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Abstract. Despite the persistent threat of malicious Android applications, many
existing detection methods struggle to effectively integrate and analyze the het-
erogeneous threat indicators embedded within APKs. This fragmented analysis
often fails to capture the complex interplay between different threat vectors. To
address this challenge, we propose GCT-Net(GNN-CNN-Tree-LSTM-Net), a
novel deep learning framework that synergistically fuses Graph, Convolutional,
and Tree-structured features for unified malware detection. We first disassemble
APKs via reverse engineering to derive three critical modalities: API call se-
quences modeled as directed graphs and processed by a Graph Neural Network
(GNN) to capture semantic dependencies; binary code converted into greyscale
images and analyzed via a two layers Convolutional Neural Network (2D-
CNN) to detect spatial malware patterns; and URL strings parsed into syntax
trees and encoded using a hierarchical Tree LSTM network to learn structural
embeddings. These modality-specific features are adaptively integrated through
three dense layers. Evaluated on two datasets, GCT-Net achieves state-of-the-
art performance with 96.48%/93.75% accuracy, 97.62%/96.45% precision,
97.05%/95.40% re- call and 97.33%/95.42% F1-score, outperforming other
models. Ablation studies confirm the critical contributions of all three modali-
ties and validate the fusion efficacy, establishing a new method for multimodal
malware analysis.

Keywords: Android Malware Detection -Multimodal Learning -Graph Neural
Network -Tree-Structured LSTM

1 Introduction

With the rapid advancement of mobile internet technologies, the proliferation of mali-
cious applications and URLs—especially those involved in fraud, gambling, and por-
nography—has emerged as a sSignificant threat to the digital information society.
These malicious entities often disguise themselves as legitimate applications or links,
aiming to steal users’ private data, defraud victims of funds, and disseminate illegal
content. Such behavior not only severely undermines information security and finan-
cial stability but also disrupts social ethics and the rule of law[1]. Their diverse forms,
sophisticated evasion strategies, and high concealment introduce considerable chal-



lenges to traditional detection methods. Therefore, timely and accurate identification
of malicious apps is essential not only for protecting individual rights and public safe-
ty but also for fostering a trustworthy and secure cyberspace, thereby advancing the
broader goals of cybersecurity research.
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Fig. 1. Overview of our method (a)APK Decompilation: Uses apktool to extract and restructure
Android application components. (b) API Call Graph Analysis: Implements GNN with dynam-
ic edge weighting to detect suspicious call patterns. (c) Binary Code Visualization: Transforms
APK bytecode into grayscale images processed by 2D-CNN. (d) URL Syntax Parsing: Employs
attention-based Tree-LSTM to analyze URL structure and semantics. (e) Multimodal Fusion:
Integrates all features through DNN-based alignment and cross-modal learning. This architec-
ture synergistically combines static code analysis, behavior monitoring, and network traffic
inspection for robust malware identification.

The complexity of modern malicious software necessitates a detection strategy that
goes beyond single-perspective analysis. However, most existing approaches still rely
on unimodal detection techniques, which are inherently limited by their dependence
on isolated feature dimensions—such as API call traces[2], static code signatures[3],
or network traffic patterns[4]—making them less effective when confronting increas-
ingly cross-dimensional and evasive malicious behaviors. To overcome these limita-
tions, we propose a multidimensional detection framework that integrates three com-
plementary analytical perspectives: (1) APl Feature Extraction, which dynamically
captures runtime behaviors and uncovers sensitive or abnormal operations; (2) Code
Images Feature Extaction, which reverse-engineers APK files to expose obfuscation
tactics and hidden malicious logic; and (3) URL Feature Extraction, which inspects
embedded communication flows to detect potential interactions with malicious com-
mand-and-control servers. Together, these three modalities encompass program logic,
file-level structure, and network behavior, enabling a holistic and more accurate un-
derstanding of malicious activity.

In recent years, malware detection techniques have largely fallen into two catego-
ries: static and dynamic analysis. Static analysis extracts code-level features via re-
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verse engineering [5, 6], while dynamic analysis captures runtime behaviors such as
network activity and permission usage [7, 8]. The adoption of Al-based methods,
particularly those using machine learning and deep learning, has improved detection
accuracy and scalability [9], yet key challenges remain in feature representation,
model robustness, and multimodal fusion.

