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Abstract. Multi-modal sarcasm detection (MSD) aims to identify sarcastic sen-

timent conveyed through textual and visual modalities. The key challenge lies in 

capturing underlying incongruity across modalities. However, many existing 

studies rely on shallow feature fusion strategies, resulting in limited interaction 

between textual and visual features. Moreover, they often overlook localized in-

consistencies in sarcasm, leading to insufficient representation of fine-grained 

sarcastic cues. To address these challenges, we propose a hierarchical incongru-

ity-aware fusion network with semantic adaptive refinement (HIAF). Specifi-

cally, we first introduce a hierarchical fusion module that progressively captures 

multi-level incongruity through iterative transformer layers, guided by a cross-

modal locality-constrained attention mechanism. Second, we design a semantic 

adaptive refinement module that dynamically integrates unimodal and cross-

modal features based on their contextual contributions. Experiments demonstrate 

consistent outperformance over strong baselines, validating its capability in cap-

turing multi-modal incongruity. 

Keywords: Multi-modal Sarcasm Detection · Multi-modal Fusion · Hierar-

chical Attention 

1 Introduction 

Sarcasm is a distinctive linguistic phenomenon characterized by a discrepancy between 

literal expressions and the speaker’s actual emotional intent [1]. It often manifests 

through humor, irony, self-deprecation, or mockery to subtly convey implicit attitudes. 

Accurately identifying sarcasm is essential for uncovering the underlying meaning of 

language, thereby enhancing semantic understanding in natural language processing. 

This task holds practical importance in applications such as opinion mining, public sen-

timent analysis, and customer service [2], and has garnered increasing research atten-

tion in recent years. 

Early studies [3] on sarcasm detection primarily focused on unimodal data, particu-

larly textual information. However, with the growing prevalence of multi-modal con-

tent on social media, users frequently express opinions and emotions through combined 

text and images. In such contexts, models that rely solely on textual cues while ignoring 



the visual modality risk missing the semantic and emotional interplay across modalities, 

ultimately compromising the accuracy of sarcasm recognition. 

Multi-modal Sarcasm Detection (MSD) presents unique challenges that distinguish 

it from conventional multi-modal tasks. While typical multi-modal applications assume 

semantic consistency or complementarity between textual and visual modalities, the 

core of sarcasm detection lies in identifying semantic incongruity across modalities. 

Linguistic theories [4] have highlighted incongruity as a key indicator of sarcastic ex-

pression, particularly when the literal meaning of text sharply contrasts with the visual 

context. For example, the sentence “what a gorgeous day!!” paired with an image of a 

rainy street vividly illustrates the essence of sarcasm through a strong conflict between 

modalities (as shown in Fig. 1). 

 

Fig. 1. Example of multi-modal sarcasm in a tweet: the textual expression “what a gorgeous 

day!!” is contrasted with a rainy street scene, illustrating cross-modal incongruity. 

Sarcasm detection has undergone a paradigm shift toward multi-modal modeling, with 

numerous studies adopting early or late fusion frameworks to incorporate cross-modal 

information. MSD was first explored in early work [5], and subsequently extended with 

the release of a benchmark dataset and a hierarchical fusion model [1]. Subsequent re-

search explored various strategies, including neural architectures for semantic align-

ment [6,7,8] and disentangling shared and specific features [9,10]. However, current 

methods mainly use attention mechanisms or graph structures to combine features 

[11,12], often relying on shallow fusion and neglecting deep inter-modal interactions. 

Moreover, they often overlook fine-grained cues that are essential for identifying the 

subtle semantic conflicts that define multi-modal sarcasm. 

Prior research has explored a range of approaches including neural fusion frame-

works, graph-based models, and inter-modal interaction mechanisms to enhance the 

understanding of cross-modal sarcasm [13,14,15,16]. However, many of these methods 

fail to explicitly address the central challenge of sarcasm detection: the identification 
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of incongruity. While some recent efforts attempt to capture cross-modal incongruity 

by modeling global semantic mismatches between modalities [17,18], they tend to un-

derestimate the context-specific nature of sarcasm, which frequently stems from local-

ized inconsistencies between textual and visual fragments. To address this issue, we 

design a hierarchical incongruity-aware transformer. 

