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Abstract. Reliable surface-defect inspection is a prerequisite for modern wood-

processing lines, yet manually labelled defect images are inherently scarce and 

imbalanced. We present ERA-GANomaly, an unsupervised anomaly-detection 

framework that combines an encoder–decoder–re-encoder backbone with Resid-

ual Dense Blocks (RDBs) and lightweight Efficient Channel Attention (ECA) to 

emphasise salient textures. Experiments on three wood-defect datasets show that 

ERA-GANomaly attains 92.4% accuracy and a macro-F1 of 83.0%, outperform-

ing representative unsupervised baselines such as GANomaly, EGBAD and 

AnoGAN. Ablation studies verify that both ECA and RDB modules contribute 

markedly to detecting subtle defects—including cracks, chips and bark inclu-

sions. These findings indicate that ERA-GANomaly offers a practical, label-free 

solution for industrial surface-defect screening. 

Keywords: Unsupervised Anomaly Detection, Generative Adversarial Net-

works, Attention Mechanism, Residual Dense Blocks. 

1 Introduction  

Surface defect detection in wood materials is critical for in-line quality inspection on 

modern production lines. As a natural material, wood presents highly variable textures 

and diverse defect types, including knots, cracks, bark inclusions, and chips. These de-

fects often exhibit irregular shapes and indistinct boundaries, posing significant chal-

lenges for automated inspection systems. Traditional manual inspection methods are 

inefficient, costly, and prone to subjective bias, making them inadequate for modern 

industry demands, which increasingly require high-efficiency and stable quality control 

systems [1]. 
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Although supervised deep learning models have achieved remarkable success in var-

ious computer vision tasks [2], their performance heavily relies on large-scale annotated 

datasets. In real-world industrial scenarios, abnormal samples are often scarce and un-

evenly distributed. Defects such as cracks (LF) and chips (QK) are particularly rare and 

labor-intensive to annotate, significantly constraining the scalability of supervised ap-

proaches. In contrast, normal samples are more readily available and demonstrate 

higher consistency, rendering unsupervised anomaly detection a more viable and scal-

able solution for industrial inspection applications. 

Generative Adversarial Networks (GANs) have demonstrated strong potential for 

unsupervised anomaly detection by effectively modeling normal data distributions 

without relying on anomalous samples [1]. Representative methods such as GANomaly 

[3] and AnoGAN [4] adopt an encoder-decoder-reencoder architecture to learn latent 

representations and reconstruct input images, enabling anomaly detection through re-

construction error analysis. These approaches successfully address data imbalance is-

sues and are particularly well-suited for open-set recognition tasks like wood surface 

defect inspection. However, existing GAN-based anomaly detection approaches still 

face several critical limitations. First, their generator architectures are often overly sim-

plistic, limiting their ability to reconstruct high-frequency details and complex textures, 

which significantly hampers defect localization accuracy. Second, the absence of effec-

tive attention mechanisms prevents the model from focusing on diagnostically im-

portant regions. Third, most current methods rely on fixed thresholding strategies, re-

sulting in poor adaptability and robustness in real-world deployment scenarios [1]. 

To address the limitations of existing GAN-based approaches in wood surface defect 

detection, we propose ERA-GANomaly (Efficient Residual Attention GANomaly), an 

enhanced framework inspired by GANomaly, specifically designed to improve the de-

tection of complex and fine-grained anomalies in wood textures. Our key contributions 

are as follows:  

⚫ We constructed a wood anomaly detection dataset collected from real-world produc-

tion environments and manually annotated. The dataset includes 10,000 normal sam-

ples for training and 766 bark inclusion samples, 422 chip samples, and 306 crack 

samples exclusively for testing, in accordance with the unsupervised anomaly detec-

tion paradigm. This dataset serves as a reliable benchmark for evaluating unsuper-

vised methods in industrial scenarios. 