Many approaches still rely on single-feature inputs or shallow fusion. For example,
Sharfah et al. [10] used a permission-based Bayesian model (91.1% accuracy), but its
assumption of feature independence limits adaptability. Song Kyoo Kim et al. [11]
applied XGBoost and LightGBM for feature optimization, though performance was
hindered by high-dimensional inputs. Similarly, Rafapa’s ensemble model [12]
achieved 94.2% accuracy for ransomware, but performance dropped >20% on vari-
ants; Khan’s DNA-sequence method [13] reached only 87.9%, showing poor general-
ization. Bagui et al. [14] used recursive feature elimination, yet achieved just 79.5%
due to limited semantic learning.

Deep learning offers stronger feature abstraction, but unimodal approaches still fall
short. Kim et al.’s MAPAS [15] used CNNs on API call graphs and achieved 91.27%
on unknown malware, but dropped to 64.71% under obfuscation. This has prompted a
shift toward multimodal fusion. Johny et al. [16] fused grayscale images with Sim-
Hash and GANSs, but linear fusion failed to capture cross-modal dependencies. Lisa et
al. [17] integrated images and tabular data with XAl, improving interpretability but
lacking deep intermodal synergy.

In summary, current research faces three major limitations: (1) unimodal analysis
(e.g., permissions, APIs, or images) fails to capture the full behavioral-code—network
attack chain; (2) existing multimodal fusion methods lack the depth to model complex
intermodal correlations and remain vulnerable to interference; and (3) shallow archi-
tectures limit classification accuracy due to insufficient modeling of sophisticated
malware patterns. To address these challenges, this study proposes GCT-Net (GNN-
CNN-Tree-LSTM-Net), a multimodal fusion-based model for malicious APP iden-
tification, with the following core contributions:

- We propose a multimodal deep fusion framework that integrates API call se-
quences, APK code images, and URL features. GCT-Net improves detection accuracy
and robustness, significantly outperforming unimodal baselines across all metrics.

- We design a unified representational mapping strategy that transforms hetero-
geneous features into a shared space, enabling deep semantic alignment through
DNN-based cross-modal correlation learning.

- GCT-Net achieves state-of-the-art performance, with 96.48%/93.75% accuracy,
97.62%/96.45% precision, 97.05%/95.40% recall, and 97.33%/95.42% F1-score on
two datasets, demonstrating strong generalization and real-world applicability in ma-
licious app detection

2 Methods

The GCT-Net proposed in this study adopts an innovative three-channel feature
fusion architecture, constructing an intelligent detection system through the inte-



gration of various behavioral characteristics of mobile applications. As illustrated
in Fig. 1, the framework consists of a decompilation preprocessing module and
four core analytical modules.

2.1  Decompilation of APK Files

In Android malware detection, decompiling APK files serves as the primary step in
data preprocessing[18]. This process enables the acquisition of application source
code, resource files, and the manifest file (AndroidManifest.xml), which form the
foundation for extracting API call sequences and conducting further behavioral analy-
sis. To accomplish this step, our research employs APKTool[19], an open-source
Android decompilation tool capable of unpacking APK files and reconstructing the
application’s project structure while extracting relevant files and code. When execut-
ing the corresponding commands, APKTool unpacks the APK file and generates the
corresponding file structure, including smali code, resource files, and AndroidMan-
ifest.xml.

2.2 API Call Feature Extraction Based on GNN

In static analysis methods, the detection method based on API call sequences is
an effective strategy. By analyzing the API call interaction between Android appli-
cations and the operating system, the behavioral characteristics of the applications
can be extracted, and these characteristics can reflect the potential malicious be-
haviors of the applications. API call sequences can not only be processed as
one-dimensional time series data, but also be constructed as graph-structured data
for modeling. The relationships and dependencies among API calls can be better
represented through a graph structure, thereby capturing more complex features.
The advantage of this method lies in that the graph structure can effectively
represent the interactions, dependencies among API calls and the topological
structure of the call sequence. In this section, we propose a method based on graph
structure to represent the sequence of API calls. The relationships between API
calls can be captured through a graph structure[20], where each API call is
represented as a node in the graph, and the edges between the nodes represent the
relationships or dependencies between API calls. By transforming the API call se-
quence into a graph structure, we can utilize the GNN model to mine the potential
patterns in the API call sequence and effectively detect malicious applications.