In this work, we propose a hierarchical incongruity-aware fusion (HIAF) model for 

MSD. First, we introduce a hierarchical fusion module to progressively model interac-

tions between modalities. This module employs iterative transformer layers to capture 

increasingly complex incongruity patterns, guided by a cross-modal locality-con-

strained attention mechanism. Then, we design an adaptive refinement module that dy-

namically integrates modality-specific and cross-modal features based on their seman-

tic contribution. 

The main contributions can be summarized as follows: 

─ Our proposed HIAF model is developed to address the core challenge of modeling 

cross-modal incongruity in MSD. By introducing a hierarchical fusion architecture, 

our model enables progressive interaction between modalities, bridging the gap left 

by shallow fusion methods in previous work. 

─ We develop a locality-aware attention mechanism to highlight fine-grained conflicts 

between modalities, effectively capturing context-specific incongruity information 

that are essential for accurate sarcasm recognition. 

─ We further enhance multi-modal representation through an adaptive refinement 

module that dynamically aggregates modality-specific and cross-modal features. Ex-

tensive experiments demonstrate that our model achieves superior performance on 

benchmark datasets, validating the effectiveness of each component in addressing 

the task-specific challenges. 

2 Methodology 

Given a set of text-image pairs 𝐷 = {(𝑥𝑖
𝑡 , 𝑥𝑖

𝑣) | 1 ≤ 𝑖 ≤ 𝑁}, where 𝑁 denotes the total 

number of pairs, each sample (𝑥𝑡 , 𝑥𝑣) consists of a textual modality 𝑡 and a visual mo-

dality 𝑣. The goal of MSD is to determine the sarcasm label for each text-image pair. 

To achieve this, we propose a HIAF model that effectively captures and integrates 

cross-modal incongruity and semantic nuances. 

The overall architecture of our proposed HIAF model is illustrated in Fig. 2 and sum-

marized as follows: First, modality-specific encoders extract unimodal representations 

using pre-trained language and vision backbones. Second, we design a hierarchical fu-

sion strategy that progressively captures local incongruity through iterative attention 

layers. Third, a semantic adaptive refinement module dynamically aggregates and re-

calibrates fused features based on their contextual significance. The final representation 

is then fed into a classifier to determine the presence of sarcasm. 



 

Fig. 2. Overview of the proposed HIAF model with three core components: modal-specific en-

coder, hierarchical incongruity-aware fusion, and semantic adaptive refinement. 

In the following three subsections, we discuss in detail the specific implementation 

of the proposed innovation modules. 

2.1 Modal-Specific Encoder 

Text Encoder. To capture rich semantic and contextual information, we adopt a pre-

trained transformer-based encoder, which leverages large-scale corpora to embed ex-

tensive world knowledge and provides robust feature representations for downstream 

tasks. 

Given a text input 𝑥𝑡 = {[CLS], 𝑤1, 𝑤2, … , 𝑤𝑛−1}, where 𝑛 represents the number of to-

kens and [CLS] serves as the global token, we utilize BERT to obtain unimodal textual 

representations: 

 𝐸𝑡 = BERT({[CLS], 𝑤1, 𝑤2, … , 𝑤𝑛−1}) = [𝑒1
𝑡 , 𝑒2

𝑡 , … , 𝑒𝑛
𝑡 ], (1) 

where 𝑒𝑖
𝑡 ∈ ℝ𝑑𝑡  denotes the token embeddings. The resulting representation 𝐸𝑡 is then 

processed by a multi-layer perceptron to generate the final unimodal textual feature 

representations: 

 𝑇 = [𝑡1, 𝑡2, … , 𝑡𝑛] ∈ ℝ𝑛×𝑑. (2) 

Image Encoder. Pre-trained vision transformers have demonstrated exceptional capa-

bility in various visual tasks. These models, trained on large-scale visual datasets, ef-

fectively encode extensive visual knowledge, facilitating superior image feature extrac-

tion. 
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The input image 𝑥𝑣  is first resized to 224 × 224 pixels following standard prepro-

cessing procedures. It is then partitioned into 𝑚 two-dimensional patches, denoted as 