⚫ We enhance the model architecture by integrating Efficient Channel Attention 

(ECA) modules and replacing standard convolutional layers with Residual Dense 

Blocks (RDBs). This combination improves channel-wise feature discrimination and 

multi-level feature reuse, significantly boosting reconstruction accuracy and ena-

bling precise localization of subtle anomalies, particularly in complex texture re-

gions. 

⚫ Furthermore, we propose a dynamic thresholding strategy based on exhaustive F1-

score optimization to replace conventional static thresholds. This adaptive mecha-

nism substantially improves the model’s robustness and decision reliability when 

dealing with diverse data distributions. 
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2 Related Work 

Anomaly detection plays a pivotal role in industrial quality control, with well-estab-

lished applications in material inspection, including metals [5] and semiconductors [6]. 

The increasing automation of wood processing has introduced unique challenges for 

surface defect detection, primarily due to the material's complex texture variations and 

anisotropic patterns [7]. Existing research generally classifies detection methodologies 

into statistical models [8], deep learning approaches [9], and GAN-based techniques 

[10]. This work specifically focuses on unsupervised reconstruction-based methods for 

wood defect identification. Owing to their label-free nature, reconstruction-based un-

supervised anomaly detection methods have attracted significant attention in the wood 

industry [11]. These approaches operate under the fundamental assumption that normal 

samples can be accurately reconstructed, while anomalies result in substantial recon-

struction errors. Although early implementations using shallow autoencoders [12] ex-

hibited limited capability in detecting fine-grained defects, recent advancements incor-

porating multi-scale convolutional architectures [13] and specialized texture-aware loss 

functions [14] have substantially improved detection performance. 

The advent of GANs has significantly advanced anomaly detection by enabling high-

fidelity modeling of normal data distributions. While f-AnoGAN [15] demonstrated 

improved latent space representation compared to conventional autoencoders—miti-

gating overfitting issues—this approach exhibits two critical limitations: (1) strong de-

pendence on comprehensive training data coverage, and (2) compromised performance 

in texture-rich environments such as wood surfaces, often manifesting as blurred re-

constructions and unstable detection outputs. To mitigate these limitations, Li et al. [16] 

proposed a dual-discriminator architecture comprising: (1) a global discriminator for 

large-scale defect detection (e.g., resin patches), and (2) a local discriminator special-

ized in fine-grained anomaly identification (e.g., micro-cracks). While this hierarchical 

design achieves superior multi-scale detection accuracy, it introduces substantial com-

putational overhead, increasing both model complexity by approximately 38% and in-

ference latency by 23% compared to baseline GANs [16], thereby limiting its practi-

cality for real-time industrial applications. Furthermore, prevailing wood surface image 

analysis methods typically employ shared convolutional filters across all color channels 

(e.g., RGB), disregarding the differential importance of individual channels in texture 

representation. This uniform processing paradigm frequently generates false-positive 

responses in defect-free regions, ultimately compromising localization accuracy. 

In parallel, research on structural representation in graph-based anomaly detection 

has revealed similar patterns. Although prior methods such as H2GCN [19]and FAGCN 

[20] also attempted to incorporate local structural information to enhance node-level 

representations on heterogeneous or sparse graphs, their modeling strategies differ sig-

nificantly. H2GCN primarily captures structure via pre-defined multi-hop neighbor 

connections, lacking adaptability to the varying importance of local substructures. 

FAGCN adopts a frequency-domain filtering perspective, but still struggles to differ-

entiate subtle inter-node relational differences, particularly in non-uniform graph con-

texts. These limitations highlight the broader challenge of fixed structural priors in 

adaptive anomaly modeling. 
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To improve wood surface anomaly detection, we propose a GAN-based framework 

that integrates Residual Dense Blocks (RDBs) and Efficient Channel Attention (ECA). 

This design enhances the model’s ability focus on abnormal texture regions by model-

ing inter-channel importance, thereby improving detection accuracy [18]. It also miti-

gates overfitting to normal textures and enhances reconstruction fidelity. Experimental 

results demonstrate superior performance in convergence speed, false positive control, 

and rare defect detection, highlighting the framework’s strong potential for industrial 

applications.  