Construction of API Call Sequences. The decompiled smali files serve as the core
data source for analyzing malicious application behaviors in this study. Smali files
represent the low-level code of decompiled applications, containing the core logic and
API calls of the application. By analyzing these files, we can extract the API call se-
quences of the application. In smali files, API calls are typically represented using
instructions such as invoke—virtual, invoke—static, and invoke — direct. Through pars-
ing tools and scripts, these instructions can be analyzed to extract API calls. Each API
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call corresponds to a unique ID, which is converted into a numeric ID based on a
mapping table. Leveraging full static analysis, all possible call path combinations
(including unexecuted logical branches) are extracted from the smali code and dedu-
plicated. These are then arranged in the order of invocation to construct the API call
sequence. A call sequence aci consisting of n API calls can be expressed as:

act = [AY, A% - A™] (1)

Furthermore, each ac must be assigned a label y indicating whether the application
is malicious. These API call sequences and their corresponding labels constitute the
dataset. The API call sequence of each application serves as the input feature, while
the label acts as the output, which is fed into the GNN for feature extraction:

act = [AY, A%, - A™ ¥ )

For each node, a 128-dimensional vector is generated using the Node2Vec algo-
rithm[21].

Graph Structure Construction. Graph Structure Construction. Each API call is
represented as a node in the graph, corresponding to an element in the API call se-
guence. The node feature is the embedding vector of the API call, with a dimension of
d, i.e., heR%, where i denotes the i — th API call. Edges in the graph represent rela-
tionships between API calls. This study considers the following types of relationships
for edge construction:

Sequential Relationship: If API call A; appears after A;_,(i.e., temporally dependent
on A;_;), a directed edge is established from A; to A;_,. This edge indicates a sequen-
tial dependency, with a fixed weight W;_; = 1.

Input-Output Dependency: This relationship captures cases where the output of an API
call (e.g., return values, modified global states, or generated files) influences the input
of a subsequent API call (e.g., parameters, file paths). If the output of Ai affects the
input of A;, a directed edge is created from A; to A;_,. The weight for such edges is
determined based on the dependency strength:

Wi—l,i =a- -MP+ B - COS (3)

Among them, a and f are the weighting coefficients. COS refers to whether the re-
turn value and the input parameter names match. denotes the cosine similarity be-
tween the input and output parameters, which measures whether the input and output
parameters of two API calls align. A value of 1 indicates that they belong to the same
functional category. Let hy_out;_; be the output parameter of the call 4;_; and hy_in
be the input parameter of A . Then, MP is defined as follows:

MP,, 4, = IsCompared(hy_out;_q, hy_in;) 4



Functional Correlation Relationship:Functional correlation refers to the scenario
where different API calls may be closely related in functionality and are frequently
invoked together in practical applications. For instance, file operation APIs and net-
work request APIs are often called within the same application. Establishing edge
relationships between such functionally related API calls helps capture behavioral
patterns in applications. For API calls that may have functional correlations, bidirec-
tional directed edges are created between them. The weights of such edges are set as
follows:

Among them, @ and S are weighting coefficients. CF represents the cooccurrence
frequency of 4; and 4;(i.e., the frequency at which they appear together in the same
sequence). Given a total of N invocations, if A; and A; co-occur n times, CF can be
defined as N; j/N.

Based on the above rules, we can construct a graph G = (V,E), where V repre-
sents the set of nodes in the graph, with each node v; corresponding to an API call A4;.
The node features are the embedding vectors of the respective API calls. E represents
the set of edges in the graph, where each edge e; ; denotes the relationship between
API calls A;and 4;.

Construction of the GNN Model. GNN is a deep learning model capable of pro-
cessing graph-structured data. Its core idea is to update the representation of each
node through message passing between nodes, thereby capturing dependencies and
relationships among them. We employ a GNN to model the API call graph, enabling
the detection of potential malicious behavior patterns within API call sequences. The
GNN updates node representations iteratively. The representation of a node v; after
the k + 1 iteration can be computed using the following formula:

hEkH) = G(W - aggregate({hf|v; € N(v;)}) + b) (6)

Here, hgk“)represents the updated representation of node v; after the k + 1 itera-
tion, W is a trainable weight matrix with dimensions of input dimension multiple of
output dimension for node v; after aggregation, and b denotes the bias term.
aggregate(+) is an aggregation function that computes the feature representation of
the current node based on the representations of its neighboring nodes. In our study,
mean aggregation is adopted as the aggregation function. The mean aggregation
method calculates the representation of the current node as the average of its neigh-
boring nodes’ features. By averaging, the influence of varying neighbor counts on the
results is mitigated, leading to smoother aggregated representations. Let h; denote the
set of features of neighboring nodes of node v;, with N(v;) being the number of
neighbors, then the aggregated representation of node v; is given by:

