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Abstract. Precise crop classification, as a pivotal technology underpinning pre-

cision agriculture, has attracted considerable attention in recent years. Hyper-

spectral imaging systems mounted on Unmanned Aerial Vehicles (UAVs) are 

capable of producing high spatial resolution hyperspectral imagery, offering dis-

tinct advantages including low operational costs, high operational flexibility, and 

real-time data acquisition. As a result, these systems have emerged as an optimal 

tool for precise crop classification within precision agriculture monitoring. Nev-

ertheless, existing methods for crop classification using UAV hyperspectral im-

agery encounter a trade-off between global feature perception and computational 

complexity, frequently leading to the loss of spatial features. To tackle this issue, 

this study introduces a hyperspectral segmentation network, HRS-UNet, de-

signed to achieve precise crop classification from hyperspectral samples. And we 

propose a Multiscale Spectral Aggregation (MSA) module, which greatly re-

duces the computational burden of the backbone network through feature en-

hancement and dimensionality reduction. Evaluation results on the UAV-HSI-

Crop dataset reveals that our model attains state-of-the-art performance, achiev-

ing an overall classification accuracy of 89.96% and a Kappa coefficient of 

0.8814, outperforming existing approaches. Our model offers a novel technical 

pathway for efficient monitoring in precision agriculture. 

Keywords: Precision Agriculture, Hyperspectral Image, Semantic Segmenta-

tion, Remote Sensing. 

1 Introduction 

Driven by the dual imperatives of global food security challenges and the United Na-

tions Sustainable Development Goals (SDGs), precision agriculture has emerged as a 

pivotal paradigm propelling modern agriculture towards sustainability and intelli-

gence[1]. This paradigm, deeply rooted in the integration of information and engineer-

ing technologies, aims to achieve synergistic improvements in crop yield, resource use 

efficiency, and environmental protection by precisely sensing and responding to the 

spatiotemporal variability of agroecosystems[2]. The realization of this objective criti-

cally hinges on the capability to monitor crop life cycle status with precision, real-time 



responsiveness, and non-destructiveness. However, traditional coarse-grained land 

cover classification methods fall short of meeting the demands for fine-grained man-

agement in precision agriculture[3]. Consequently, the development of classification 

techniques capable of accurately distinguishing between crop varieties and even growth 

stages at the field level has become an urgent scientific imperative[4]. 

To address this challenge, hyperspectral remote sensing provides robust data and 

technical support for the precise crop classification. Unlike multispectral imaging sys-

tems that capture information only in a few discrete and broad spectral bands, hyper-

spectral sensors acquire data across hundreds of continuous and extremely narrow spec-

tral channels, enabling the detailed characterization of unique spectral reflectance 

curves of ground objects[5]. This exceptional spectral resolution allows hyperspectral 

data to reveal subtle spectral features arising from differences in the physical structure 

and chemical composition of ground objects—features often indiscernible in conven-

tional multispectral data—thereby laying a solid spectral information foundation for the 

precise identification and quantitative inversion of surface targets. 

In recent years, the rapid advancements in computer vision, machine learning, and 

particularly deep learning, have significantly propelled the progress of hyperspectral 

image classification techniques. Early studies predominantly relied on traditional ma-

chine learning algorithms such as Support Vector Machines (SVM) or Random Forests 

(RF) for pixel-wise independent classification[6, 7]. However, these methods over-

looked the spatial contextual information within images, failing to leverage the spatial 

correlations between pixels. With the advent of deep learning, Convolutional Neural 

Networks (CNNs)[8, 9] and Transformer-based model[10] have become mainstream 

technological pathways for hyperspectral classification due to their powerful nonlinear 

feature representation capabilities, giving rise to general segmentation frameworks like 

SegNet, SETR, UNet, and TransUNet. Nonetheless, these models still grapple with in-

herent limitations: CNNs are constrained by their local receptive fields, struggling to 

capture long-range spatial dependencies and global contextual features; while Trans-

formers excel at global modeling, their self-attention mechanisms incur a computa-

tional complexity that scales quadratically with the number of pixels, posing significant 

challenges for dense prediction tasks like hyperspectral image classification, which in-

volves high-dimensional feature redundancy. 