𝑥𝑣 = {𝑝1, 𝑝2, … , 𝑝𝑚}. We employ a pre-trained ViT model as the image encoder, which 

produces visual feature embeddings: 

 𝐸𝑣 = ViT({𝑝1 , 𝑝2, … , 𝑝𝑚}) = [𝑒1
𝑣 , 𝑒2

𝑣, … , 𝑒𝑚
𝑣 ], (3) 

where 𝑒𝑗
𝑣 ∈ ℝ𝑑𝑣  represents the embedding of the 𝑗-th image patch. These embeddings 

are subsequently processed by a multi-layer perceptron to derive the final unimodal 

visual feature representations: 

 𝐼 = [𝑣1, 𝑣2, … , 𝑣𝑚] ∈ ℝ𝑚×𝑑 . (4) 

2.2 Hierarchical Incongruity-Aware Fusion 

We present a hierarchical incongruity-aware fusion network to iteratively model local 

cross-modality incongruity. To this end, we extend the standard transformer architec-

ture into a cross-modality variant that explicitly captures inter-modal dependencies. 

Each layer integrates a cross-modality attention mechanism guided by specifically de-

signed incongruity-aware constraints. 

Hierarchical Iterative Fusion. Existing methods often adopt shallow fusion and fail 

to model deep inter-modal interactions, limiting their ability to capture fine-grained 

incongruity. To address this, we propose a hierarchical iterative fusion mechanism that 

progressively captures cross-modal dependencies at multiple levels. Specifically, we 

employ iterative incongruity-aware transformer layers to extract increasingly enriched 

cross-modal representations. Within the cross-modal transformer constrained by local 

incongruity, textual and visual embeddings are processed through IATL, formulated as: 

 𝑇𝑘 , 𝐼𝑘 = IATL𝑘(𝑇𝑘−1, 𝐼𝑘−1),  𝑘 ∈ [1, 𝐾], (5) 

where 𝑇𝑘 and 𝐼𝑘 represent the outputs of the 𝑘-th IATL layer, with initial inputs 𝑇0 =
𝑇 and 𝐼0 = 𝐼. 𝐾 denotes the total number of IATL layers, and the final outputs 𝑇𝐾  and 

𝐼𝐾  serve as the fully refined multi-modal features. 

The fusion adjustment layer refines modality interactions by applying stacked trans-

former layers over concatenated embeddings, followed by attention-based weighting of 

averaged modality-specific features, enabling adaptive integration of final textual and 

visual representations. 

Incongruity-Aware Transformer Layer. To enable fine-grained information ex-

change between textual and visual modalities, we design the incongruity-aware trans-

former layer (IATL) as a bidirectional structure. As shown in Fig. 3, each IATL layer 

consists of a multi-head co-attention LIGA (MHCALIGA) module followed by a feed-

forward network (FFN), with both components equipped with residual connections and 

layer normalization (LN). 



 

Fig. 3. The architecture of the IATL. 

The transformation at the 𝑘-th IATL layer is defined as: 

 𝑇𝑘−1
𝑟 = LN(MHCALIGA𝑘

𝑣2𝑡(𝑇𝑘−1, 𝐼𝑘−1) + 𝑇𝑘−1), (6) 

 𝐼𝑘−1
𝑟 = LN(MHCALIGA𝑘

𝑡2𝑣(𝐼𝑘−1, 𝑇𝑘−1) + 𝐼𝑘−1), (7) 

 𝑇𝑘 = LN(FFN𝑘(𝑇𝑘−1
𝑟 ) + 𝑇𝑘−1

𝑟 ), (8) 

 𝐼𝑘 = LN(FFN𝑘(𝐼𝑘−1
𝑟 ) + 𝐼𝑘−1

𝑟 ), (9) 

where 𝑘 ∈ [1, 𝐾] denotes the layer index. 𝑇𝑘 ∈ ℝ𝑛×𝑑𝑡  and 𝐼𝑘 ∈ ℝ𝑚×𝑑𝑣  are the outputs 

of the 𝑘-th IATL layer. 𝑇𝑘−1
𝑟  and 𝐼𝑘−1

𝑟  are the intermediate representations produced by 

the MHCALIGA module. 

