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Abstract. Real-time semantic segmentation is critical for applications such as 

autonomous driving, where the core challenge lies in achieving high segmenta-

tion accuracy while maintaining efficient inference. This paper proposes LSA-

BiNet, a bidirectional bottleneck network via local-semantic attention and resid-

ual feature augmentation. The framework has three key innovations: (1) The Lo-

cal Receptive Field Attention (LRFA) module achieves high-order feature inter-

actions with 1st-order computational complexity through region-wise soft-

weight computation and channel gating; (2) The Spatial Variance Fusion Module 

(SVFM) collaboratively models local and non-local features via low-frequency 

variance modulation and local detail enhancement; (3) The Residual Cross-level 

Attention Decoder (RCAD) enables precise pixel-level prediction using cross-

level feature projection, dual gating mechanisms, and residual attention 

weighting. Extensive experiments on Cityscapes and CamVid benchmarks 

demonstrate that LSA-BiNet achieves state-of-the-art (SOTA) mean Intersec-

tion-over-Union (mIoU) of 72.74% and 68.53% without ImageNet pretraining, 

while maintaining low computational complexity (8.81 GFLOPs) and real-time 

inference speeds (51.08 FPS on Cityscapes, 79.62 FPS on CamVid). Ablation 

studies confirm significant contributions of each module, establishing LSA-

BiNet’s superiority over contemporary SOTA models. 

Keywords: Real-time semantic segmentation, local-semantic attention, residual 

feature augmentation, bidirectional bottleneck network, computational effi-

ciency. 



 

1 Introduction 

Real-time semantic segmentation plays an essential role in numerous applications, par-

ticularly in fields such as autonomous driving, robotics, and Intelligent Transportation 

Systems (ITS). Semantic segmentation involves classifying each pixel of an image into 

predefined categories, enabling the system to understand and interpret the scene. How-

ever, achieving high segmentation accuracy in real-time is a difficult challenge, as it 

requires balancing the trade-off between computational efficiency and performance 

quality [3,10]. While several solutions have been proposed in the literature, most of 

them either prioritize accuracy at the expense of speed or attempt to optimize for speed 

while sacrificing accuracy. The pursuit of an effective solution remains particularly im-

portant for dynamic, time-sensitive environments such as autonomous vehicles, where 

real-time decisions must be made based on precise visual data. 

Recent advancements in deep learning, particularly in the field of convolutional neu-

ral networks (CNNs) [5, 8, 21, 29], have brought remarkable improvements in semantic 

segmentation performance. Convolutional architectures such as U-Net [20], DeepLab 

[4], and FCN [14] have set the foundation for modern approaches. The introduction of 

encoder-decoder architectures and dilated convolutions has helped to expand the recep-

tive field and capture global context, while preserving spatial resolution for pixel-wise 

accuracy. Despite these advancements, achieving a model that performs well in real-

time while still maintaining accuracy across various challenging datasets remains a for-

midable problem. Particularly, for applications like autonomous driving, where every 

millisecond of decision-making counts, it is imperative to develop models that not only 

deliver high performance but also run with minimal latency. This balance is where tra-

ditional models often fall short, leading to the need for more innovative solutions. 

One of the key limitations of current semantic segmentation models is their inability 

to effectively model both local and global contextual information [29]. Local infor-

mation refers to pixel-level features that represent fine-grained details, while global 

context captures the broader scene structure and long-range dependencies. Many SOTA 

models rely on either a global context model or a local feature extractor, without fully 

addressing the need for both types of information to be seamlessly integrated. The issue 

of aggregating such features efficiently, while avoiding excessive computational com-

plexity, is an area where further progress is needed. In this context, attention mecha-

nisms have been a powerful tool for enhancing the feature extraction process [7, 9]. 

Attention allows the model to focus on the most relevant parts of the input, thus im-

proving both the segmentation accuracy and computational efficiency. However, de-

signing an attention mechanism that can simultaneously capture both local and global 

contextual information remains a challenging task. The lack of an effective and efficient 

attention mechanism that caters to both local and non-local features has been a major 

bottleneck in semantic segmentation models. 

In addition to the attention mechanism, feature aggregation and decoding strategies 

are crucial to enhancing the model’s performance [12]. Traditional approaches often 

struggle to adequately combine multi-level features [30-33] from the encoder and de-

coder [7]. This is particularly true for real-time applications, where the combination of 



 

 

 

2025 International Conference on Intelligent Computing 

July 26-29, Ningbo, China 

https://www.ic-icc.cn/2025/index.php 

 

high-level features and low-level features must be done in a way that avoids computa-

tional overload. Feature fusion techniques that can balance the contributions of various 

feature levels are essential for improving segmentation accuracy without incurring a 

significant increase in computational cost. Furthermore, many SOTA models rely on 

pre-trained networks (such as ImageNet) to initialize their weights [17], which can lead 

to issues when dealing with specialized datasets or applications with limited labeled 

data. The dependency on ImageNet pretraining limits the model’s adaptability to dif-

ferent domains, as the features learned from one domain may not generalize well to 

others [12]. 

