-

ulating a gradual noising and denoising process, ultimately generating samples that re-

semble the training data. Our approach effectively captures the high-frequency infor-

mation of real MRI images in the latent space, rather than learning a direct mapping 

from low-resolution (LR) images. Specifically, given the latent high-frequency sub-

band representation of a high-resolution (HR) image, the diffusion model is used to 

learn the prior distribution of realistic high-frequency components. The diffusion 
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process constructs a Markov chain by progressively adding Gaussian noise to the latent 

representation over 𝑇 steps. The forward diffusion process is defined as: 

 𝑞(𝐇𝑡 ∣ 𝐇𝑡−1) = 𝒩(𝐇𝑡; √1 − 𝛽𝑡𝐇𝑡−1, 𝛽𝑡𝐈) (5) 

where 𝐇𝑡 = {𝐿𝐻̂𝐻𝑅
𝐿 , 𝐻𝐿̂𝐻𝑅

𝐿 , 𝐻𝐻̂𝐻𝑅
𝐿 }𝑡 represents the noised latent high-frequency repre-

sentation. 𝐇𝑡 = 𝒩(𝐇𝑡; √𝛼̅𝑡𝐇0, (1 − 𝛼̅𝑡)𝐈) is directly sampled (noised) from the origi-

nal latent variable at an arbitrary time step 𝑡, where 𝛼̅𝑡 = ∏  𝑡
𝑖=1 (1 − 𝛽𝑖). Here 𝛽𝑡 de-

notes the noise variance at step 𝑡, which typically increases according to a predefined 

linear or cosine schedule. We follow the setting used in Guided Diffusion [1]. And 𝒩 

represents a normal distribution, and 𝐈 is the identity covariance matrix. 

During the reverse generation stage, we train a neural network 𝜖𝜃 to predict the noise 

𝜖, 

 𝜖𝜃(𝐇𝑡 , 𝑡, 𝑐): ℝ
𝐻×𝑊×3𝐶 × ℕ × ℝ𝐻×𝑊×𝐶 → ℝ𝐻×𝑊×3𝐶 (6) 

where 𝑐 is the conditional information, integrated into LDT through cross-attention. In 

our method, 𝑐 corresponds to the low-frequency sub-band 𝐿𝐿𝐿𝑅
𝐿 , which serves to guide 

the generation process towards better structural alignment and the synthesis of corre-

sponding high-frequency components. Using the predicted noise estimation 𝜖̂, we per-

form the reverse diffusion process according to the following formulation: 

 𝑝𝜃(𝐇𝑡−1 ∣ 𝐇𝑡 , 𝑐) = 𝒩(𝐇𝑡−1; 𝜇𝜃(𝐇𝑡 , 𝑡, 𝑐), Σ𝜃(𝑡)) (7) 

where Σ𝜃  is the learnable variance [1]. The reconstruction begins by sampling 𝐇𝑇 from 

a standard Gaussian distribution and progressively denoises it through multiple steps to 

obtain 𝐇̂0. The final output 𝐇̂0 = {𝐿𝐻̂𝐻𝑅
𝐿 , 𝐻𝐿̂𝐻𝑅

𝐿 , 𝐻𝐻̂𝐻𝑅
𝐿 } is then used by the subsequent 

frequency decoder for image reconstruction. 

3.3 Training Losses 

We first train a frequency-domain autoencoder, and then train a latent diffusion model. 

The frequency-domain autoencoder is optimized using a combination of the following 

losses: frequency-domain loss, pixel-space loss, cycle consistency loss, and KL diver-

gence loss. The total loss is defined as: 

 ℒtotal = ℒfreq + ℒpixel + ℒcycle + 𝛽ℒKL (8) 

 ℒfreq = ∥∥{𝐿𝐿̂LR , 𝐿𝐻̂HR, 𝐻𝐿̂HR, 𝐻𝐻̂HR} − {𝐿𝐿HR, 𝐿𝐻HR, 𝐻𝐿HR, 𝐻𝐻HR}∥∥2
2
 

 ℒpixel = ∥∥𝐼GT − 𝐼SR∥∥2
2
 

 ℒcycle = ∥∥𝒲(𝐼SR) − {𝐿𝐿HR, 𝐿𝐻HR , 𝐻𝐿HR, 𝐻𝐻HR}∥∥2
2
 

ℒKL = 𝐷KL(𝑞({𝐿𝐿LR
𝐿 , 𝐿𝐻HR

𝐿 , 𝐻𝐿HR
𝐿 , 𝐻𝐻HR

𝐿 } ∣ {𝐿𝐿LR, 𝐿𝐻HR , 𝐻𝐿HR, 𝐻𝐻HR}) ∥ 𝒩(0, 𝐼)) 