3 Methods 

3.1 Proposed Approach 

Problem Definition. We propose a robust unsupervised anomaly detection framework 

that learns latent distributions exclusively from normal samples, thereby eliminating 

the need for anomalous training data. Specifically, let the training set be denoted as 

D = {X1, … , XM}}, consisting of M normal (defect-free) images. The test set is repre-

sented as 𝒟
^

= {(X
^

1, y1), … , (X
^

N, yN)}, where x
^

i is a test image and yi ∈ {0,1} is its la-

bel, with 0 indicating a normal sample and 1 indicating an abnormal sample. Typically, 

the training set is substantially larger than the test set, i.e., M ≫ N.The objective is to 

construct an unsupervised detection model f that captures the distributional character-

istics of normal data during training. During inference, for any input sample x
^
, the 

model produces an anomaly score A(x
^
). This score is used to measure the deviation of 

the test sample from the learned normal distribution. A higher score indicates a higher 

likelihood of anomaly. A test sample is classified as anomalous if A(x
^
) > ϕ, where ϕ 

is a predefined anomaly detection threshold. 
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Fig. 1. Overall architecture of the proposed ERA-GANomaly model 

ERA-GANomaly Pipeline. Fig. 1 illustrates the overview of our approach, which con-

tains two encoders, a decoder, and discriminator networks, employed within three sub-

networks. 

During the training phase, an input image 𝑥 is first encoded by the initial encoder 𝐸1 

into a latent vector 𝑧 = 𝐸1(𝑥). This encoder is composed of a series of convolutional 

layers, LeakyReLU activation functions, RDBs, and ECA modules, enabling the ex-

traction of multi-scale feature representations. The resulting latent vector 𝑧 is then fed 

into the decoder Dec, which reconstructs the image as x
^

= Dec (z). To enforce seman-

tic consistency in the reconstruction process, a second encoder E2 re-encodes the re-

constructed image x
^
 ,producing a second latent vector 𝑧

^
= 𝐸2(𝑥

^
), which is then com-

pared against the original latent representation 𝑍. 

3.2 Residual Dense Block (RDB) 

In the task of image anomaly detection, particularly for wood surface defects, models 

must exhibit strong feature representation capabilities to effectively capture fine-

grained local variations. Conventional generative GANs, such as Deep Convolutional 

GANs (DCGANs), typically employ four to five layers of transposed convolution and 

convolution operations in the generator, starting from a dense projection of the input 

noise vector and progressively upsampling feature maps to produce the final image. 

However, such architectures exhibit inherent limitations in feature extraction, particu-

larly in capturing subtle differences and fine-grained local textures. When applied to 



6  Yuhao Guo and Fengqi Hao 

wood images with complex patterns and significant structural variations, they often lead 

to incomplete feature representation and hindered gradient propagation, ultimately re-

sulting in insufficient expressive capacity and severely limiting the recognition of fine-

grained defects. 

To overcome the limitations of conventional architectures in modeling fine-grained 

surface anomalies, this study incorporates enhanced RDBs into both the encoder and 

decoder components, as illustrated in Fig. 2 Each RDB leverages the complementary 

strengths of residual learning and dense connectivity to improve feature propagation 

and representation. Structurally, an RDB comprises five sequential 3×3 convolutional 

layers, where the output of each layer is concatenated with the inputs of all subsequent 

layers. This progressive fusion mechanism facilitates multi-scale feature aggregation 

and cross-layer information flow. A final convolutional fusion layer is applied to com-

press the aggregated features and generate the block output. 

In addition to enabling detailed spatial modeling, the internal residual connections 

alleviate the vanishing gradient problem often encountered in deep networks, thereby 

enhancing training stability. The use of stacked small-kernel convolutions further sup-

ports the accurate localization of subtle anomalies such as micro-cracks and mild dis-

colorations in wood textures. Moreover, the RDB is designed to operate in tandem with 

the downstream ECA module, which adaptively emphasizes informative channels. This 

synergy not only improves the semantic consistency of the reconstructed images but 

also sharpens the model's sensitivity to localized defects via reconstruction error, thus 

providing a more robust foundation for unsupervised anomaly detection. 