(aggregated) __ 1
A = s Zjerhy )
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To enable whole-graph learning, we utilize Global Average Pooling (GAP) to ag-
gregate all node representations in the graph into a fixed-length global representation.
Assuming that each node is represented as a vector of dimensions d, the grouping
operation produces a global representation of dimensions fixed h, denoted as:

hg = AVGPooling (h") (8)

2.3 Binary Code Image Feature Extraction Based on 2D-CNN

This paper adopts a method based on malicious code image generation, in which code
files are transformed into grayscale images and deep learning models are employed
for malicious application feature extraction. By processing the application’s code to
generate corresponding image representations and leveraging CNN for training and
classification, the detection accuracy of malicious apps is effectively improved.

Fig. 2. Overview of a subset of the grayscale code images (a)—(d) correspond to malicious
apps, and (e) and (f) correspond to benign (compliant) apps.

Code Image Generation. First, the .dex file of each application is read. Each file
consists of a sequence of bytes (8-bit), with each byte having a value ranging from 0
to 255. These byte values can be interpreted as pixel intensities of an image. A fixed
image width of 64 is defined, and the height is calculated based on the file size and the
fixed width, allowing the entire file to be represented as a grayscale image with a
consistent width. Each byte value (0-255) is then mapped directly to a grayscale in-
tensity and filled into a two-dimensional matrix, which represents the pixel values of
the image. As shown in Fig. 2, the code of each application is transformed into a
grayscale image with a fixed size. The image generation process can be formally
defined as follows:

= f(M),M € R™™ [ € RV 9)

Here, m X n denotes the size of the original code file, and h X w represents the
dimensions of the generated grayscale image.

Since the sizes of malicious code samples vary, and subsequent tasks such as fea-
ture extraction require consistent input formats, it is necessary to perform operations
such as image resizing, standardization, and normalization. These preprocessing steps
are meaningful only when all images share the same dimensions. After resizing,
standardization and normalization can be effectively applied, ensuring the consistency



and validity of downstream tasks such as feature extraction and serving as input to the
network. The image standardization processing algorithm is defined as follows:
N
Ista = adjust_std (10)

Here, p denotes the mean value of the image pixels, x represents the image
matrix, and the value of adjust_std is:

; 1.0
adjustgy = max (o, J_N) (11)

Here, o denotes the standard deviation, and N represents the total number
of pixels in the image.

2D-CNN Architecture. The grayscale images generated by the steps described above
do not contain color features. In this study, we design a 2D-CNN architecture to ex-
tract features from such data. By converting the malicious application’s code into
grayscale images, the 2D-CNN is capable of automatically learning local visual fea-
tures (e.g., edges, textures) and extracting more abstract, high-level representations
through a two-layer convolutional network, without the need for manual feature engi-
neering, thereby improving the performance of feature extraction.

The input data consists of preprocessed grayscale images represented as two-
dimensional matrices of size W x H, where W is the image width and H is the image
height. Since the images are grayscale, they contain only one channel. Each image
corresponds to the code features of a malicious application. The first convolutional
layer consists of 32 filters, each of size 3 <3 with a stride of 1 and padding of 1. After
the convolution, the output maintains the same spatial dimensions as the input, but the
number of channels becomes 32. A max pooling layer follows the first convolutional
layer to perform downsampling, reducing the spatial resolution and extracting domi-
nant features. We apply MaxPooling with a pooling window size of 2>2 and a stride
of 2, resulting in an output of reduced spatial dimensions. The second convolutional
layer contains 64 filters, also of size 3x3, with a stride of 1 and padding of 1. Its out-
put is again downsampled using the same max pooling operation as in the first pool-
ing layer, resulting in further reduced feature map dimensions. Next, a flattening op-
eration is performed to convert the final pooled feature maps into a one-dimensional
feature vector. The resulting flattened vector is of size (W, H, 4), which can then be
used as input to the subsequent fully connected layers or classification module.

2.4  URL feature extraction based on Tree-LSTM

For each APK file, a set U is defined, representing the collection of URLs extracted
from its corresponding decompiled files. Each u;(u; € U) is preprocessed and then
fed into a Tree-LSTM model enhanced with an attention mechanism for feature ex-
traction. The resulting feature representation has a shape of (N,, 64), where N,, de-
notes the number of URLs identified as malicious from the given APK file, and 64 is
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the number of hidden units in the Tree-LSTM model. Tree- LSTM is capable of effec-
tively capturing the hierarchical structure inherent in URLs. When combined with an
attention mechanism, the model further improves the accuracy of URL
classification[22].