Within each IATL layer, MHCALIGA employs ℎ parallel attention heads of dimen-

sion 𝑑ℎ (with 𝑑ℎ = 𝑑𝑡/ℎ). The outputs of all heads are concatenated and linearly pro-

jected to yield the final attention result: 

 MHCALIGA𝑘
𝑣2𝑡(𝑇𝑘−1, 𝐼𝑘−1) = concat ([head𝑖

𝑘]
𝑖=1

ℎ
) 𝑂𝑇

𝑘, (10) 

where 𝑂𝑇
𝑘 ∈ ℝ𝑑𝑡×𝑑𝑡 is a learnable projection matrix, and head𝑖

𝑘 ∈ ℝ𝑛×𝑑ℎ  is computed 

via the co-attention LIGA (CALIGA) mechanism with the following formulation: 

 

head𝑖
𝑘 = CALIGA𝑖

𝑘(𝑇𝑘−1, 𝐼𝑘−1)

= CA𝑖,𝑗
𝑘 (𝑄𝑖,𝑗,𝑘 , 𝐾𝑖,𝑗,𝑘, 𝑉𝑖,𝑗,𝑘 , LIGA)

= 𝜎 (
𝑄𝑖,𝑗,𝑘𝐾𝑖,𝑗,𝑘

⊤

√𝑑ℎ
⊙ LIGA) 𝑉𝑖,𝑗,𝑘 ,

 (11) 
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where 𝜎(⋅)  denotes the softmax function and ⊙represents element-wise (Hadamard) 

product. The attention matrix is defined as 𝑀𝑖,𝑗,𝑘 = 𝑄𝑖,𝑗,𝑘𝐾𝑖,𝑗,𝑘
⊤ ∈ ℝ𝑛×𝑚. The query, key, 

and value matrices are given by 𝑄𝑖,𝑗,𝑘 = 𝑇𝑘−1𝑊𝑖,𝑗,𝑘
𝑄 , 𝐾𝑖,𝑗,𝑘 = 𝐼𝑘−1𝑊𝑖,𝑗,𝑘

𝐾 , 𝑉𝑖,𝑗,𝑘 =

𝐼𝑘−1𝑊𝑖,𝑗,𝑘
𝑉 ,  with 𝑊𝑖,𝑗,𝑘

𝑄 ∈ ℝ𝑑𝑡×𝑑ℎ , 𝑊𝑖,𝑗,𝑘
𝐾 , 𝑊𝑖,𝑗,𝑘

𝑉 ∈ ℝ𝑑𝑣×𝑑ℎ  as learnable projection 

weights. The conventional attention weights are further modulated by the LIGA mask 

to emphasize local incongruity. 

Local-Incongruity Guided Attention. Previous studies have employed contrastive 

learning or consistency-based approaches to align modalities [19,20], primarily focus-

ing on highly correlated regions to infer semantic coherence across modalities. How-

ever, such methods often overlook local incongruity, which has been theoretically 

shown to be a critical indicator of sarcasm [2]. In these approaches, segments with low 

inter-modal relevance tend to receive lower attention scores during fusion, potentially 

leading to the loss of crucial sarcastic cues, such as subtle inconsistencies. To address 

this issue, we explicitly model local incongruity to enhance the model’s sensitivity to 

sarcastic information. 

We construct incongruity activation masks (IA) to emphasize inter-modal contras-

tive information and model the local discrepancy patterns inherent in sarcasm. We em-

ploy cosine similarity to quantify the correlation between textual and visual segments. 

The similarity score is defined as: 

 𝑠𝑖𝑗 =
𝑡𝑖𝑣𝑗

⊤

∥𝑡𝑖∥∥𝑣𝑗∥
,  𝑖 ∈ [1, 𝑁],  𝑗 ∈ [1, 𝑀], (12) 

where 𝑠𝑖,𝑗 ∈ [−1,1] is the relevance score of the textual feature 𝑡𝑖 and visual region fea-

ture 𝑣𝑗. Inspired by prior work, we construct the incongruity activation masks (IA) as: 

 𝐼𝐴𝑖,𝑗 = exp (−
(𝑠𝑖,𝑗−𝑎̃)2

2𝜆2 ), (13) 

where 𝜆 ∈ [0,1) is a threshold parameter introduced to suppress dominant high-corre-

lation signals and amplify subtle incongruent cues; 𝑎̃ is defined as Median({𝑠𝑖,𝑗 ∣ 𝑠𝑖,𝑗 ≠

0}). 