In the task of precise crop classification, hyperspectral addresses the limitations of 

traditional remote sensing methods, particularly the inadequate spectral resolution for 

distinguishing between similar crops. UAVs equipped with hyperspectral systems are 

capable of generating high spatial resolution hyperspectral imagery. With advantages 

such as low operational costs, high flexibility, and real-time data acquisition, UAV-

based hyperspectral imagery has emerged as a vital data source for precise crop classi-

fication. Recent research on precise crop classification leveraging UAV-based hyper-

spectral imagery has achieved notable progress. For example, Zhong et al.[11]  pro-

posed a framework that integrates a deep convolutional neural network with a condi-

tional random field classifier (CNNCRF), demonstrating commendable classification 

performance on their publicly available WHU-Hi dataset. Guo et al.[12] developed a 

hybrid model combining a convolutional neural network (CNN) and a Transformer, 

which employs a spectral-spatial feature extraction module to capture shallow features 
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and a dual-branch architecture to simultaneously extract local and global features. This 

model exhibited strong potential for hyperspectral classification of agricultural fields 

on the WHU-Hi dataset. Furthermore, Tang et al.[3]  designed a spatial-spectral atten-

tion network that overcomes the shortcomings of existing spatial-spectral attention 

mechanisms, which focus solely on single features, thereby enhancing classification 

performance. 

Despite these advancements, current methods are still constrained by the trade-off 

between global perception capability and computational complexity. Predominantly, 

existing models rely on extracting local features from pixel neighborhoods, lacking the 

capacity to perceive features across larger spatial extents. In UAV-based hyperspectral 

classification tasks, where image spatial resolution often reaches the centimeter level, 

crop distributions may extend beyond predefined neighborhood ranges. This limited 

spatial perception can result in the omission of critical features. To address this issue, 

Niu et al.[13] introduced a more complex dataset for precise crop classification, UAV-

HSI-Crop, and proposed the HSI-TransUNet model to achieve holistic classification at 

larger scales. Nevertheless, the model's performance and computational efficiency still 

warrant further optimization. Consequently, the development of an advanced model 

capable of efficiently integrating multi-scale spatial features, while balancing local de-

tails with global context and maintaining manageable computational costs, remains a 

pressing scientific challenge in the domain of precise hyperspectral crop classification. 

In light of this, this study proposes a hyperspectral classification model tailored for 

precise crop classification, named HRS-UNet. This model achieves an effective balance 

between global perception capability and computational complexity, while utilizing the 

Multiscale Spectral Aggregation (MSA) module for spectral feature extraction and di-

mensionality reduction. This approach provides a novel technical pathway for hyper-

spectral crop classification, poised to advance the further development of precision ag-

riculture. 

The main contributions of this study can be summarized as follows: 

(1) We propose a novel U-Net-based model for precise crop classification, effec-

tively balancing global perception capability with computational complexity. 

(2) We design a Multiscale Spectral Aggregation module within the model to extract 

the spectral feature and dimensionality reduction. Additionally, we integrate a spatial-

transformer and global attention mechanisms to strengthen the model's global percep-

tion capability. 

(3) Experimental results demonstrate that our model achieves state-of-the-art perfor-

mance on the UAV-HSI-Crop dataset. 

2 Methods 

The different bands in hyperspectral images contain rich feature information of each 

crop, which is beneficial for the model to learn. Our proposed method aggregates multi-

scale spectral channel features and utilizes an improved UNet architecture for spatial 

feature perception. 