To address these challenges, we propose the Local-Semantic Attentive Bidirectional 

Bottleneck Network (LSA-BiNet), a novel real-time semantic segmentation model that 

introduces three key innovations to improve segmentation performance while maintain-

ing computational efficiency. LSA-BiNet is designed with a bidirectional bottleneck 

architecture, employing local-semantic attention mechanisms and residual feature aug-

mentation to enhance both local and global feature interactions. Our model aims to 

provide a solution that addresses the limitations of existing methods by efficiently in-

tegrating local and non-local features while ensuring real-time performance. Specifi-

cally, the LRFA module facilitates high-order feature interactions with first-order com-

putational complexity. It does this by computing soft-weight regions and employing 

channel gating mechanisms. This enables LSA-BiNet to capture fine-grained local in-

formation while remaining computationally efficient. The key idea is to enhance the 

model’s ability to focus on the most relevant features in the input image, allowing it to 

achieve higher segmentation accuracy without a significant increase in computational 

cost. The SVFM provides a novel way to model both local and non-local features. It 

does so by employing low-frequency variance modulation and local detail enhance-

ment. This collaborative feature aggregation helps to strengthen the representation of 

both types of features, allowing LSA-BiNet to effectively combine local and global 

context for better pixel-level predictions. The low-frequency modulation is designed to 

capture long-range dependencies, while the local detail enhancement ensures fine-

grained accuracy [27]. The RCAD is a key component that enables precise pixel-level 

predictions by using cross-level feature projection, dual gating mechanisms, and resid-

ual attention weighting. This decoder improves the segmentation output by fusing fea-

tures from multiple levels and attention gates, allowing the model to refine the final 

output while maintaining a low computational footprint. The use of residual attention 

mechanisms helps to ensure that the model remains effective even when trained with 

limited resources or specialized datasets. 

The paper is organized as follows: Section 2 reviews the classic semantic segmenta-

tion architecture and related technologies for real-time semantic segmentation. Section 

3 proposes our new semantic segmentation model and its related methods. Section 4 

verifies the effectiveness of the method through experimental comparison and ablation 

study. Finally, in Section 5, we summarize the research and discuss future directions. 



 

2 Methodology 

The primary objective of this paper is to achieve high-precision image semantic seg-

mentation while maintaining efficient inference. Given an input image, the foremost 

goal is to extract semantic information through a multi-scale feature pyramid, concur-

rently implement Local Receptive Field Attention (LRFA) modulation and Spatial Var-

iance Fusion Module (SVFM) within the network, and ultimately generate pixel-level 

predictions via a Residual Cross-level Attention Decoder (RCAD). 

 

Fig. 1. The overall workflow of LSA-BiNet. After initial convolutions and multi-scale feature 

extraction, the input is processed through encoder stages containing: Local Receptive Field At-

tention (LRFA) module generating regional importance heatmaps via SoftPooling and modulat-

ing features using first-channel gating; Spatial Variance Fusion Module (SVFM) employing 

dual-branch architecture (EASA branch for non-local dependencies, LDE branch for local de-

tails) for feature fusion; Residual Cross-level Attention Decoder (RCAD) module fusing cross-

level features through dual gating mechanisms and residual calibration to produce pixel-wise 

predictions. 

As depicted in Fig. 1, the proposed LSA-BiNet first extracts multi-scale features 

through initial convolutional layers and downsampling operations. Subsequently, these 

features are fed into an encoder composed of multiple DAB modules (Depthwise 

Asymmetric Bottleneck) to capture rich contextual information. During the encoding 

process, we introduce the Local Receptive Field Attention (LRFA) module and Spatial 

Variance Fusion Module (SVFM) to enable efficient high-order feature interactions and 

cooperatively leverage both local and non-local feature interactions, respectively. Fi-

nally, the Residual Cross-level Attention Decoder (RCAD) generates the segmentation 

results by fusing shallow detail features with deep semantic features, while utilizing a 

residual attention mechanism for feature calibration. 

2.1 Local Receptive Field Attention 

The Local Receptive Field Attention (LRFA) is an efficient attention mechanism de-

signed to achieve high-order feature interactions through a local importance map and 

channel gating mechanism, while maintaining low computational complexity. As illus-

trated in Fig. 2, this module is constructed via a five-step processing flow: first, channel 

compression is performed on the input features using 1×1 convolution; then, regional 

importance aggregation is implemented using a 7×7 SoftPooling operation with stride 
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3; next, spatial downsampling is processed through 3×3 convolution with stride 2; then, 

feature transformation is applied via another 3×3 convolution; finally, a normalized 

importance heatmap is generated via Sigmoid activation followed by bilinear upsam-

pling to the input resolution. 

 

Fig. 2. The structure of LRFA module. The proposed LRFA generates regional heatmaps via 

SoftPooling and modulates features using first-channel gating. 

The core formulation of the SoftPooling operation is defined as: 

𝒫(𝑋)|𝑥 =
∑ 𝑒𝑥𝑖𝑖∈𝑅 ⋅ 𝑥𝑖
∑ 𝑒𝑥𝑗𝑗∈𝑅

(1) 

where denotes the local pooling window centered at position 𝑥. This operation com-

putes a weighted average where the numerator contains the regional sum of products 

between feature values and exponentially weighted features, while the denominator 

represents the regional sum of exponential features. This differs fundamentally from 

the original description by: (1) omitting learnable weights since no convolutional ker-

nels are used in the pooling implementation, (2) taking the product of and rather than 

just 𝑒𝑥𝑖 , and (3) performing averaging within each region rather than weighted summa-

tion. 

The final attention output incorporates a dual gating mechanism: 

Output=𝑋 ⊙𝑊⊙𝐺 (2) 



 

where is the upsampled importance map, is the channel gate computed by applying 

sigmoid to the first channel of input features 𝑋, and denotes element-wise multiplica-

tion. This channel gating mechanism, implemented via the gate path, was absent in the 

original description. 