Representation of URL Sequences. In this study, the dataset is represented as a col-
lection of pairs u; , y; , where u; denotes the i-th URL and y; is the corresponding
label. A URL typically consists of multiple structured components, such as the proto-
col, domain name, path, and query parameters. The label y; is a binary indicator spec-
ifying whether the URL is malicious. Specifically, y ; = 0 represents a benign URL,
while y; = 1 denotes a malicious one. Essentially, each URL wu; is a sequence of
characters or tokens, typically delimited by special characters. In this work, we ran-
domly initialize an embedding matrix and learn its features during end-to-end train-
ing. An instance consisting of a sequence of L components (tokens) can be represent-
ed as:

x=x,0x,® - Px,, (12)

The symbol @ denotes the concatenation operator. Since the lengths of URLS in
the dataset are not uniform, it is necessary to standardize all URL sequences to a fixed
length to ensure consistency of input. For URLs shorter than the predefined length L,
padding is applied; for URLs longer than L, truncation is performed.

Character-Level Embedding. A standard URL consists of multiple components. To
adapt URL data to the input requirements of deep learning models, we employ a char-
acter-level embedding approach to represent URLs. This involves transforming the
URL strings into low-dimensional vector representations. Specifically, we use a pre-
trained character-level embedding model, Char2Vec, to map each character into a
fixed-dimensional vector space, thereby effectively capturing the character-level fea-
tures of URLs. The detailed steps are as follows: First, we define a character vocabu-
lary that includes all possible characters that may appear in a URL. The character set
consists of letters, digits, symbols, and special characters (such as “:”, “/”, “?”, “&”,
“#7, etc.). Suppose the total number of unique characters in the vocabulary is Cyym-
Each character ci is assigned a unique integer index for lookup and embedding idx.,.

Next, we utilize an embedding matrix R € R¢wum>k where k denotes the embed-
ding dimension. Each row in the embedding matrix corresponds to the embedding
vector of a specific character. In this way, every character is mapped to a vector in a k
dimensional embedding space. Assuming each URL consists of U,,,, characters, a
URL can be represented as a sequence of characters:

u=c®c,® @ CUpnym (13)

To ensure consistency in input data, we perform length normalization on each
URL, standardizing all character sequences to a fixed length L. Specifically, we apply



padding and truncation strategies to normalize the length of each URL. After this step,
every URL ui is transformed into a character sequence of length L.

For each normalized URL u;, we use the embedding matrix E to map each charac-
terE., € R¥ to its corresponding embedding vector. Here, c; represents the i-th char-
acter in the sequence. As a result, each URL is represented as an embedding matrix
x; € R™¥ where each row corresponds to the embedding vector of a character:

x; = Ec, ®E,® - - eEci (14)

Here, L denotes the normalized URL length, and k is the dimensionality of the
character-level embedding vectors. The matrix thus serves as the final feature repre-
sentation of the URL. At this point, the character-level features of all URLs have been
transformed into fixed-dimensional embedding matrices, making them suitable for
further model processing. This character-level embedding approach facilitates the
model in capturing both semantic and structural information of each character in a
URL, thereby providing a strong feature representation for malicious URL detection.

Tree-LSTM Model with Integrated Attention Mechanism. The core structure of
the proposed algorithm is a Tree-LSTM integrated with an attention mechanism.
Tree-LSTM is well-suited for capturing both syntactic and semantic structures in
textual data, and is particularly effective in modeling the hierarchical nature of URL
structures. By incorporating an attention mechanism, the model further enhances its
accuracy in URL classification tasks. In the context of URL analysis, a URL’s charac-
ter sequence can be viewed as a tree structure, where each character corresponds to a
node in the tree. The hierarchical layout of the tree reflects different components of
the URL (e.g., protocol, domain name, path, query parameters, etc.). The Tree-LSTM
processes this tree-structured data by recursively updating the state of each node. The
fundamental idea is that each node (i.e., character) carries a state vector, which de-
pends not only on the embedding vector of the current character but also on the state
vectors of its child nodes. The feature embedding matrix is fed as input to the Tree-
LSTM. Attention mechanisms are applied across the nodes in the tree to dynamically
assign different levels of importance to different components. Through its recursive
structure, the Tree-LSTM computes the hidden state of each node as follows:

h, = f(hparent' henita Penitazs ) (15)