The training objective of the LDT is to minimize the error between the predicted noise 

and the real noise, as well as the predicted variance, using the loss function from Dhari-

wal et al [1]: 

 ℒ𝑑𝑖𝑓𝑓 = 𝑤1 ⋅∥ 𝜖 − 𝜖𝜃(𝐻𝑡 , 𝑡, 𝑐) ∥
2+𝑤2 ⋅ 𝐷KL(𝑞(𝐻𝑡−1|𝐻𝑡 , 𝐻0) ∥ 𝑝𝜃(𝐻𝑡−1|𝐻𝑡)) (9) 

4 Experiments 

Methods Params FLOPs Time 
IXI (4 ×) FastMRI (4 ×) Clinical (8 ×) 

PSNR↑ SSIM↑ FID↓ PSNR↑ SSIM↑ FID↓ PSNR↑ SSIM↑ FID↓ 

BICUBIC - - - 23.38 0.6537 150.22 21.46 0.6124 163.61 16.58 0.5502 210.61 

Discriminative Models 

MINet [4] 10.6M - - 28.76 0.7738 112.58 25.23 0.7304 123.01 20.82 0.6967 146.47 

McMRSR 

[13] 
12.5M - - 30.84 0.8413 103.41 28.73 0.7983 111.03 22.99 0.6996 132.06 

MambaSR 

[9] 
52.4M - - 34.64 0.9019 89.56 36.91 0.8771 99.52 29.56 0.6996 101.51 

TransMRSR 

[8] 
39.9M - - 35.60 0.9128 90.56 36.92 0.9036 96.52 30.31 0.8385 96.52 

Generative Models 

ESRGAN 

[32] 
16.7M 9.4G 59s 32.51 0.8423 79.06 31.73 0.8222 86.08 28.62 0.7783 92.62 

DISGAN 

[31] 
19.4M 9.7G 85s 29.65 0.7372 76.41 30.40 0.7283 83.41 29.09 0.7922 91.88 

Disc-Diff 

[21] 
86.2M 44.1G 1678s 33.87 0.8973 75.59 30.63 0.8601 83.64 30.63 0.8196 83.64 

Ours 46.3M 17.4G 47s 35.73 0.9276 63.21 35.06 0.9074 68.65 31.11 0.8442 77.32 

Table 1. Comparison of different SR methods across IXI (4 ×), FastMRI (4 ×), and Clinical     

(8 ×) datasets. 

Fig. 3. Visualization of Super-Resolution results on the IXI dataset at a scale factor of 4 for dif-

ferent models. Please zoom in for better perceptual quality. 
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Fig. 4. Comparison of frequency domain visualization using different methods 

4.1 Datasets and Evaluation Metrics 

To better model high-frequency priors, we utilized two publicly available datasets and 

one clinical dataset, totaling 10,000 training images. The public datasets employed were 

IXI3 and FastMRI [40]: 

IXI: This is a widely used brain MRI dataset comprising multiple MRI sequences 

such as T1-, T2-, and PD-weighted images. The dataset features high image quality and 

diverse scanning protocols, effectively capturing image characteristics under varying 

acquisition conditions. The IXI dataset includes approximately 600 healthy adult brain 

MRI scans, each containing multiple slices. Following the protocol established by 

DisC-Dif [21], 578 healthy brain MRI images from the IXI dataset were partitioned as 

follows: 500 for training, 6 for validation, and 70 for testing4. 

 

Bands 

(%) 
Ours 

Disc-

Diff 

Trans-

MRSR 

Mam-

baSR 
McMRSR MINet DISGAN ESRGAN BICUBIC 

0-10 38.26 37.92 37.76 36.57 36.21 35.84 35.11 35.22 34.56 

10-20 38.04 37.65 37.54 36.24 35.98 35.72 35.27 35.18 34.42 

20-30 37.99 37.53 37.32 36.02 35.36 35.35 34.99 34.23 34.26 

30-40 37.57 37.22 37.06 36.21 35.86 35.46 35.29 35.16 34.28 

40-50 37.12 36.94 36.62 35.77 35.17 34.57 34.16 34.21 33.94 

50-60 37.08 36.98 36.24 35.31 35.27 34.33 34.11 34.17 33.88 

60-70 37.56 36.46 35.96 35.03 34.91 34.86 34.37 33.95 33.72 

70-80 36.54 36.34 35.54 34.65 33.91 33.77 33.18 34.72 33.05 

80-90 37.91 36.81 35.21 34.07 33.21 34.57 34.17 32.82 32.74 

90-100 37.73 36.50 34.80 34.11 33.92 33.06 35.03 34.75 32.85 

Table 2. The recovery quality of different methods on 10 frequency bands (PSNR) 

FastMRI: Created collaboratively by Facebook AI Research (FAIR) and NYU Langone 

Health, FastMRI is a large-scale medical imaging dataset. From the training subset, the 

first 3,500 images were used for training, the first 200 images for validation, and the 

first 200 images from the test set for testing. 