Unlike mainstream attention mechanisms, LRFA innovatively employs the first 

channel of input features as a dynamic gating signal. After activation through a sigmoid 

function, this signal is element-wise multiplied with an upsampled importance map re-

stored to the original dimensions, ultimately achieving adaptive calibration of the orig-

inal features. This module design maintains 1st-order attention latency while achieving 

feature interaction capabilities approaching 2nd-order attention mechanisms. 

2.2 Spatial Variance Fusion Module 

The Spatial Variance Fusion Module (SVFM) implements a dual-branch architecture 

that synergistically integrates local detail enhancement and global structural modeling, 

addressing the low-pass filtering limitations of conventional transformers that cause 

over-smooth reconstructions. As illustrated in Fig. 3, The computational workflow be-

gins with feature decomposition: 

{𝑋, 𝑌} = split (𝒞1×1
(2𝐶)(𝑓)) (3) 

where denotes a convolution doubling channel dimensionality, partitioning input 

into structural component and detail component for specialized branch processing. 

The EASA branch captures long-range dependencies through variance modulation 

and adaptive pooling. First, spatial reduction extracts low-frequency structural cues: 

𝑋𝑠 = 𝒟𝒲3×3 (AdaptiveMaxPool
1/8

(𝑋)) (4) 

where applies depthwise convolution to 8× downsampled features. Global statistical 

descriptors are then computed via spatial variance: 

𝑋𝑣 = Var(𝑋, dim = (−2,−1)) (5) 

The modulation mechanism dynamically balances these components: 

𝑋𝑙 = 𝑋 ⊙Upsample (GELU (𝒞1×1
(𝐶) (𝛼 ⋅ 𝑋𝑠 + 𝛽 ⋅ 𝑋𝑣))) (6) 

where learnable parameters weight low-frequency structures (𝑋𝑠) and global statis-

tics (𝑋𝑣), with GELU activation enabling nonlinear interaction, followed by upsampling 

to the original spatial resolution, before feature recalibration via Hadamard product. 
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Fig. 3. The structure of SVFM. It employs dual-branch architecture (non-local dependency 

modeling and local detail enhancement) for feature fusion through variance modulation and 

adaptive pooling. 

Concurrently, the LDE branch processes detail component using bottleneck trans-

formations: 

𝑌𝑑 = 𝒞1×1
(𝐶) (GELU (𝒞1×1

(2𝐶)(𝒟𝒲3×3(𝑌)))) (7) 

Here extracts fine-grained local patterns, while consecutive convolutions with 2× 

channel expansion/reduction and GELU activation form an inverted bottleneck struc-

ture that amplifies high-frequency components. 

Finally, feature aggregation combines branch outputs: 

𝐹𝜌 = 𝒞1×1
(𝐶) (𝑋𝑙 + 𝑌𝑑) (8) 



 

This additive fusion leverages structural priors from EASA and detail features from 

LDE, with the convolution projecting aggregated features to original channel dimen-

sionality to complete the adaptive synthesis process. 

In the LSA-BiNet architecture, the SVFM employs a dual-branch cooperative mech-

anism. For its EASA branch, it adopts downsampling and variance modulation to re-

place standard self-attention, significantly reducing computational complexity while 

effectively modeling long-range dependencies. Concurrently, the LDE branch en-

hances high-frequency details through a lightweight convolutional structure. 

2.3 Residual Cross-level Attention Decoder 

 

Fig. 4. The structure of RCAD module. It fuses cross-level features via dual gating mechanisms 

with residual calibration. 

The Residual Cross-level Attention Decoder (RCAD) module serves as the core decod-

ing component in the LSA-BiNet architecture, designed to enhance semantic segmen-

tation accuracy through cross-level feature fusion and a residual attention mechanism. 

This module innovatively integrates complementary information from low-resolution 
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deep features and high-resolution shallow features, adaptively reinforcing critical fea-

tures while suppressing noise via an attention gating mechanism, as illustrated in Fig. 

4.The computational workflow of RCAD can be decomposed into four key steps: 

𝑌𝑐 = Conv1×1(𝑌) (9) 

The channel projection operation resolves the dimensional mismatch between deep 

and shallow features by compressing the channel dimension of deep feature from to 𝐶1. 

This transformation enables direct fusion of semantic information from the deep path-

way with spatial details from the shallow pathway through a simple convolution layer, 

establishing the foundational alignment for cross-level attention. 

Attmap = 𝜎(𝜎(𝑋) + 𝑌𝑐) (10) 

Dual gating mechanism generates the attention heatmap through sequential sigmoid 

activations. The first activation creates a spatial attention prior from shallow features, 

emphasizing locally salient regions. The subsequent activation after element-wise ad-

dition with projected deep features refines the attention weights to capture cross-level 

feature correlations, resulting in a final attention map that optimally weights relevant 

regions across both feature hierarchies. 

Output
att
= 𝑋⊙ Attmap + ResAtt(𝑋 ⊙ Attmap) ⊙ 𝑌𝑐 (11) 

Residual attention weighting performs two-stage feature refinement. Primary fusion 

applies attention filtering to shallow features to suppress noise. Residual enhancement 

processes this filtered representation through a residual block (comprising two convo-

lutional layers), then modulates the deep features with the refined attention signals. The 

element-wise sum combines the spatially-preserved shallow features with semanti-

cally-enriched deep features, maintaining feature integrity through residual connec-

tions. 

Pred=Conv1×1 (Mixer(Output
att
)) (12) 

Final classification involves feature mixing and projection. The module employs 

depthwise separable convolution to efficiently integrate channel-wise relationships 

while preserving spatial structures. The convolution layer then projects the refined fea-

tures to prediction space, generating the segmentation mask while maintaining compu-

tational efficiency. 