Here, f(-) denotes the LSTM update function, which integrates features from mul-
tiple child nodes along with attention-weighted information. Compared with a stand-
ard LSTM, the Tree-LSTM module proposed in this study is capable of recursively
processing input features while better capturing the underlying hierarchical structure.
Moreover, by processing information in parallel across nodes, it reduces computa-
tional time and resource consumption, thereby improving training efficiency and real-
time inference performance. To further enhance the model’s effectiveness, we inte-
grate an Attention Mechanism into the Tree-LSTM framework. The purpose of the
attention mechanism is to assign different weights to each character (i.e., node), ena-
bling the model to focus more on the parts of the URL that are most influential in
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identifying malicious behavior. In the out-put of the Tree-LSTM, an attention layer is
applied to compute the importance of each node. Specifically, given the output hidden
states from the Tree-LSTM, we compute an attention weight for each node using a
trainable weight matrix and a bias term. The attention weight «; for the node h; is
defined as:

a; = softmax(W,h; + b;) (16)

Here, W, is a trainable weight matrix, where h denotes the dimensionality of each
hidden state. b, is the bias term. The softmax function ensures that the attention
weights sum to 1, meaning they form a valid probability distribution.

By computing a weighted sum over the outputs of all nodes, we obtain the final
representation:

v =Y (a;hy) (7)

Here, v represents the final input representation of the model, which incorporates
information from all nodes while assigning different levels of importance to each
node based on the attention mechanism.

2.5 Multimodal Feature Fusion

This study adopts a representation-level fusion strategy to integrate features from
three different modalities. A Deep Neural Network (DNN) is then employed to learn
the fused feature representation, which is used for the final prediction in the mali-
cious application detection task. For each APK file sample, we consider three distinct
types of feature representations:

API Call Features. These features are extracted using a Graph Neural Net-work
(GNN), representing node embeddings in the API call graph. Since each APK file
contains a different number of API calls, the API feature tensor has a shape of (m, d),
where m is the number of API calls and d is the dimensionality of the feature vector
for each API.

Binary Code Image Features.These features are obtained by converting the binary
code into a grayscale image and extracting its features. Assuming the image size is
(H, W), the extracted image feature for each APK is flattened into a one-dimensional
vector of shape (H X W x 4).

URL Features. Each APK file may contain multiple potentially malicious URLs,
each represented by a feature vector. Thus, the URL feature matrix for a sample has a
shape of (n, 64), where n is the number of malicious URLs and 64 is the number of
hidden units in the Tree-LSTM model. To make the features from all modalities com-
patible, each feature type is mapped into a common dimensional space, after which



the wvectors are concatenated into a unified representation for downstream
classification. For the URL and API call features, average pooling is applied to aggre-
gate the sequences into fixed-length vectors. Specifically, the n URL vectors are aver-
aged into a 64-dimensional vector, and the m API call vectors are aggregated into a
dnew vector. After processing, the final unified feature vector is formed by concate-
nating the pooled URL feature, the pooled API feature, and the binary code image
feature. Assuming the post-pooling dimensionalities are k for the URL feature, d for
the API feature, and (H X W X 4) for the image feature, the resulting fused feature
vector has the dimensionality:

dr=k+d+WXHXx4 (18)

After feature fusion, the resulting representation is fed into a three-layer fully con-
nected network to further learn high-level interactions among the fused features. The
first two layers use the ReLU activation function to introduce non-linear representa-
tional capacity. The final layer outputs a binary classification result. The fused feature
vector is first passed through the first hidden layer, which is a fully connected layer.
This layer has an input dimension of d¢, and an output dimension of d,;:

h1 = Relu(Wl . df + bl (19)

Here, W, is the weight matrix, and b, is the bias vector.
The second hidden layer is also a fully connected layer, with an input dimension of
dy, and an output dimension of d;,,:

h, = Relu(W, - dp; + by) (20)

Here, W,is the weight matrix, and b, is the bias vector.