 
3 https://brain-development.org/ixi-dataset/ 
4 https://bit.ly/3yethO4 



We also leveraged a clinical cranial MRI dataset for super-resolution training and 

evaluation. This dataset contains multi-contrast brain MRI scans, with T2-weighted 

(T2W) images serving as high-quality references and diffusion-weighted imaging 

(DWI) as low-resolution target modalities. Axial 2D slices were extracted from 3D 

clinical scans, totaling 7,000 slices: 6,000 from healthy subjects and 1,000 from pa-

tients. Among these, 6,000 slices were used for training, while the remaining 1,000 

slices were evenly split between validation and testing. All original scans were acquired 

on a Siemens 3T Prisma MRI scanner equipped with a 64-channel head coil. The 3D 

scans underwent standard preprocessing steps including skull stripping (FSL-BET), z-

score intensity normalization, and affine registration. For supervised super-resolution 

training, all 3D scans were resampled into 2D axial slices and saved in PNG format. 

High-resolution DWI slices were synthetically downsampled using bicubic interpola-

tion to generate paired low-resolution (LR) and high-resolution (HR) images. These 

LR-HR pairs were used to train conventional super-resolution models. Additionally, 

T2W images were provided as optional auxiliary inputs to facilitate reference-guided 

super-resolution frameworks. Due to dataset copyright restrictions, visualization or dis-

play of test samples is not permitted; instead, fair quantitative comparisons of different 

methods were conducted. We choose the commonly used pixel-level metrics PSNR and 

SSIM, as well as the perceptual quality metric FID, for comprehensive quantification. 

4.2 Implementation Details 

Our model training is conducted in two stages: (1) pretraining a frequency autoencoder 

that serves as the backbone for latent representations; and (2) training a LDT. All data 

are center-cropped to a resolution of 224 × 224 × 3. 

In the first stage, we employ the Adam optimizer [43] with an initial learning rate of 

1 × 10−4 , following a cosine annealing schedule with a minimum learning rate of 

1 × 10−6 . The batch size is set to 32 per GPU, and training is performed on four 

NVIDIA RTX 3090 GPUs for 200 epochs, taking approximately 14 hours. The encoder 

and decoder are jointly trained during this stage. All input images are normalized to the 

[0, 1] range prior to training. To ensure training stability, we apply gradient clipping 

with a maximum norm of 1.0, and incorporate a small weight decay of 1 × 10−5 to 

mitigate overfitting. The autoencoder uses a downsampling factor of 𝑠 = 4, and the KL 

divergence term is weighted by 𝛽 = 1 × 10−6. 

In the second stage, the pretrained autoencoder is kept frozen, and the diffusion pro-

cess is modeled over 1000 timesteps using a cosine noise schedule [1], where the ob-

jective is to predict the added Gaussian noise. We adopt the AdamW optimizer with a 

learning rate of 1 × 10−4, employing linear warm-up over the first 10,000 steps, fol-

lowed by cosine decay. The diffusion loss weights are set to 𝑤1 = 1  and 𝑤2 =
1 × 10−4. The batch size is set to 16 per GPU, and training is conducted on the same 

4-GPU setup for 300 epochs, which takes approximately 20 hours. During this phase, 

only the parameters of the LDT are updated, while the encoder and decoder weights 

remain fixed. 
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4.3 Results 

To comprehensively evaluate the effectiveness of our method, we present qualitative 

visual comparisons (Fig. 3) and quantitative metrics (Table 1) across three datasets at 

scales of ×4, ×4, and ×8, respectively. 

Qualitative Results: Our method demonstrates superior visual performance over 

both discriminative and generative baselines in reconstructing anatomical structures 

and recovering high-frequency details. In particular, it excels at preserving edge sharp-

ness and maintaining structural consistency in regions of interest (see zoomed-in areas). 

Discriminative models such as MambaSR [9] and TransMRSR [8] often produce overly 

smooth or distorted outputs, while generative approaches tend to introduce hallucinated 

or incorrect fine details. In contrast, our approach shows clear advantages in both high-

frequency generation and low-frequency contour preservation. 

Quantitative Results: Table 1 provides a detailed comparison in terms of PSNR, 

SSIM, and FID scores. Our method achieves the best or highly competitive perfor-

mance across all datasets. Specifically, it obtains the highest PSNR and SSIM scores 

on both the FastMRI and clinical datasets while maintaining a low FID, indicating su-

perior perceptual quality. Although our model is not optimal in terms of parameter 

count due to the use of a diffusion-based framework and autoencoder architecture, it 

remains competitive in inference speed. Compared with the state-of-the-art diffusion-

based method Disc-Diff [21], our approach achieves a balanced trade-off between light-

weight design and overall performance. 