3 Experiments 

In this section, we comprehensively evaluate the performance of the LSA-BiNet net-

work based on two benchmark datasets widely used for semantic segmentation in urban 

scenes: Cityscapes and CamVid. We conducted a series of ablation studies on the 

CamVid test set to deeply analyze the contribution of each module. Finally, we compare 

the LSA-BiNet network with SOTA real-time semantic segmentation models. 



 

3.1 Datasets 

Cityscapes [6] is a benchmark dataset focused on semantic segmentation of urban street 

scenes. It provides 5,000 high-resolution (2048×1024) finely annotated street-view im-

ages, including 2,975 training images, 500 validation images, and 1,525 test images 

(with non-public annotations). The dataset covers 30 semantic categories, with 19 com-

mon categories used for model evaluation. These images are captured from real urban 

environments, featuring diverse street scenes and complex elements. 

CamVid [2] is another widely used dataset for semantic segmentation in autonomous 

driving research, released by the University of Cambridge Engineering Department. It 

contains 701 high-resolution images (960×720 pixels), divided into 367 training, 101 

validation, and 233 test sets. All images are extracted from continuous driving videos 

and annotated frame-by-frame. The dataset covers 32 semantic categories, though 11 

categories are typically used in experimental evaluations. 

3.2 Implementation Protocol 

The experimental training was conducted on four Tesla P40 GPUs using the PyTorch 

1.12.0 framework, CUDA 11.3, and cuDNN v8. During training, multi-GPU data par-

allelism was employed, while evaluation was performed on a single GPU. For the Cit-

yscapes dataset, a batch size of 8 was utilized with the Stochastic Gradient Descent 

(SGD) optimizer configured with a momentum of 0.9, weight decay of 1 × 10−4, and 

an initial learning rate of 4.5 × 10−2. For the CamVid dataset, a batch size of 16 was 

applied alongside the Adam optimizer with parameters 𝛽 = (0.9,0.999), weight decay 

of 2 × 10−4, and an initial learning rate of 1 × 10−3. The learning rate policy adopted 

polynomial decay with linear warmup. Training proceeded for a maximum of 1,000 

epochs without pretrained weights. Data augmentation included random horizontal mir-

roring and random scaling (scale range: 0.5 to 2.0). Input resolutions were set to 

512×1024 pixels for Cityscapes and 360×480 pixels for CamVid. 

3.3 Experimental Performance Metrics 

The primary performance metric employed in this experiment is the mean Intersection 

over Union (mIoU), which serves as a standard evaluation measure for semantic seg-

mentation tasks. This metric effectively quantifies the spatial overlap between predicted 

segmentation masks and their corresponding ground truth labels. The calculation pro-

cess involves a multi-step approach that ensures a comprehensive assessment of seg-

mentation quality. 

A critical foundation for mIoU calculation is the construction of a confusion matrix 

with dimensions 𝐶 × 𝐶, where represents the total number of semantic classes. Each 

element in this matrix records the count of pixels where the ground truth belongs to 

class while being predicted as class 𝑗. Pixels labeled with the special ignore_label value 
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(default 255) are systematically excluded from this computation to maintain metric in-

tegrity. 

The core calculation involves determining the Intersection over Union (IoU) for each 

individual class 𝑖. This class-specific metric is derived using the formula: 

IoU𝑖 =
𝑀𝑖𝑖

∑ 𝑀𝑖𝑗
𝐶
𝑗=1 + ∑ 𝑀𝑗𝑖

𝐶
𝑗=1 −𝑀𝑖𝑖

(13) 

where represents the true positives (correctly classified pixels for class 𝑖), corre-

sponds to the total ground truth pixels for class (sum of row 𝑖), and indicates the total 

predicted pixels for class (sum of column 𝑖). The denominator effectively computes the 

union of ground truth and predicted pixels for class by combining the total occurrences 

in both sets while subtracting the double-counted intersection. 

The final mean IoU (mIoU) is computed as the arithmetic mean of all class-specific 

IoU values: 

mIoU=
1

𝐶
∑ IoU𝑖

𝐶

𝑖=1

(14) 

To prevent skewed results from classes with no true positives, any class where is auto-

matically excluded from this average calculation. This exclusion ensures the metric ac-

curately reflects segmentation performance on meaningful, detectable classes.

 
Fig. 5. Comparison of loss changes dur-

ing training of different models on the 

Cityscapes dataset. 

 
Fig. 6. Comparison of loss changes dur-

ing training of different models on the 

CamVid dataset.

3.4 Main Results 

As shown in Table 1, LSA-BiNet delivers superior segmentation accuracy on the City-

scapes dataset compared to other lightweight networks, achieving a leading mIoU of 

72.74% on the test set. This performance significantly exceeds that of prior lightweight 

models such as LEDNet (69.2%), ESNet (70.7%), and LCNet (67.40%). Although 

LSA-BiNet has 1.84M parameters—only marginally more than minimal models like 

ENet—it remains highly efficient, requiring just 8.81G FLOPs, which is substantially 

lower than the FLOPs of models with inferior accuracy, for example, LEDNet: 23.0G; 



 

LCNet: 15.9G. Furthermore, an inference speed of 51.08 fps demonstrates that LSA-

BiNet effectively balances accuracy and real-time performance, and notably, this high 

performance is achieved without any ImageNet pertaining. 

Table 1. Performance Comparison of LSA-BiNet Against Existing Semantic Segmentation 

Networks Estimated on the Cityscapes Dataset. 