The final layer is the output layer, responsible for mapping the learned features to a
binary classification result. It has an input dimension of dj, , and outputs a single
scalar value. A Softmax function is applied to produce a probability of a malicious
or a benign app:

Vprea = Softmax(Relu(Ws - dp, + b3)) (21)

Here, W5 is the weight matrix, and b5 is the bias term. Since this task is a binary
classification problem (malicious vs. benign applications), we adopt the Binary Cross-
Entropy (BCE) Loss function to measure the discrepancy between the model’s predic-
tion and the ground truth label. Binary Cross-Entropy is a widely used loss function
for binary classification tasks, as it effectively quantifies the distance between the
predicted probability and the actual label:

L= ~25X,lylong 3 + (1 — y)(log (1 = §,)] (22)

Here, L denotes the loss value, N is the number of samples, y; represents the
ground truth label, and ¥, is the predicted probability that the sample belongs
to the positive class.
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3 EXPERIMENTAL RESULTS

3.1 Dataset Description

DataSetl. This is a publicly available dataset provided by China Mobile on the Jiu-
tian- Bisheng Cloud Platform. After filtering out APK files that could not be properly
parsed, a total of 474 APK files were retained for analysis, including 223 malicious
and 251 benign applications.

DataSet2.[23] This is a balanced dataset for verifying the overall performance of our
method in Android malware detection. We collected the API keys from the An-
drooZoo website and downloaded the apk files. Then, the virustotal tool was used to
test whether these APKs were benign or malicious software, and 250 benign applica-
tions and 250 malicious applications were randomly selected from them to form our
dataset.

3.2  Experimental Settings

In this experiment, we propose and implement a multimodal feature fusion
method that integrates APl call sequences, code image features, and malicious
URL features to perform classification of non-compliant applications. The experiment
includes a complete pipeline involving data preprocessing, model training, and per-
formance evaluation to comprehensively assess the effectiveness of the proposed
model. The details of preprocessing are described in Section 2.1.

We use accuracy, precision, and recall as metrics, defined as follows:

TP+TN

Accuracy = TPITNTFPIEN (23)
Precision = —— (24)
TP+FP
Recall = —=~ (25)
TP+FN
F1Score = — 24 (26)
2TP+FP+FN

Where True Positive (TP) refers to malicious samples correctly identified as mali-
cious applications, while True Negative (TN) denotes benign samples correctly
classified as benign applications. Conversely, False Positive (FP) represents malicious
samples mistakenly identified as benign applications, and False Negative (FN) refers
to benign samples inaccurately recognized as benign applications. The raw data, after
being preprocessed, are fed into the GCT-Net model for training. The training process
is conducted over 150 epochs with a learning rate of 0.0001, a batch size of 32, and
the Adam optimizer, with betal and beta2 set to 0.9 and 0.999, respectively.



3.3 Experimental Results and Analysis

Table 1. Comparison of classification performance of various models (%).

Dataset Method Evaluation Metrics
Accuracy Precision | Recall | F1 Score
MserNetDroid[24] 91.61 89.82 88.31 89.06
LeNet[25] 92.58 93.48 95.50 94.48
KNN P[26] 90.33 96.00 89.19 92.47
Dataset1 SigPID[27] 91.74 93.12 94.52 93.81
Drebin[28] 94.71 94.55 97.65 96.08
XMAL[29] 92.57 93.57 95.39 94.47
GCT-Net(Ours) 96.48 97.62 97.05 97.33
MserNetDroid[24] 89.42 87.35 85.63 86,48
LeNet[25] 90.17 91.20 93.05 92.11
KNN P[26] 88.25 93.15 86.74 89.85
Dataset2 SigPID[27] 89.83 90.67 92.31 91.48
Drebin[28] 92.60 92.18 95.39 93.76
XMAL[29] 90.52 91.43 93.25 92.33
GCT-Net(Ours) 93.75 96.45 95.40 95.92

Our model also performs exceptionally well, achieving the highest classification
accuracy, precision, recall, and F1 Score on both datasets in the test set. As shown in
Table. 1, on Datasetl, GCT-Net achieved an accuracy of 96.48%, precision of
97.62%, recall of 97.05%, and F1 Score of 97.33%. On Dataset2, GCT-Net achieved
an accuracy of 93.75%, precision of 96.45%, recall of 95.40%, and F1 Score of
95.92%. These results clearly demonstrate the strong performance of the model, with
both high precision and recall, indicating its ability to accurately classify both positive
and negative samples while minimizing errors. Moreover, the consistently balanced
F1 score further reinforce the effectiveness of GCT-Net in malicious application de-
tection tasks across diverse datasets.