Since both textual and visual features tend to exhibit strong local dependencies 

within their respective modalities, we introduce a relative position weighting (RP) strat-

egy that considers segment-level positional relationships. The final local-incongruity 

guided attention (LIGA) is computed as the element-wise product of the sigmoid-acti-

vated relative position weighting and the modal-incongruity mask LIGA =
sigmoid(RP × IA), where RP is defined as: 

 RP𝑚,𝑛 = {
M − 𝐶(𝑛 − 𝑚)2 if 𝑛 ≤ 𝑁, 𝑚 ≤ 𝑀,
0 otherwise.

 (14) 



2.3 Semantic Adaptive Refinement 

To enhance the final representation by dynamically integrating modality-specific and 

cross-modal features, we introduce a semantic adaptive refinement (SAR) module. Let 

𝐡𝑇 , 𝐡𝐼 , 𝐡𝑀 ∈ ℝ𝑑ℎ  denote the encoded representations of the text, visual and cross-

modal branches, respectively. These are first concatenated along the modality dimen-

sion as 𝐇cat = Stack(𝐡𝑇 , 𝐡𝐼 , 𝐡𝑀) ∈ ℝ𝑑ℎ×3. 

We then apply a modality-wise attention mechanism to compute the importance of 

each modality. Specifically, the attention weights 𝛂 = [𝛼𝑇 , 𝛼𝐼 , 𝛼𝑀] ∈ ℝ3 are computed 

as: 

 𝛂 = Softmax (𝑊2 𝛿(𝑊1  GAP(ℱ(𝐇cat)))), (15) 

where ℱ(⋅) denotes a transformation we refer to as the squeeze-and-excitation mecha-

nism, which consists of: an initial 1 × 1 convolutional layer to project input features 

into a higher-dimensional space, followed by multiple residual blocks, each incorporat-

ing convolutional layers and channel-wise recalibration via excitation gates. The final 

convolutional layer projects the output into a fixed space. GAP(⋅) denotes global aver-

age pooling, 𝑊1 and 𝑊2 are learnable parameter matrices, and 𝛿(⋅) is the ReLU activa-

tion. The softmax ensures normalized attention weights across modalities. 

The aggregated modality-integrated feature can be equivalently computed via 

weighted matrix multiplication over the modality axis as 𝐡agg = 𝐇cat ⋅ 𝛂⊤ , where 

𝐡agg ∈ ℝ𝑑ℎ  is the aggregated representation, which is further refined by a self-attention 

layer to produce the final representation 𝐡fused. 

2.4 Sarcasm Classifier 

Finally, the representation ℎfused is passed through the classifier 𝐹agg to predict the 

sarcasm label 𝑦̂. The classifier is implemented as a two-layer fully connected network. 

The prediction is optimized using cross-entropy loss, defined as: 

 ℒCE = −(𝑦log(𝑦̂) + (1 − 𝑦)log(1 − 𝑦̂)). (16) 

3 Experiments 

This section details the experimental setup and compares the performance of GCLCP 

with different baseline methods. Additionally, we compare training dynamics and effi-

ciency, perform an ablation study, and analyze the sensitivity to hyperparameters. 

3.1 Experimental Configurations 

Datasets. We evaluate the effectiveness of the proposed HIAF model on a widely used 

MSD benchmark dataset [1]. The dataset consists of user posts from Twitter, containing 

both textual content and corresponding images. A summary of the dataset statistics is 

shown in Table 1. 
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Table 1. The statistics of the MSD dataset. 