Method Source Pretrain Input Size mIoU (%)↑ Params (M)↓ Speed (fps)↑ FLOPs (G)↓ 

    val. test    

SegNet [1] TRAMI2017 ImageNet 360×640 57.8 56.1 29.5 74.9 652.5 

ENet [18] ICCV2015 No 360×640 59.0 58.3 0.36 83.8 8.7 

SQNet [23] NeurIPS2016 ImageNet 1024×2048 59.9 59.8 16.3 18.7 288.2 

ESPNet [15] ECCV2016 No 512×1024 60.0 60.3 0.36 292.0 6.9 

ESPNet V2 [16] CVPR2019 No 512×1024 66.2 66.4 1.3 134.8 7.4 

CGNet [26] TIP2016 No 1024×2048 63.5 64.8 0.49 53.0 14.0 

ICNet [28] ECCV2018 ImageNet 1024×2048 - 7.8 7.8 24.4 14.2 

EDANet [13] MMAsia2019 No 512×1024 68.1 67.3 0.68 161.0 17.9 

LEDNet [24] ICIP2019 No 512×1024 70.6 69.2 0.95 86.5 23.0 

DABNet [11] BMVC2019 No 1024×2048 69.34 69.66 0.76 43.31 20.9 

ESNet [25] PVCR2019 No 512×1024 70.4 70.7 1.66 112.3 48.7 

LCNet [22] TITS2024 No 512×1024 67.05 67.40 0.51 46.62 15.9 

LSA-BiNet(ours) This work No 512×1024 72.65 72.74 1.84 51.08 8.81 

Table 2. Per-Class Results of Different Segmentation Models on the Cityscapes Test Set. 

Method Roa Sid Bui Wal Fen Pol TLi TSi Veg Ter Sky Ped Rid Car Tru Bus Tra Mot Bic class 

ENet [18] 

(ICCV2015) 
96.3 74.2 75.0 32.2 33.2 43.4 34.1 44.0 88.6 61.4 90.6 65.5 38.4 90.6 36.9 50.5 48.1 38.8 55.4 96.3 

SQNet [23] (Neu-

rIPS2016) 
96.9 75.4 87.9 31.6 35.7 50.9 52.0 61.7 90.9 65.8 93.0 73.8 42.6 91.5 18.8 41.2 33.3 34.0 59.9 96.9 

ESPNet [15] 

(ECCV2016) 
97.0 77.5 76.2 35.0 36.1 45.0 35.6 46.3 90.8 63.2 92.6 67.0 40.9 92.3 38.1 52.5 50.1 41.8 57.2 97.0 

CGNet [26] 

(TIP2016) 
95.5 78.7 88.1 40.0 43.0 54.1 59.8 63.9 89.6 67.6 92.9 74.9 54.9 90.2 44.1 59.5 25.2 47.3 60.2 95.5 

EDANet [13] 
(MMAsia2019) 

97.8 80.6 89.5 42.0 46.0 52.3 59.8 65.0 91.4 68.7 93.6 75.7 54.3 92.4 40.9 58.7 56.0 50.2 64.0 97.8 

ERFNet [19] 

(TITS2017) 
97.2 80.0 89.5 41.6 45.3 56.4 60.5 64.6 91.4 68.7 94.2 76.1 56.4 92.4 45.7 60.6 27.0 48.7 61.8 97.2 

ICNet [28] 

(ECCV2018) 
97.1 79.2 89.7 43.2 48.9 61.5 60.4 63.4 91.5 68.3 93.5 74.6 56.1 92.6 51.3 72.7 51.3 53.6 70.5 97.1 

LEDNet [24] 

(ICIP2019) 
98.1 79.5 91.6 47.7 49.9 62.8 61.3 72.8 92.6 61.2 94.9 76.2 53.7 90.9 64.4 64.0 52.7 44.4 71.6 98.1 

DABNet [11] 

(BMVC2019) 
97.8 82.2 90.8 51.4 55.3 59.0 61.1 71.9 91.3 61.2 93.6 77.6 53.2 93.1 52.6 68.6 36.1 54.7 72.3 97.8 

LCNet [22] 

(TITS2024) 
97.4 80.1 90.2 52.3 52.5 57.1 52.8 67.0 91.2 59.3 93.1 74.3 48.8 92.4 44.0 62.8 51.9 44.0 69.6 97.4 

LSA-BiNet(ours) 97.8 83.3 91.3 55.5 56.1 64.3 66.2 75.9 92.0 60.5 94.4 79.6 55.5 93.6 68.4 72.9 45.5 55.1 74.2 97.8 

Table 3. Performance Comparison of LSA-BiNet Against Existing Semantic Segmen-

tation Networks Estimated on the Camvid Test Dataset. 

Method Source Pretrain Input Size mIoU (%)↑ Params (M)↓ Speed (fps)↑ FLOPs (G)↓ 

ENet [18] ICCV2015 No 360×480 51.3 0.36 79.8 8.7 

SegNet [1] TPAMI2017 ImageNet 360×480 55.6 29.5 92.7 652.5 

ESPNet [15] ECCV2016 No 360×480 55.6 0.36 296.8 6.9 

SwiftNet [17] CVPR2019 No 720×960 63.3 11.8 - 52.0 

CGNet [26] TIP2020 No 360×480 65.6 0.5 101.5 14.0 

EDANet [13] MMAAsia2019 No 360×480 66.4 0.68 161.6 17.9 

DABNet [11] BMVC2019 No 360×480 67.04 0.76 108.1 20.9 

ICNet [28] ECCV2018 ImageNet 720×960 67.1 7.8 52.9 14.2 

LCNet [22] TITS2024 No 360×480 66.77 0.51 91.96 14.2 

LSA-BiNet(ours) This work No 360×480 68.53 1.84 79.62 8.81 

As summarized in Table 2, across the 19 object classes of Cityscapes, LSA-BiNet 

achieves the highest IoU in 12 categories: Sidewalk (Sid), Wall (Wal), Fence (Fen), 