2.1 Pipeline 

The architecture of our model is shown in Fig. 1. The input hyperspectral image 

first undergoes a dimension reduction operation through the Mul-

tiscale Spectral Aggregation (MSA) module, obtained the Aggregated hyperspectral 

image . The structure of our backbone network is similar to the 

UNet[14]. The encoder of our network consists of four important modules: ResBlock, 

Spatial-Transformer, Global Attention, and Downsample Blocks. The detail of these 

modules is shown in Fig. 2. Each Resblock changes the number of channels of the fea-

ture map, Spatial-Transformer extracts local features on the feature map using the self-

attention mechanism, followed by the Global Attention perceiving the image features 

in channel and spatial dimensions. Finally, the Downsample Block will perform a two-

times downsampling of the feature map. The structure of the decoder is similar to the 

encoder, where the class prediction probability of each pixel  is 

obtained through the Fully Connected (FC) layer after the feature map size is recovered 

using the transposed convolution. 

Fig. 1. The overall pipeline of our proposed method. 
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Fig. 2. The detail of modules: ResBlock, Spatial-Transformer and Global Attention. 

2.2 Multiscale Spectral Aggregation 

To address the issue of increased computational complexity caused by multi-channel 

features in hyperspectral images, we propose a Multiscale Spectral Aggregation (MSA) 

module. This module achieves end-to-end joint feature learning through parallelized 

spectral feature compression and multi-scale spatial feature extraction. As shown in 

Fig. 3, this module includes convolutional layers, Batch Normalization (BN), ReLU, 

and self-attention mechanism, where "Conv_k" represents a convolutional layer with 

kernel size of .  

The MSA module utilizes multi-branch parallelism to construct multi-scale convolu-

tional layer groups to capture spatial features of different scales. In addition, the model 

uses convolution for feature channel dimension transformation to compress the spectral 

channels. The calculation process of each branch is as follows: 

  (1) 

where  denotes the output of -th branch, and  represents the parameters of a con-

volutional layer with kernel size of . The calculation of Self-Attention is carried out 

in the spectral dimension. After flattening the spatial dimension of the feature map, we 

use a linear layer to calculate the Query, Key and Value vectors of the embedding. 

Finally, we concatenate the outputs of each branch in the spectral channel dimension. 

And the final output is obtained by fusing convolutional layer. 

In this study, we used MSA with four branches, each of which compressed the spectral 

channels to 32 dimensions. The convolution kernel sizes for the four branches are set 

to 1, 3, 5, and 7. The selection of branch number and scale size will be validated in 



ablation experiments. After concatenation and fusion, we finally obtained the output of 

128 channels. 

Fig. 3. The architecture of Multiscale Spectral Aggregation module. 

2.3 Module design 

ResBlock. The architecture of ResBlock is shown in Fig. 2. The key part of this module 

consists of convolutional layers, Group Normalization (GN) and ReLU activation func-

tions, and the final output forms a residual connection with the input. GN normalizes 

data by grouping channels, preserving the correlation of channels within each group, 

making it more suitable for capturing local features. GN is not affected by batch size 

and can maintain a stable distribution of data even when the batch size is small, with 

robustness. ReLU combines the smoothness of Sigmoid and the nonlinear characteris-

tics of ReLU, and has received widespread attention for its excellent performance in 

deep networks. The calculation process of ResBlock can be defined as: 

  (2) 
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Spatial-Transformer. The architecture of Spatial-Transformer is shown in Fig. 2. Un-

like ViT [15], our Spatial-Transformer uses convolutional layers with kernel size of 1 

to patch the image. Namely, we only change the dimension of feature embedding and 

use self-attention mechanism to capture the relationships in the overall space of the 

feature map. After patch embedding, the basic transformer[16] block, including Layer 

Normalization (LN), Multi-Head Attention (MHA), and Feed Forward Network (FFN), 

is used to process feature maps: 

  (3) 

  (4) 

Global Attention. Global Attention replaces traditional local operations with light-

weight global attention computation, aiming to enhance the global modeling capability 

of the model by capturing long-range dependencies. And Global Attention dynamically 

integrates multidimensional information through dual-path attention to jointly model 

spectral channels and spatial features. Firstly, perform attention calculation on  the 

spectral channel: 

  (5) 