 Train Val Test 

Sarcastic 8642 959 959 

Non-sarcastic 11174 1451 1450 

Total 19816 2410 2409 

Implementation Details and Evaluation Metrics. We use ViT-base-patch32-2242 

with 7 × 7 grids for visual encoding after resizing images to 224 × 224 pixels, and the 

first layer of RoBERTa-base for text encoding. The maximum text length and number 

of image patches are set to 𝑛 = 100 and 𝑚 = 49, respectively. The model includes 

𝐾 = 3 IATL layers and ℎ = 2 heads in the IATL module, with hidden dimensions 

𝑑𝑣=𝑑𝑡=𝑑=768. The classifier applies a dropout rate of 0.5. We adopt Adam with a 

learning rate of 1 × 10−6, weight decay of 0.01, and a batch size of 32. Following prior 

work, we report accuracy, precision, recall, and F1-score. The best checkpoint on the 

val set is used for testing, and results are averaged over five random seeds. All experi-

ments are conducted on GeForce RTX 3080 Ti GPUs. 

Baseline. We compare our method with the following baseline methods: 

Image-based methods. We consider ResNet [22] and ViT [23] as image-only baselines, 

which extract visual features using convolutional or transformer-based backbones but 

lack the capacity to model semantic incongruity or contextual alignment across modal-

ities. 

Text-based methods. Text-only baselines include Bi-LSTM [24], SMSD [25], and 

BERT [26], which model sequential, self-matching, or global semantic dependencies 

within text, but fail to capture cross-modal contrasts essential for sarcasm detection. 

Multi-modal methods. The following models represent advanced approaches that lev-

erage both textual and visual modalities for MSD. 

─ HFM [1] adopts a hierarchical fusion mechanism to integrate textual and visual fea-

tures at multiple semantic levels. 

─ InCrossMGs [14] builds intra- and inter-modal graphs to capture fine-grained in-

teractions between image and text. 

─ CMGCN [12] constructs dynamic cross-modal graphs and applies graph convolu-

tional networks to identify modality inconsistencies indicative of sarcasm. 

─ HKEmodel [15] incorporates external commonsense knowledge to enhance both 

atomic- and composition-level congruity reasoning. 

─ GAAN [17] introduces a global-aware attention mechanism to model sarcasm-re-

lated features across different granularities. 

─ Multi-View CLIP [11] leverages CLIP-based encoders and multi-view contrastive 

learning to align cross-modal semantic spaces. 



─ MCEF [18] employs a multi-channel fusion network to extract complementary cues 

from different modalities via channel-wise enhancement. 

─ SEF [19] focuses on aligning semantically divergent content between modalities us-

ing multi-scale contrastive learning. 

─ SAHFN [16] models sentiment-aware hierarchical fusion by capturing object-attrib-

ute relations and multi-level alignment of sarcastic cues. 

─ MICL [27] mitigates spurious correlations by leveraging multi-view incongruity 

contrastive learning across token-patch, entity-object, and sentiment dimensions. 

─ KnowleNet [28] incorporates external commonsense knowledge and cross-modal 

semantic similarity to enhance sarcasm detection via ConceptNet and contrastive 

learning. 

3.2 Overall Performance 

We evaluate our proposed model against representative baseline approaches on the 

MSD dataset. The experimental results are reported in Table 2, clearly demonstrating 

that our model achieves consistent performance improvements across various metrics 

compared to existing approaches. 

Table 2. Comparison of accuracy and F1-score results between the proposed HIAF model and 

other strong existing models. 

Modality Model Acc. (%) 
Binary-Average 

Pre. (%) Rec.(%) F1.(%) 

Text-Only 

Bi-LSTM 81.90 76.66 78.42 77.53 

SMSD 80.90 76.46 75.18 75.82 

BERT 83.85 78.72 82.27 80.22 

Image-Only 
ResNet 64.76 54.41 70.80 61.53 

VIT 67.83 57.93 70.07 63.43 

Multi-Modal 

HFM 83.44 76.57 84.15 80.18 

D&R Net 84.02 77.97 83.42 80.60 

InCrossMGs 86.10 81.38 84.36 82.84 

CMGCN 87.55 83.63 81.69 84.16 

HKEmodel 87.36 81.84 86.48 84.09 

GAAN 87.42 82.91 86.62 84.72 

Multi-View CLIP 88.33 82.66 88.65 85.55 

MCEF 87.80 84.10 85.50 84.80 

SEF 88.45 85.35 86.58 85.96 

SAHFN 87.22 82.71 87.33 84.95 

HIAF (Ours) 89.65 84.36 90.39 87.27 
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─ The results show that text-based approaches outperform image-based approaches, 

indicating inherent challenges in visual modality due to noise and semantic sparsity. 