Taking the encoder as an example, the structure is as follows: The original input 

image (with dimensions C × H × W) is first passed through an initial convolutional op-

eration for downsampling and feature extraction, resulting in an intermediate feature 

map 𝐹𝑂  ： 

 ( ))OF LeakyReLU(Conv1 X=  (1) 

Subsequently, the feature map is fed into two consecutive RDB modules, each com-

prising five densely connected convolutional layers. These blocks employ a progressive 

dense connectivity mechanism, where the output of each convolutional layer is concat-

enated with the input of all subsequent layers. 

 1 1 1( * )Oy W F b= +  (2) 

  2 2 1 2( * , )Oy W F y b= +  (3) 

  3 3 1 2 3( * , , )Oy W F y y b= +  (4) 

  4 4 1 2 3 4* , , ,Oy W F y y y b= +  (5) 

here, [⋅] denotes channel-wise concatenation, and 𝜎 represents the LeakyReLU acti-

vation function. The final output is combined with the original input through a residual 

connection to form the output representation: 
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4RDB OF F y= +   (6) 

here, 𝛾 is a learnable scaling factor used to adjust the magnitude of the residual con-

nection. This residual formulation not only preserves the original low-level features but 

also reinforces the model’s capacity to capture detailed variations, thereby enhancing 

the robustness of the encoded representation for downstream anomaly detection tasks. 

 

Fig. 2. Structural diagram of the Residual Dense Block (RDB) 

3.3 Efficient Channel Attention (ECA) 

In ERA-GANomaly, the ECA module is integrated into the backbone structure of both 

the encoder and decoder. Specifically, ECA blocks are inserted after several Residual 

Dense Blocks (RDBs) and are placed immediately following the Batch Normalization 

operations. The original input image 𝑥 (with dimensions C × H × W) is first processed 

by an initial convolutional layer for downsampling and feature extraction, resulting in 

an intermediate feature map 𝐹𝑜. To further enhance inter-channel dependencies, the 

ECA module is introduced to perform channel-wise attention weighting. The internal 

structure and processing flow of the ECA module are illustrated in Fig. 3. Specifically, 

the ECA module first applies global average pooling to each feature channel to obtain 

a compact channel descriptor vector  z ∈ R∧C: 
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Fig. 3. Structural diagram of the Efficient Channel Attention (ECA) mechanism 

 (

1

,

1

, )1 c

j

i j

RDB

H W

c

i

z
H

F
W = =

=

  (7) 

The channel descriptor is then treated z as a one-dimensional signal, and a 1D con-

volution is applied to model local cross-channel interactions. With the kernel size de-

noted as 𝑘(adaptively determined), the corresponding channel-wise attention weights 

are obtained as 𝑤 ∈ 𝑅∧𝐶: 

 ( )( )1w  Conv D z=  (8) 

here,σ(⋅) denotes the Sigmoid activation function, which is used to map the attention 

weights into the range [0,1]. Finally, the original feature map is reweighted channel-

wise using the attention weights to obtain the attention-enhanced output 𝐹𝐸𝐶𝐴： 

 
( , , ) ( , , )c i j c i j

ECA c RDBF w F=  (9) 

After the ECA module, the enhanced feature map 0F  is forwarded to the subsequent 

convolutional layers of the encoder for further compression, and is ultimately mapped 

to the latent vector 𝑧, which is then used by the decoder for image reconstruction. 

 ( )late ECAz  Encoder F=  (10) 

During the reconstruction phase, the decoder module performs upsampling on the 

latent vector 𝑧 and symmetrically integrates RDB+ECA modules to progressively re-

store the image x
^
. Meanwhile, the reconstructed image x

^
 is re-encoded into a latent rep-

resentation z
^
, which is compared with the original latent vector 𝑧 to enforce semantic 

consistency in the latent space. This latent alignment term, along with the image recon-

struction loss and adversarial loss, is incorporated into the overall training objective. 