Next, we use convolutional layers and Batch Normalization (BN) to model spatial 

information and generate attention weights using Sigmoid, ultimately obtaining the out-

put of Global Attention: 

  (6) 

2.4 Loss Function Design 

In this study, we use a hybrid loss function that effectively combines Cross-Entropy 

Loss[17] and Log-Cosh Dice Loss[13] to address challenges in segmentation tasks. The 

loss function is defined as: 

  (7) 

The Cross-Entropy Loss  is widely used in classification tasks and is particularly 

effective in penalizing pixel-level misclassifications. The Cross-Entropy Loss is com-

puted as follows: 

  (8) 

where denotes the one-hot encoding of the ground truth label, and  stands for 

the probability distribution of the predicted result,  represents the -th pixel,  refers to 

the -th category. 

To better address inherent class imbalance issues in segmentation tasks and improve 

boundary delineation, we use the Log-Cosh Dice Loss. This loss function combines the 

advantages of Dice loss and the logarithmic hyperbolic cosine function, providing sta-

ble gradients and robustness to outliers. The Log-Cosh Dice Loss is defined as: 



  (9) 

where  represents the Dice Loss: 

  (10) 

where  and  stand for the model’s prediction and the GT label, respectively, 

while index  denotes a class index. The addition of  is to avoid zero in the 

denominator when .  

The logarithmic hyperbolic cosine function, which can be defined as: 

  (11) 

2.5 Evaluation Metrics 

We evaluated the model's semantic segmentation performance on the dataset using 

Overall Accuracy (OA) and the kappa coefficient. OA represents the proportion of cor-

rectly classified samples to the total number of samples, while the kappa coefficient 

quantifies the reduction in classification error compared to a completely random clas-

sification. The formulas are defined as: 

  (12) 

  (13) 

 

where  denotes the total number of elements in the confusion matrix,  represents 

the diagonal elements of the confusion matrix,  is the sum of row ,  is the sum 

of column . 

3 Experiments 

3.1 Experiment Set-up 

Dataset. We have conducted our method in the UAV-HSI-Crop dataset[13]. The UAV-

HSI-Crop dataset from China Agricultural University was collected through hyperspec-

tral image acquisition in farmland plots located in both Majiakou Village and Xijing-

meng Village, Shenzhou City, Hebei Province, China. The data was captured using a 

Pika L hyperspectral imager manufactured by Resonon, covering a spectral range of 

400–1000 nm with 200 spectral bands. The ground sampling distance is approximately 

100 meters, and the spatial resolution is 0.1 meters per pixel. The dataset includes 433 
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hyperspectral images of size 96×96 pixels, covering 27 distinct vegetation categories 

such as bare soil and weed, Chinese cabbage, corn, millet, and others. 

Implementation Details. All experiments are conducted with 8 × NVIDIA RTX 3090 

GPUs. The training lasts for 200 epochs with the batch size of 8. The Adam optimizer 

is employed with an initial learning rate of 4e-5 and weight decay of 0.0005. Our model 

performs two downsampling operations, while ResBlock performs a double-dimen-

sional operation on the channel. We only apply the Spatial-Transformer and Global 

Attention modules during downsampling. The depth of the Spatial-Transformer is set 

to 1. 

3.2 Results 

Comparison with other methods. Our proposed method demonstrates significant im-

provements over existing state-of-the-art approaches when evaluated on the UAV-HSI-

Crop benchmark dataset. As is shown in Tab. 1, our method achieves a remarkable 

overall accuracy (OA) of 89.96% with a corresponding Kappa coefficient of 0.8814, 

representing a substantial performance gain of 4.54 percentage points in OA compared 

to the HSI-TransUNet baseline. This significant enhancement can be attributed to sev-

eral key architectural innovations and methodological contributions. 