For instance, the BERT text-only baseline achieves 83.85% accuracy, significantly 

surpassing the best image-only baseline ViT (67.83%). By effectively combining 

visual and textual modalities, our multi-modal model further improves the accuracy 

to 89.65% and the F1-score to 87.27%, confirming the necessity and effectiveness 

of multi-modal integration for sarcasm detection. 

─ Models employing deep cross-modality interactions (e.g., MCEF, SAHFN) gener-

ally surpass simpler fusion-based methods (e.g., HFM, D&R Net), highlighting the 

importance of capturing nuanced multi-modal semantics. 

─ Additionally, compared with the strong baseline SEF, our model achieves a further 

accuracy improvement of 1.20% and an F1-score improvement of 1.31%, further 

validating the advantages of explicitly modeling hierarchical incongruity across mo-

dalities. 

─ We also evaluate the effectiveness of different transformer backbones by comparing 

BERT and RoBERTa. Results in Table 3 indicate that employing RoBERTa signif-

icantly boosts model performance, increasing accuracy from 89.65% to 93.85% and 

F1-score from 87.27% to 92.31%. This improvement underscores RoBERTa’s su-

perior capacity for capturing contextual semantics, further validating the robustness 

of our modal. 

Table 3. Comparison of accuracy and F1-score results between the proposed HIAF model and 

other transformer-based models. 

Modality Model Acc. (%) 
Binary-Average 

Pre. (%) Rec.(%) F1.(%) 

Text 
BERT 83.85 78.72 82.27 80.22 

RoBERTa 85.51 78.24 88.11 82.88 

Image + Text 

VisualBERT 83.51 76.66 82.94 79.68 

ViLBERT 84.68 77.52 86.37 81.71 

KnowleNet + ALBERT 92.69 91.57 90.85 91.21 

MICL + RoBERTa 92.08 90.05 90.61 90.33 

Ours 
HIAF + BERT 89.65 84.36 90.39 87.27 

HIAF + RoBERTa 93.85 90.03 94.70 92.31 

 

3.3 Ablation Study 

To investigate the contribution of each core component in our model, we conduct a 

comprehensive ablation study, including the removal of key modules and replacement 

of our proposed model. Specifically, we evaluate the following five variants: (i) w/o 

LIGA: removing the LIGA mechanism; (ii) w/o IATL: removing the entire IATL; (iii) 

w/o SAR: removing the SAR module and directly concatenating features; (iv) w/o 

IATL+Image2Text: replacing IATL with unidirectional image-to-text attention; and (v) 



w/o IATL+Text2Image: replacing IATL with text-to-image attention. Table 4 shows 

the corresponding results. 

Table 4. Results of ablation experiments on HIAF model. 

Method Acc. (%) F1. (%) 

w/o LIGA 88.58 85.83 

w/o IATL 84.23 82.74 

w/o SAR 88.62 85.98 

w/o IATL+Image2Text 87.65 84.93 

w/o IATL+Text2Image 85.35 83.93 

HIAF (Ours) 89.65 87.27 

 

It is evident that removing or altering any component consistently leads to perfor-

mance degradation, highlighting the effectiveness of each design. Detailed analyses are 

as follows: 

─ Removing the LIGA module (w/o LIGA) leads to a 1.07% drop in accuracy and a 

1.44% decrease in F1-score, demonstrating its effectiveness in capturing context-

specific incongruity essential for accurate sarcasm recognition. 

─ The w/o IATL variant leads to a substantial performance drop of 5.42% in accuracy 

and 4.53% in F1-score, confirming the critical role of the hierarchical iterative fusion 

in enabling the model to capture deep cross-modal interactions. 

─ Excluding the SAR module (w/o SAR) also leads to a notable performance drop, 

suggesting that direct feature concatenation fails to capture the relative importance 

of unimodal and cross-modal features. 

─ Replacing the IATL module with a unidirectional image-to-text or text-to-image at-

tention mechanism leads to moderate performance degradation. While the image-to-

text variant enables the alignment of visual features with textual anchors, it lacks 

bidirectional interaction and thus fails to capture mutual incongruity comprehen-

sively. 