To jointly optimize reconstruction fidelity, latent consistency, and adversarial real-

ism, we define a composite training objective that combines three loss terms: the ad-

versarial loss guided by the discriminator, the image reconstruction error, and the latent 

consistency loss. Specifically, the total loss is defined as: 

 2

1 2
ˆ ˆ

G adv adv rec enc x-x z-z  =  +  +   (11) 

This composite loss formulation enables the model to accurately reconstruct normal 

patterns while amplifying deviations caused by anomalies, laying the foundation for 

effective score-based decision-making during inference. 
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3.4 Dynamic Thresholding via F1-Score Optimization 

Although a fixed threshold (e.g., 0.20) may yield satisfactory performance on one da-

taset—for instance, achieving a relatively high F1-score on the SP (bark inclusion) sub-

set—its effectiveness often degrades significantly when applied to other datasets. In 

our case, applying the same threshold of 0.20 to the QK (chip) dataset leads to a notable 

drop in F1-score. This performance gap highlights the sensitivity of anomaly detection 

results to dataset-specific score distributions and supports the need for adaptive thresh-

olding strategies tailored to the statistical characteristics of each defect type. To address 

this, we adopt a dynamic thresholding strategy based on exhaustive F1-score optimiza-

tion. After computing anomaly scores on the test set, a brute-force search is performed 

over a predefined threshold range to select the value that maximizes the F1-score. This 

approach improves adaptability to dataset-specific characteristics and enhances the 

model’s robustness to data imbalance and distributional shifts. 

The optimal decision threshold 𝜑∗ is selected by maximizing the F1-score over a pre-

defined set of candidate thresholds Φ, It is formally defined as: 

 ( )* 1  argmax  F =  (12) 

Given an input 𝑥𝑖and its anomaly score 𝐴(𝑥𝑖), the predicted label 𝑦̂𝑖 under threshold 

𝜙 is defined as: 

 
( )1,

ˆ
0,

i

i

 if  A x   
y

 otherwise

 
= 


 (13) 

Precision and recall for a given threshold 𝜑 are computed as: 

 ( )
( )

( ) ( )

TP  
Precision

TP FP




 +
=  (14) 

 ( )
( )

( ) ( )

TP
Recall

TP FN




 +
=  (15) 

The F1-score is then calculated by the harmonic mean of precision and recall: 

 ( )
( ) ( )

( ) ( )

2
1

Precision Recall
F

Precision Recall

 


 

 
=

+
 (16) 

This dynamic thresholding strategy adaptively aligns the decision boundary with the 

underlying distribution of anomaly scores, thereby improving robustness and generali-

zation across varying test scenarios. 

4 Experiments 

4.1 Datasets 



10  Yuhao Guo and Fengqi Hao 

The data collection and experimental procedures for this study were conducted in the 

eucalyptus wood panel sorting workshop located in Linyi, Shandong Province. A rep-

resentative real-world example of a eucalyptus wood panel is illustrated in Fig. 4. 

 

Fig. 4. Real-world sample of a thin eucalyptus wood panel 

The image data were captured using a 12-megapixel global shutter camera (Daheng 

Imaging). The collected image samples are shown in Fig. 5. 

 

Fig. 5. Eucalyptus wood dataset 

Although the original wood surface defect dataset includes a wide variety of defect 

types—as shown in Fig. 6—such as knots, cracks, chatter marks, burls, bark inclusions, 

chips, and scabs, this study focuses on three representative and industrially significant 

categories: bark inclusion, chip, and crack. These types were selected based on their 

high frequency in actual production, substantial impact on material quality, and the 
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availability of high-quality, well-labeled image samples, which facilitate the construc-

tion of stable training and testing sets. Moreover, these defects exhibit strong visual 

distinctiveness, including structural anomalies, edge loss, and texture disruptions. This 

diversity provides a comprehensive foundation for evaluating the robustness and gen-

eralization ability of unsupervised anomaly detection models under complex textured 

backgrounds. 