Pole (Pol), Traffic Light (TLi), Traffic Sign (TSi), Pedestrian(Ped), Car (Car), Truck 

(Tru),Bus (Bus), Motorcycle (Mot) and Bicycle(Bic). Notable IoU improvements are 

observed in several of these challenging classes, including Wall (+3.2% over LCNet), 

Fence (+0.8% over DABNet), Pole (+1.5% over LEDNet),  
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Fig. 7. Qualitative segmentation examples on the Cityscapes validation set. From top to bot-

tom: Input images, Ground truth, the predictions of LCNet, DABNet and ours. 

 

Fig. 8. Qualitative segmentation examples on the CamVid test set. From top to bottom: Input 

images, Ground truth, the predictions of LCNet, DABNet and ours. 

Traffic Light (+4.9% over LEDNet), Truck (+4.0% over LEDNet), and Bus (+0.2% 

over ICNet). While LSA-BiNet does not lead in every category (for example, Road and 

Building), its consistently strong performance across diverse object types contributes 

significantly to its overall superior performance. On the CamVid benchmark (Table 3), 

LSA-BiNet establishes a new state-of-the-art performance with a mIoU of 68.53%, sur-

passing DABNet (67.04%), ICNet (67.1%), and LCNet (66.77%). Notably, it maintains 

the same computational efficiency (8.81G FLOPs) and a high inference speed (79.62 



 

fps) as on Cityscapes. These results further attest to the architecture’s robustness, espe-

cially given that they are achieved without any pertaining. 

In addition, an analysis of training convergence, presented in Fig. 5 for Cityscapes 

and Fig. 6 for CamVid, reveals consistent optimization advantages of LSA-BiNet over 

the competing models. On Cityscapes, LSA-BiNet converges more rapidly in the initial 

epochs and maintains more stable loss descent trajectories than LCNet and DABNet. 

Likewise, on CamVid, it exhibits less loss oscillation and reaches a lower loss plateau 

earlier than its competitors. These characteristics suggest that LSA-BiNet has superior 

optimization properties, which enhance learning efficiency across diverse urban scenes. 

Qualitative visual comparisons in Fig. 7 (Cityscapes) and Fig. 8 (CamVid) further high-

light LSA-BiNet’s advantages in segmentation quality. The model consistently pro-

duces more precise segmentation boundaries than its counterparts, as evidenced by the 

cleaner delineation of objects such as traffic signs and vehicle contours (indicated by 

red boxes where competing models exhibit jagged edges or misalignments). LSA-

BiNet also retains finer structural details that are crucial in complex urban scenes. For 

instance, it accurately captures thin poles—mitigating the breakages observed with 

LCNet and DABNet—and maintains intricate components like bicycle wheels, keeping 

the spokes and circular structures that other models often fail to preserve. This qualita-

tive superiority translates into a noticeable reduction in visual artifacts and misclassifi-

cation errors. In LSA-BiNet’s outputs, there are fewer spurious speckles and blurred 

edges along object boundaries (especially around vegetation and road edges), and sig-

nificantly fewer instances of mislabeling, for example, parts of the road being misclas-

sified as sidewalk or fine structures being confused with the background. Many of these 

errors are corrected by LSA-BiNet, as highlighted by the red-boxed regions. These ob-

servable improvements are closely aligned with the model’s leading quantitative per-

formance metrics. 

3.5 Ablation Experiments 

Table 4. The results of ablation study on the CamVid dataset 

Method mIOU (%)↑ Params (M)↓ Speed (fps)↑ Flops (G)↓ 

-LRFA -SVFM -RCAD 67.04 0.75 108.10 20.9 

-SVFM -RCAD 65.43 0.80 67.41 3.50 

-LRFA -RCAD 65.32 1.44 76.39 5.14 

-LRFA -SVFM 67.21 1.12 78.90 7.15 

-RCAD 66.12 1.48 77.58 5.15 

Full 68.53 1.84 79.62 8.81 

Here, we analyze the impact of incorporating different attention modules on the 

model’s segmentation performance. The ablation study involves evaluating the model 

on the validation set during training while systematically disabling certain modules. 

The evaluation results are summarized in Table 4. We conducted five ablation tests 

corresponding to various combinations of module removal: 

• -LRFA -SVFM -RCAD: Removal of LRFA, SVFM and RCAD modules re-

sults in the most significant performance degradation compared to the Full 
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Method: ↓1.49% mIOU, ↑28.48 fps, ↑12.09 G FLOPs. The baseline model 

without attention mechanisms achieves only 67.04% mIOU, demonstrating 

the fundamental contribution of the proposed modules to segmentation accu-

racy: performance drop. 

• -SVFM -RCAD: Simultaneous removal of SVFM and RCAD modules causes 

severe accuracy deterioration compared to the Full Method:(↓3.10% mIOU) 

and speed (↓12.21 fps). This indicates SVFM’s critical role in feature aggre-

gation (ℱ𝜌 = 𝒞1×1
(𝐶) (𝑋𝑙 + 𝑌𝑑)) and RCAD’s importance in cross-level fusion 

(Output
att
= 𝑋⊙ Attmap + ResAtt(⋯ )⊙ 𝑌𝑐). 