Building on these promising outcomes, a closer examination of Table. 1 reveals
that GCT-Net consistently and significantly outperforms existing baseline methods in
all four evaluation metrics. For instance, in Datasetl, while traditional approaches
such as Drebin and XMAL deliver relatively strong recall and F1 performance, with
Drebin reaching a recall of 97.65% and XMAL reaching a F1 score of 94.47%—these
methods typically exhibit trade-offs between precision and recall, which compromise
overall classification robustness. In contrast, GCT-Net achieves the best performance
across the board, highlighting its ability to simultaneously maximize detection sensi-
tivity and specificity. Similarly, in Dataset2, although some methods such as SigPID
and Drebin attain high precision or recall individually, they fall short in achieving a
balanced and comprehensive performance. GCT-Net, on the other hand, not only
secures the highest precision and recall but also delivers a top-tier F1 score of
95.92%, underscoring its generalization capability and resilience across varying data
distributions. The model’s high precision indicates its effectiveness in minimizing
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false positives—a key requirement in real-world deployments to avoid wrongly flag-
ging benign applications—while its high recall demonstrates strong competence in
capturing the full spectrum of malicious behaviors. Taken together, the superior and
stable results across both datasets confirm that GCT-Net offers a robust, reliable, and
deployable solution for Android malware detection, with clear advantages over exist-
ing methods in both academic benchmarks and practical scenarios.

3.4  Ablation Study

Based on the ablation results shown in Table. 2, it is evident that each of the three
modules—API call sequence analysis, grayscale image analysis, and URL traffic
analysis—contributes meaningfully to the overall performance of GCT-Net. The
combination of all three modalities consistently yields the highest performance across
all evaluation metrics on both two dataset. When examining the contribution of indi-
vidual modules, it is clear that the API call sequence (API) modality tends to offer the
strongest standalone performance compared to Img or URL, particularly on DataSet1,
where it achieves 85.40% accuracy and 81.47% F1 score. This suggests that visual
patterns extracted from reverse-engineered APK code images provide rich semantic
information for malware classification. However, the API call module also demon-
strates substantial effectiveness, especially in recall, indicating its advantage in cap-
turing behavioral traits of malicious applications. The URL module, while relatively
weaker on its own, shows

Table 2. Experimental results showing the contributions of different modules to model perfor-
mance(%).

Dataset Modules _ Metrics
API Img URL | Accuracy Precision  Recall F1 Score
N 85.40 82.71 80.62 81.47
~ 82.10 79.51 77.81 78.65
v 78.30 75.20 72.94 74.05
Datasetl v ~ 90.82 85.24 84.71 84.97
v v 88.74 86.34 85.63 85.98
~ v 87.98 87.13 86.87 87.00
v v v 96.48 97.62 97.05 97.33
v 83.15 80.26 78.92 79.58
~ 80.42 77.83 75.64 76.72
v 76.50 73.15 70.88 72.00
Dataset? v ~ 88.37 83.15 82.60 82.87
v v 86.20 84.01 83.25 83.63
N N 85.63 84.92 84.10 84.51
v v v 93.75 96.45 95.40 95.92




its value when combined with other modalities, particularly in enhancing precision by
identifying external communication behaviors. Notably, multimodal combinations
consistently outperform unimodal configurations, highlighting the importance of
complementary information across feature domains. For instance, the Img+URL
configuration boosts the F1 score to 87.00% on DataSetl, significantly higher than
any single module. When any one modality is removed from the full model, perfor-
mance degrades across all metrics, confirming the necessity of each component in
building a robust detection system. Overall, the ablation study validates the design
rationale of GCT-Net’s modality-model alignment framework. By integrating diverse
and complementary information sources—each targeting different behavioral and
structural aspects of malicious apps—the model achieves a more comprehensive un-
derstanding of threats, resulting in superior classification performance and generaliza-
tion capability across datasets.

4 Conclusion

To overcome the limitations of unimodal approaches in malicious app detection, we
propose GCT-Net, a multimodal fusion model that integrates API call graphs, gray-
scale code images, and URL traffic analysis. By combining the strengths of GNNs for
behavioral logic, 2D-CNN for structural feature extraction, and Tree- LSTM for net-
work pattern modeling, GCT-Net achieves robust cross-modal semantic fusion. Ex-
perimental results demonstrate that our model significantly improves detection accu-
racy, precision, recall and F1 Score. In future work, we will explore lightweight de-
ployment, dynamic incremental learning, and the construction of a malicious behavior
knowledge graph to enhance interpretability and support intelligent, layered mobile
security systems.
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