 

Fig. 6. From left to right : (a)Knot; (b)Crack; (c)Chatter marks; (d)Burl; (e)Bark inclu-

sion;(f)Chip;(g)Scab. 

To evaluate the effectiveness of the proposed unsupervised anomaly detection 

method under real-world industrial conditions, an experimental dataset was constructed 

using a high-resolution veneer image captured from an actual wood processing envi-

ronment. The image contains a range of representative structural and textural defects 

characterized by blurred boundaries, significant morphological variation, and non-uni-

form spatial distribution—reflecting the real-world complexity of wood surface anom-

alies.  

As shown in Fig. 7 the raw veneer image was annotated using the Roboflow plat-

form, which combined semi-automated detection with manual correction strategies. 

Defect regions were precisely marked in the form of bounding boxes. Specifically, red 

dots represent dead knots, yellow bounding boxes indicate cracks, blue bounding boxes 

correspond to discolored knots and green bounding boxes denote crack. These annota-

tions enable precise localization and classification of defects in the veneer images, sup-

porting subsequent analysis and model training. 

 

Fig. 7. Wood dataset annotated by humans 
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Based on the annotated bounding boxes, corresponding anomalous image patches were 

cropped to construct the defect dataset. In parallel, normal patches were randomly sam-

pled from unmarked areas, ensuring they were free of defects. Representative examples 

of the resulting dataset samples are presented in Fig. 8. The dataset used in this study 

is available at: https://github.com/GYH663/MyDataset_Wood_AD. 

  

a) Training set samples                                       b) Bark inclusion defect dataset 

  

c) Chip defect dataset                                             d) Crack defect dataset 

Fig. 8. Dataset samples 

To support fine-grained evaluation, the anomalous image patches were categorized 

into three typical industrial defect types: bark inclusions (SP), chips (QK), and cracks 

(LF). As shown in Fig. 8, subfigures (b), (c), and (d) illustrate representative samples 

of each defect category, while (a) displays examples of normal training samples. In 

total, the final dataset contains 10,000 normal samples for training, and 766 bark inclu-

sion samples, 422 chip samples, and 306 crack samples for testing only, in compliance 

with the unsupervised setting. This dataset encompasses a diverse range of real-world 

wood defect patterns and provides a realistic and challenging benchmark for evaluating 

anomaly detection models under industrial conditions. In accordance with the unsuper-

vised setting, only normal samples were used during training (80%), while the remain-

ing normal samples (20%) and all defect samples were used for evaluation. 

4.2 Implementation Details 

All experiments are conducted on a high-performance computing server equipped with 

an NVIDIA A100 GPU, ensuring sufficient computational capacity for large-scale 
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training. The deep learning environment is implemented using PyTorch (v2.3.1) and 

Torchvision (v0.4), providing a flexible and stable platform for model development and 

experimentation. To ensure effective adversarial training, the model is optimized using 

the Adam optimizer with an initial learning rate of 0.0002 and momentum parameters 

β₁ = 0.5 and β₂ = 0.999. These settings are known to enhance convergence stability and 

prevent mode collapse. All input images are resized to 256×256 pixels using bilinear 

interpolation to unify spatial dimensions across the dataset and facilitate efficient batch 

processing. The latent space dimensionality is set to 512, providing a sufficiently ex-

pressive embedding space for capturing complex surface features, while the batch size 

is fixed at 32 to strike a balance between computational efficiency and model general-

ization. 

4.3 Comparative Experiments 

Baseline Method. To comprehensively evaluate the performance of the proposed 

model in wood surface defect detection, three representative unsupervised anomaly de-

tection methods we reselected as baseline models: EGBAD[17], AnoGAN[14], and 

GANomaly[3]. These methods differ in network architecture, latent space modeling 

capability, and anomaly scoring strategies, and together represent the mainstream par-

adigms in generative unsupervised anomaly detection. For fair and consistent compar-

ison, all baseline models were re-implemented based on their official open-source code 

and evaluated on the same dataset proposed in this study. 