• -LRFA -RCAD: Ablation of LRFA and RCAD modules leads to substantial 

accuracy loss compared to the Full Method: (↓3.20% mIOU). The absence of 

LRFA’s triple modulation ( 𝒜(𝑋) = 𝜎(𝑋[0]) ⊙ 𝜓 (𝜎(ℐ(𝑋)))⊙ 𝑋 ) and 

RCAD’s residual attention significantly impacts feature representation capa-

bility. 

• -LRFA -SVFM: Removal of both LRFA and SVFM modules preserves 

worser accuracy compared to the Full Method: (↓1.32% mIOU) but decreases 

computational cost (↓1.66G FLOPs). This suggests SVFM’s EASA branch 

(𝑋𝑙 = 𝑋 ⊙Upsample (GELU (𝒞1×1
(𝐶) (𝛼𝑋𝑠 + 𝛽𝑋𝑣)))) partially compensates 

for LRFA’s absence through non-local interactions. 

• -RCAD: Isolated removal of the RCAD reduces accuracy by ↓2.41% mIOU 

while decreasing parameters by 𝛥Params = 0.36M. This validates RCAD’s 

efficiency in feature calibration via dual gating mechanism and residual 

weighting. 

The ablation study confirms that each proposed module significantly contributes to 

the overall performance. The full model achieves optimal balance: ↑1.49% mIOU over 

baseline with minimal speed sacrifice (𝛥28.48 fps). Notably, LRFA provides the most 

efficient accuracy gain per computation unit: 
𝛥mIOU

𝛥FLOPs
=

1.21

3.71
= 0.326%/GFLOP. 

4 Conclusion 

Through in-depth research on balancing accuracy and efficiency for real-time semantic 

segmentation, this paper proposes a novel real-time segmentation architecture named 

LSA-BiNet. The model achieves breakthroughs via three core innovative modules: the 

Local Receptive Field Attention (LRFA) module simulates high-order feature interac-

tions with 1st-order computational complexity, significantly reducing computational 

overhead; the Spatial Variance Fusion Module (SVFM) integrates local details and non-

local context through a dual-branch structure (EASA and LDE branches); the Residual 

Cross-layer Attention Decoder (RCAD) optimizes cross-scale feature fusion using 

dual-gating mechanisms and residual learning. On Cityscapes and CamVid bench-

marks, LSA-BiNet achieves 72.74% and 68.53% mIoU respectively, requiring only 

1.84M parameters and 8.81G FLOPs while reaching 51.08 FPS (Cityscapes) and 79.62 



 

FPS (CamVid) at 512×1024, 360×480 resolution. Ablation studies confirm each mod-

ule’s significant performance contribution (e.g., removing LRFA-SVFM-RCAD re-

duces mIoU by 1.49%) and demonstrates superiority over existing lightweight models 

without pretraining. LSA-BiNet achieves optimal balance among accuracy, speed, and 

computational resources for mobile devices. Future work will explore lightweight Vi-

sion Transformer (ViT) designs to further enhance semantic modeling capabilities. 

Acknowledgments 

This research was funded by the National Natural Science Foundation of China (No. 

62403076), the Humanities and Social Science Fund of Ministry of Education (No.  

24YJCZH416) and Science and Technology Innovative Research Team in Higher Ed-

ucational Institutions of Hunan Province (New energy intelligent vehicle technology, 

2024RC1029). 

References 

1. Badrinarayanan, V., Kendall, A., Cipolla, R.: Segnet: A deep convolutional encoder-decoder 

architecture for image segmentation. IEEE transactions on pattern analysis and machine in-

telligence 39(12), 2481–2495 (2017) 

2. Brostow, G.J., Fauqueur, J., Cipolla, R.: Semantic object classes in video: A high-definition 

ground truth database. Pattern recognition letters 30(2), 88–97 (2009) 

3. Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous 

separable convolution for semantic image segmentation. In: Proceedings of the European 

conference on computer vision (ECCV). pp. 801–818 (2018) 

4. Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous 

separable convolution for semantic image segmentation. In: Proceedings of the European 

conference on computer vision (ECCV). pp. 801–818 (2018) 

5. Chen, X., Zhang, Y., Wang, Y.: Mtp: multi-task pruning for efficient semantic segmentation 

networks. In: 2022 IEEE International Conference on Multimedia and Expo (ICME). pp. 

1–6. IEEE (2022) 

6. Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., 

Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: 

Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 3213–

3223 (2016) 

7. Fu, J., Liu, J., Tian, H., Li, Y., Bao, Y., Fang, Z., Lu, H.: Dual attention network for scene 

segmentation. In: Proceedings of the IEEE/CVF conference on computer vision and pattern 

recognition. pp. 3146–3154 (2019) 

8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Pro-

ceedings of the IEEE conference on computer vision and pattern recognition. pp. 770–778 

(2016) 

9. Hu, P., Perazzi, F., Heilbron, F.C., Wang, O., Lin, Z., Saenko, K., Sclaroff, S.: Real-time 

semantic segmentation with fast attention. IEEE Robotics and Automation Letters 6(1), 

263–270 (2020) 



 

 

 

2025 International Conference on Intelligent Computing 

July 26-29, Ningbo, China 

https://www.ic-icc.cn/2025/index.php 

 

10. Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J., Keutzer, K.: Squeezenet: 

Alexnet-level accuracy with 50x fewer parameters and< 0.5 mb model size. arXiv preprint 

arXiv:1602.07360 (2016) 

11. Li, G., Yun, I., Kim, J., Kim, J.: Dabnet: Depth-wise asymmetric bottleneck for real-time 

semantic segmentation. arXiv preprint arXiv:1907.11357 (2019) 