3.4 Hyperparameter analysis 

The results in Fig. 4 illustrate that the model performance improves consistently with 

an increasing number of IATL layers from 1 to 3, reaching an optimal accuracy of 

89.65% and an F1-score of 87.28% at three layers. However, further increasing the 

layers beyond three causes a gradual decline in performance, indicating a saturation in 

the model’s learning capacity. We attribute this phenomenon to the hierarchical incon-

gruity interactions becoming effectively captured by three cascaded layers of the IATL, 

beyond which additional layers introduce redundancy and limit the model’s capacity to 

accurately encode cross-modal incongruity. 
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Fig. 4. Performance of using different IATL 

layers. 

Fig. 5. Performance variations when altering 

the value of trade-off λ. 

We also analyze the effect of hyperparameter 𝜆 in the LIGA module. As shown in 

Fig. 5, decreasing the value of 𝜆 initially improves the model’s accuracy, suggesting 

that focusing on less similar semantic regions enhances the detection of subtle cross-

modal incongruities. However, further reducing 𝜆 negatively impacts performance, as 

overly restrictive filtering may exclude essential contextual information from cross-

modal interactions. The best performance is achieved at 𝜆 = 0.9, demonstrating an op-

timal balance between incongruity awareness and semantic completeness. 

3.5 Case study 

To qualitatively evaluate the effectiveness of our proposed model, we present a case 

study in Table 5, comparing the predictions of HKEmodal [15], Multi-View CLIP [11], 

and our HIAF model across three representative examples at the text, image, and multi-

modal levels. 

HKEmodal successfully identifies sarcasm in the multi-modal example by modeling 

atomic- and composition-level incongruities, but fails on the unimodal levels due to 

limited textual and visual representation capabilities. Multi-View CLIP performs well 

in the image and multi-modal settings by leveraging multi-grained cues from text, im-

age, and interaction views, yet struggles with localized incongruity in text. In contrast, 

HIAF employs modality-specific encoders for unimodal feature extraction, a hierar-

chical iterative fusion strategy for cross-modal incongruity modeling, and a semantic 

adaptive refinement module for context-aware integration. Guided by learned attention 

weights from SAR, HIAF consistently achieves accurate predictions across all levels, 

demonstrating its robustness in capturing both unimodal and cross-modal incongruity. 

 

 

 

 



Table 5. Comparison of text-level, image-level, and multi-modal-level predictions with learned 

weights. 

 Text-Level Image-Level Multi-modal-Level 

Image 

 

 
 

Text 

(a) apparently we have a 

potato shortage in rother-

ham this is what i received 

in a large fries box tonight 

<user> # valueformoney 

(b) lmao ! - pctto 

(c) when you want yo hold 

bae’s hands but need to 

keep it as halaal as possible. 

# achasorry 

 
   

HKEmodal Sarcasm Non-sarcasm Non-sarcasm 

Multi-View 

CLIP 
Non-sarcasm Sarcasm Sarcasm 

HIAF(Ours) Sarcasm Sarcasm Sarcasm 

 

4 Conclusion 

In this paper, we present a novel hierarchical model for MSD, termed HIAF, which 

comprises two integral components. The hierarchical fusion module progressively 

models cross-modal interactions by employing iterative incongruity-aware transformer 

layers, which capture increasingly complex incongruity patterns under the guidance of 

a cross-modal locality-constrained attention mechanism. The semantic adaptive refine-

ment module dynamically integrates modality-specific and cross-modal representations 

by weighting their semantic contributions, thereby enabling discriminative feature fu-

sion. 

Extensive experiments on the benchmark MSD dataset demonstrate that the pro-

posed HIAF model consistently outperforms existing advanced methods. Ablation 

studies further validate the effectiveness of each component, confirming their essential 

roles in enhancing sarcasm detection. In addition, qualitative analyses highlight the 

model’s strong generalization ability and interpretability. These results suggest that 

HIAF is a promising and effective solution for nuanced multi-modal sarcasm under-

standing, with significant potential for real-world sentiment-aware applications. 
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