Table 3. Ablation study on the impact of different design choices of LDT. The default setting 

uses 𝜖 prediction, cosine sampling, a downsampling ratio of 1/4, and Cross-Attention for condi-

tioning. 

ID Prediction Target 
Sampling Strat-

egy 
Downsampling 

Conditioning 

Method 
PSNR ↑ FID ↓ 

0 ε Cosine 1/4 Cross-Attn. 35.73 63.21 

1 x₀ Cosine 1/4 Cross-Attn. 34.85 68.92 

2 x₀ Linear 1/4 Cross-Attn. 35.42 66.10 

3 x₀ Cosine 1/8 Cross-Attn. 34.30 70.33 

4 x₀ Cosine 1/4 Cat 35.10 64.50 

5 ε Linear 1/4 Cat 33.90 71.75 

6 ε Linear 1/8 Cross-Attn. 33.10 76.20 

7 x₀ Linear 1/8 Cat 34.02 69.30 

8 ε Cosine 1/8 Cat 33.55 72.60 

4.4 Ablation Study 

To better understand the contribution of each component in our proposed method, we 

conducted a series of systematic ablation studies. The default configuration adopts the 

𝜖 prediction target, cosine noise scheduling, a 1/4 downsampling ratio (as determined 

by the autoencoder), and a Cross-Attention-based conditioning mechanism. In each ab-

lation experiment, we modify only a single component to isolate its individual effect 

on generation quality. The results are summarized in Table 3. 



Prediction Target: We compared two prediction targets: the noise vector 𝜖 and the 

original signal 𝑥0. As shown by the comparison between ID 0 and ID 1, using 𝜖 as the 

prediction target yields better performance in both PSNR (35.73 vs. 34.85) and FID 

(63.21 vs. 68.92). This is consistent with findings in previous diffusion model research, 

indicating that predicting noise tends to be more stable and effective under the presence 

of sampling noise. 

Sampling Strategy: We evaluated two noise scheduling strategies: cosine and linear. 

Cosine scheduling consistently outperforms linear scheduling. For instance, comparing 

ID 0 and ID 5, cosine scheduling improves PSNR by 1.83 and reduces FID by 8.54. 

Similar trends are observed in the comparisons between ID 1 vs. ID 2 and ID 7 vs. ID 

3, demonstrating that cosine scheduling is more advantageous in maintaining high im-

age quality. 

Downsampling Ratio: We examined the impact of spatial downsampling ratios: 1/4 

vs. 1/8. While a larger downsampling ratio (e.g., 1/8) reduces computational cost, it 

often degrades image quality. For example, reducing the ratio from 1/4 to 1/8 (ID 0 vs. 

ID 6) results in a PSNR drop from 35.73 to 33.10 and an FID increase from 63.21 to 

76.20. This indicates that a 1/4 ratio offers a better trade-off between efficiency and 

quality. Moreover, considering the downsampling already introduced by wavelet trans-

forms, the final effective ratio is 1/16. 

Conditioning Method: We compared two conditioning mechanisms: Cross-Atten-

tion and Concatenation. Cross-Attention consistently outperforms Concatenation 

across multiple experiments. For example, changing only the conditioning method be-

tween ID 0 and ID 5 leads to a PSNR drop of 1.83 and an FID increase of 8.54, high-

lighting the effectiveness of attention mechanisms in modeling structured relationships 

between conditions. 

Combined Effects: When multiple suboptimal design choices are combined, perfor-

mance degradation becomes more pronounced. For example, although ID 8 employs 𝜖 

prediction and cosine sampling, it uses a 1/8 downsampling ratio and Concatenation for 

conditioning. As a result, PSNR drops to 33.55 and FID increases to 72.60. This under-

scores the importance of a well-coordinated design among different model components. 

5 Conclusion 

In this work, we proposed a novel super-resolution (SR) reconstruction framework for 

multi-contrast magnetic resonance imaging (MRI) by integrating the complementary 

strengths of generative and discriminative models. Our approach leverages a latent dif-

fusion model (LDM) to effectively synthesize realistic high-frequency details while 

employing an autoencoder conditioned on low-resolution (LR) inputs to guide the re-

construction process with stable structural information. Experimental evaluations 

across multiple benchmark datasets and metrics demonstrate that our method achieves 

superior quantitative performance compared to state-of-the-art SR techniques, while 

also offering a more efficient and lightweight architecture. Qualitative results further 

confirm the enhanced ability of our approach to preserve fine-grained anatomical 
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structures, addressing the over-smoothing issues commonly encountered in conven-

tional deep learning-based SR methods. 
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