12. Li, H., Xiong, P., Fan, H., Sun, J.: Dfanet: Deep feature aggregation for real-time semantic 

segmentation. In: Proceedings of the IEEE/CVF conference on computer vision and pattern 

recognition. pp. 9522–9531 (2019) 

13. Lo, S.Y., Hang, H.M., Chan, S.W., Lin, J.J.: Efficient dense modules of asymmetric convo-

lution for real-time semantic segmentation. In: Proceedings of the 1st ACM International 

Conference on Multimedia in Asia. pp. 1–6 (2019) 

14. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmenta-

tion. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 

pp. 3431–3440 (2015) 

15. Mehta, S., Rastegari, M., Caspi, A., Shapiro, L., Hajishirzi, H.: Espnet: Efficient spatial pyr-

amid of dilated convolutions for semantic segmentation. In: Proceedings of the european 

conference on computer vision (ECCV). pp. 552–568 (2018) 

16. Mehta, S., Rastegari, M., Shapiro, L., Hajishirzi, H.: Espnetv2: A light-weight, power effi-

cient, and general purpose convolutional neural network. In: Proceedings of the IEEE/CVF 

conference on computer vision and pattern recognition. pp. 9190–9200 (2019) 

17. Orsic, M., Kreso, I., Bevandic, P., Segvic, S.: In defense of pre-trained imagenet architec-

tures for real-time semantic segmentation of road-driving images. In: Proceedings of the 

IEEE/CVF conference on computer vision and pattern recognition. pp. 12607–12616 

(2019) 

18. Paszke, A., Chaurasia, A., Kim, S., Culurciello, E.: Enet: A deep neural network architecture 

for real-time semantic segmentation. arXiv preprint arXiv:1606.02147 (2016) 

19. Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual factorized 

convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transporta-

tion Systems 19(1), 263–272 (2017) 

20. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image 

segmentation. In: Medical image computing and computer-assisted intervention–MICCAI 

2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceedings, 

part III 18. pp. 234–241. Springer (2015) 

21. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv2: Inverted re-

siduals and linear bottlenecks. In: Proceedings of the IEEE conference on computer vision 

and pattern recognition. pp. 4510–4520 (2018) 

22. Shi, M., Lin, S., Yi, Q., Weng, J., Luo, A., Zhou, Y.: Lightweight context-aware network 

using partial-channel transformation for real-time semantic segmentation. IEEE Transac-

tions on Intelligent Transportation Systems 25(7), 7401–7416 (2024) 

23. Treml, M., Arjona-Medina, J., Unterthiner, T., Durgesh, R., Friedmann, F., Schuberth, P., 

Mayr, A., Heusel, M., Hofmarcher, M., Widrich, M., et al.: Speeding up semantic segmen-

tation for autonomous driving (2016) 

24. Wang, Y., Zhou, Q., Liu, J., Xiong, J., Gao, G., Wu, X., Latecki, L.J.: Lednet: A lightweight 

encoder-decoder network for real-time semantic segmentation. In: 2019 IEEE international 

conference on image processing (ICIP). pp. 1860–1864. IEEE (2019) 

25. Wang, Y., Zhou, Q., Xiong, J., Wu, X., Jin, X.: Esnet: An efficient symmetric network for 

real-time semantic segmentation. In: Pattern Recognition and Computer Vision: Second 



 

Chinese Conference, PRCV 2019, Xi’an, China, November 8–11, 2019, Proceedings, 

Part II 2. pp. 41–52. Springer (2019) 

26. Wu, T., Tang, S., Zhang, R., Cao, J., Zhang, Y.: Cgnet: A light-weight context guided net-

work for semantic segmentation. IEEE Transactions on Image Processing 30, 1169–1179 

(2020) 

27. Xie, E., Wang, W., Yu, Z., Anandkumar, A., Alvarez, J.M., Luo, P.: Segformer: Simple and 

efficient design for semantic segmentation with transformers. Advances in neural infor-

mation processing systems 34, 12077–12090 (2021) 

28. Zhao, H., Qi, X., Shen, X., Shi, J., Jia, J.: Icnet for real-time semantic segmentation on high-

resolution images. In: Proceedings of the European conference on computer vision (ECCV). 

pp. 405–420 (2018) 

29. Zhu, X., Hu, H., Lin, S., Dai, J.: Deformable convnets v2: More deformable, better results. 

In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 

pp. 9308–9316 (2019) 

30. Du, R., Feng, R., Gao, K., Zhang, J., Liu, L.: Self-supervised point cloud prediction for 

autonomous driving. IEEE Transactions on Intelligent Transportation Systems. (2024). 

31. Duan, Y., Meng, L., Meng, Y., Zhu, J., Zhang, J., Zhang, J., & Liu, X. MFSA-Net: Semantic 

Segmentation With Camera-LiDAR Cross-Attention Fusion Based on Fast Neighbor Fea-

ture Aggregation. IEEE Journal of Selected Topics in Applied Earth Observations and Re-

mote Sensing. (2024). 

32. Gao, K., Li, X., Hu, L., Liu, X., Zhang, J., Du, R., & Li, Y. STMF-IE: A Spatial-Temporal 

Multi-Feature Fusion and Intention-Enlightened Decoding Model for Vehicle Trajectory 

Prediction. IEEE Transactions on Vehicular Technology. (2024). 

33. Wu, J., Zhang, J., Zhu, J., Duan, Y., Fang, Y., Zhu, J., ... & Meng, Y. Multi-scale convolution 

and dynamic task interaction detection head for efficient lightweight plum detection. Food 

and Bioproducts Processing, 149, 353-367. (2025). 