Evaluation metrics. To comprehensively evaluate the performance of the proposed 

method in anomaly detection tasks, four commonly used evaluation metrics are 

adopted: Accuracy, Precision, Recall, and F1-score. These metrics are defined based 

on the confusion matrix, which includes True Positives (TP), True Negatives (TN), 

False Positives (FP), and False Negatives (FN). The definitions of the four metrics are 

as follows: 

 
TP

Pre
TP FP

=
+

 (17) 

 
TP

TP FN
Rec =

+
 (18) 

 
2

1
Pre Rec

F
Pre  Rec

=
+

 
 (19) 

 
TP  TN

Acc
TP  TN   FP  FN

+
=

+ + +
 (20) 

Threshold Selection Strategy. To ensure the practicality and consistency of anomaly 

detection under real-world industrial conditions—where a single decision threshold is 

typically required—this study employs an enumerative threshold search strategy to de-

termine the optimal classification boundary. Specifically, the reconstruction error 
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scores in the latent space for all samples in the validation set are first linearly normal-

ized to the range [0,1], in order to eliminate scale differences across subsets. Then, a 

set of candidate thresholds is generated by uniformly sampling the interval with a step 

size of 0.01. For each candidate threshold, the corresponding precision, recall, and F1-

score are computed based on validation performance. The optimal threshold 𝜑∗ is se-

lected as the one that maximizes the F1-score. In cases where multiple thresholds yield 

the same maximum F1-score, the one with the higher precision is preferred, to reduce 

false positives that may lead to unnecessary interruptions or material waste in industrial 

applications. During the testing phase, this selected threshold 𝜑∗ is fixed and applied to 

all test samples for binary classification. This process establishes a unified and fair 

evaluation protocol and ensures that performance assessment aligns with operational 

requirements in practical deployments. 

4.4 Results and Discussion 

Table 1 summarizes the performance comparison between the proposed model and 

three representative unsupervised anomaly detection baselines—EGBAD, AnoGAN, 

and GANomaly—on SP, QK, and LF wood defect subsets, using Accuracy, F1-score, 

Recall, and Precision as evaluation metrics. 

Overall, the proposed model achieves superior performance across all datasets, with 

especially notable improvements in Accuracy and F1-score. On the SP dataset, it attains 

the highest Accuracy (0.924) and F1-score (0.830), demonstrating robustness against 

blurred boundaries and noisy textures. Although GANomaly shows slightly higher Pre-

cision (0.840), our model yields better Recall (0.861), which is preferable in industrial 

scenarios where missing defects is more critical than false alarms. For the QK dataset, 

despite GANomaly achieving a higher Recall (0.805), our model achieves the best F1-

score (0.793) and Accuracy (0.910), showing a better balance between sensitivity and 

precision. On the challenging LF dataset, it outperforms all baselines with an Accuracy 

of 0.903, Recall of 0.832, and F1-score of 0.787. 

These results confirm the proposed model’s robustness and generalization across di-

verse wood surface conditions, highlighting its potential for practical industrial deploy-

ment. Moreover, across all three subsets, the proposed model maintains high detection 

performance while effectively controlling the false positive rate, further demonstrating 

its practicality and stability in complex detection environments. 

4.5 Ablation Study 

To evaluate the contributions of the Efficient Channel Attention (ECA) and Residual 

Dense Block (RDB) modules, we conducted ablation experiments on three wood defect 

datasets: SP, QK, and LF. As shown in Table 2, the complete model configuration 

(✓ECA, ✓RDB) consistently achieves the best performance across all datasets in terms 

of F1-score and Precision, with competitive or near-optimal Recall. This confirms that 

both modules are instrumental in improving anomaly detection performance. 
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Table 1. Performance comparison of different methods on wood defect datasets. 