The superior performance metrics demonstrate the efficacy of our integrated pipeline 

architecture, which synergistically combines the novel Multiscale Spectral Aggregation 

(MSA) module with advanced loss function optimization. The MSA module effectively 

captures multi-resolution spectral-spatial features across different scales, enabling more 

comprehensive representation learning from hyperspectral data. Furthermore, the im-

plementation of Log-Cosh Dice Loss addresses the inherent class imbalance challenges 

prevalent in agricultural land cover classification tasks, particularly for minority classes 

representing small agricultural parcels. 

Qualitative assessment through semantic segmentation visualization (Fig. 4) pro-

vides additional validation of our method's effectiveness in preserving fine-grained 

boundary details and accurately delineating complex agricultural landscape features. 

The enhanced boundary preservation capability is particularly crucial for precision ag-

riculture applications where accurate field boundary detection is essential for yield es-

timation and crop management decisions. 

Table 1. Results on the UAV-HSI-Crop dataset compared to the state-of-the-art methods. 

Method OA% Kappa 

SegNet[18] 43.61 0.5415 

SETR[19] 69.47 0.7267 

UNet[14] 76.07 0.7131 

TransUNet[20] 78.64 0.7456 

HSI-TransUNet[13] 86.05 0.8347 

HRS-UNet(Ours) 89.96 0.8814 



Fig. 4. The visualization results of semantic segmentation. 

3.3 Ablation Study 

Effectiveness of Multiscale Spectral Aggregation and other modules in Pipeline. 

To validate the contributions of key modules, ablation experiments were conducted on 

the UAV-HSI-Crop dataset, and the results are shown in Tab. 2. For each module, we 

remove it and replace it with a single convolutional layer with kernel size of 1, to verify 

its effectiveness. From the experimental results, it can be seen that after removing MSA, 

the overall accuracy decreased to 87.04%. This indicates that our MSA module plays 

an important role in the entire pipeline, effectively aggregating the features of spectral 

channels. After removing other modules, our model can still maintain high perfor-

mance, which proves the robustness of our model. 

Table 2. Ablation results on the pipeline, including Multiscale Spectral Aggregation, ResBlock, 

Spatial-Transformer and Global Attention modules. 

MSA ResBlock ST GA OA(%) Kappa 

× - - - 87.04 0.8462 

- × - - 89.46 0.8757 

- - × - 87.55 0.8531 

- - - × 87.78 0.8550 

- - - - 89.96 0.8814 

 

Branch and scale selection for MSA. The ablation experiment results of branch and 

scale selection for MSA are shown in the Tab. 3. We set different numbers of branches 

and the size of convolution kernels in each branch separately. From the experimental 

results, it can be seen that our selection of branch numbers and scales achieved the best 

performance. When the number of branches decreases, the feature expression perfor-

mance of the model will significantly decline. And as the number of branches increases, 

the model exhibits overfitting, which affects the accuracy of segmentation. The exper-

imental results indicate that we have chosen the optimal branch number and scale. 
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Table 3. Ablation results on the different branches and kernel sizes of MSA. 

Branches Kernel Size OA(%) Kappa 

3 1 3  5 88.14 0.8598 

5 1 3 5 7 9 88.80 0.8677 

4 3 5 7 9 88.50 0.8642 

4 1 3 5 7 89.96 0.8814 

4 Conclusion 

This study proposes a semantic segmentation model, HRS-UNet, designed for precise 

crop classification from UAV-based hyperspectral imagery. HRS-UNet addresses the 

limitations of existing methods through two innovative components. The pipeline of 

our proposed model is based on the UNet framework, consisting of ResBlock, Spatial-

Transformer and Global Attention mechanism. And we introduce the Multiscale Spec-

tral Aggregation module, which enhances feature representation and lowers the com-

putational complexity of the model through spectral channels aggregation. Experi-

mental evaluations on the benchmark UAV-HSI-Crop dataset demonstrate that HRS-

UNet achieves state-of-the-art performance, with an overall classification accuracy of 

89.96% and a Kappa coefficient of 0.8814, surpassing existing methods. These findings 

indicate that HRS-UNet offers efficient and accurate crop classification support for pre-

cision agriculture monitoring, with substantial application potential.  
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