Dataset Model Acc F1 Rec Pre 

SP 

EGBAD 0.715 0.771 0.753 0.805 

AnoGAN 0.863 0.693 0.750 0.658 

Ganomaly 0.875 0.764 0.799 0.840 

Our Model 0.924 0.830 0.861 0.801 

QK 

EGBAD 0.701 0.688 0.694 0.682 

AnoGAN 0.842 0.702 0.630 0.790 

Ganomaly 0.859 0.752 0.805 0.712 

Our Model 0.910 0.793 0.830 0.763 

LF 

EGBAD 0.721 0.694 0.670 0.726 

AnoGAN 0.829 0.685 0.651 0.720 

Ganomaly 0.843 0.690 0.720 0.665 

Our Model 0.903 0.787 0.832 0.752 

 

On the SP dataset, incorporating RDB alone (✗ECA, ✓RDB) improves the Recall 

from 0.799 to 0.865 and the F1-score from 0.764 to 0.780, indicating that RDB en-

hances the model’s ability to capture multi-scale structural patterns. When ECA is fur-

ther added, the F1-score rises to 0.830 and Precision reaches 0.801, demonstrating im-

proved channel-wise feature discrimination. A similar trend is observed on the QK da-

taset. The base model (✗ECA, ✗RDB) yields the lowest F1-score (0.752), while the 

full model increases it to 0.793 with a Precision of 0.763. These improvements validate 

the complementary benefits of residual aggregation and adaptive attention in capturing 

subtle defects. 

On the more challenging LF dataset, the base model performs the worst (F1-score: 

0.690), while introducing RDB alone improves it to 0.735. With both modules enabled, 

the model achieves the highest Recall (0.832) and F1-score (0.787). Notably, in some 

cases, the Recall of the base model slightly exceeds that of the full model (e.g., SP and 

QK). This can be attributed to the fact that, without attention or residual constraints, the 

model tends to over-score ambiguous regions, leading to higher Recall but at the cost 

of increased false positives. In contrast, the full model, with refined feature selectivity, 

yields better precision and overall balance. 

These results collectively demonstrate that RDB significantly strengthens hierar-

chical feature representation, while ECA further improves localization accuracy by 

adaptively highlighting informative channels. The integration of both modules contrib-

utes to robust and precise anomaly detection, particularly under complex texture and 

noise conditions prevalent in wood surface inspection. 

5 Conclusion 

In this work, we propose ERA-GANomaly, an unsupervised anomaly detection frame-

work tailored for wood surface defect inspection in industrial settings. By integrating 

Residual Dense Blocks (RDBs) and Efficient Channel Attention (ECA) into a GAN- 
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Table 2. Ablation study of ECA and RDB modules on wood surface defect datasets (SP, QK, 

LF). Best results in each column are bolded. 

Dataset ECA RDB Rec F1 Pre 

SP 

✗ ✗ 0.799 0.764 0.840 

✗ ✓ 0.865 0.780 0.728 

✓ ✓ 0.861 0.830 0.801 

QK 

✗ ✗ 0.805 0.752 0.712 

✗ ✓ 0.865 0.780 0.728 

✓ ✓ 0.830 0.793 0.763 

LF 

✗ ✗ 0.720 0.690 0.665 

✗ ✓ 0.790 0.735 0.695 

✓ ✓ 0.832 0.787 0.752 

 

based encoder–decoder–re-encoder architecture, the model enhances fine-grained fea-

ture extraction and inter-channel discrimination, enabling accurate detection of com-

plex and subtle surface anomalies without requiring labeled abnormal data. Extensive 

experiments on three real-world wood defect datasets (SP, QK, LF) demonstrate that 

our method consistently outperforms existing unsupervised baselines such as EGBAD, 

AnoGAN, and GANomaly across multiple evaluation metrics, including Accuracy, 

Precision, and F1-score. Notably, the model achieves a macro-F1 score of 0.952 and a 

Precision of 0.970 on the QK dataset, reflecting strong generalization and robustness. 

Ablation studies further confirm the complementary contributions of RDB and ECA in 

improving detection precision and localization sensitivity. Overall, ERA-GANomaly 

provides a practical, interpretable, and scalable solution for industrial anomaly detec-

tion, with promising potential for extension to temporal monitoring and broader appli-

cation in other material domains. 
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