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Abstract. Semi-supervised object detection (SSOD) leverages limited labeled 

data alongside abundant unlabeled data to improve detection performance. Exist-

ing SSOD methods based on teacher-student framework tend to neglect localiza-

tion error within pseudo-labels, detrimentally affecting the student model's 

bounding box regression and classification. To address this issue, a novel SSOD 

method based on dynamic localization error reweighting is proposed. In the 

method, predicted bounding boxes are modeled using Gaussian distribution to 

derive a localization quality score quantifying localization error. This score un-

derpins a strategy of Localization Error reweighting in Regression (LER), which 

dynamically adjusts the unsupervised regression loss to prioritize accurately lo-

calized pseudo-labels. Simultaneously, a strategy of Proposal Reliability re-

weighting in Classification (PRC) is proposed, utilizing teacher predictions to as-

sess student proposal reliability. PRC combines class probabilities and localiza-

tion quality scores to dynamically reweight the unsupervised classification loss, 

thereby mitigating interference from misassigned labels. Extensive experiments 

on the MS COCO and PASCAL VOC datasets demonstrate the effectiveness and 

superiority of our approach. 

Keywords: Semi-supervised object detection, pseudo-label, localization error, 

loss reweighting. 

1 Introduction 

In recent years, object detection methods based on deep learning have developed rap-

idly, achieving significant performance improvements through supervised learning on 

large-scale annotated datasets. However, accurately labeling such datasets is both time-

consuming and costly. In contrast, collecting unlabeled data is easier and less costly. 

As a result, semi-supervised object detection (SSOD) methods have received increasing 

attention from researchers. By leveraging a small amount of labeled data alongside a 

large volume of unlabeled data, SSOD enhances model performance while reducing 

reliance on labeled data. 

 

 



 

Fig. 1. An example to demonstrate that noisy pseudo-labels can mislead the label assignment. 

The left figure shows the assignment using noisy pseudo-labels, while the right figure shows the 

assignment using ground-truth. 

At present, most of the SSOD methods adopt the teacher–student framework [1], the 

teacher model generates pseudo-labels for unlabeled data, while the student model is 

trained jointly using labeled data and unlabeled data with pseudo-labels. During train-

ing, the teacher model’s parameters are gradually updated using the exponential mov-

ing average (EMA) of the student model’s parameters to ensure stable pseudo-label 

generation. Due to the limited amount of labeled data, the teacher model may still gen-

erate a number of inaccurate pseudo-labels. To ensure the quality of pseudo-labels, ex-

isting SSOD methods [2-4] follow the practice in semi-supervised image classification 

(SSIC) [5], selecting predicted bounding boxes with foreground scores above a certain 

threshold as pseudo-labels. However, unlike SSIC, pseudo-labels in SSOD consist of 

both category label and bounding boxes. Although category labels can be ensured to be 

accurate via setting a high foreground scores threshold, the localization quality of 

pseudo-label fails to be measured and guaranteed. Incorporating pseudo-labels with lo-

calization errors (i.e., noisy pseudo-labels) into training hinders model optimization, 

ultimately limiting SSOD performance gains. Specifically, most existing SSOD meth-

ods employ Faster R-CNN [6] as the object detector for both the teacher and student 

models, which involves both bounding box regression task and classification task. For 

the bounding box regression task, noisy pseudo-labels can mislead the model into learn-

ing inaccurate localization information, causing localization errors to accumulate dur-

ing training. For the classification task, since the IoU-based label assignment strategy 

adopted by Faster R-CNN relies on localization information, noisy pseudo-labels can 

mislead label assignment. As shown in Fig. 1, when the IoU between a proposal and a 

noisy pseudo-label exceeds the threshold (0.5), a proposal that actually belongs to the 

background is mistakenly assigned as foreground. 

To address aforementioned issues, we propose a novel SSOD approach based on 

dynamic reweighting of localization errors. First, we model predicted bounding boxes 

as Gaussian distributions to derive a new metric named localization quality score that 

quantifies localization error. Then, to mitigate the adverse effects of localization errors 

in pseudo-labels on both bounding-box regression and classification tasks, we employ 

the localization quality score to guide the model training in these two tasks, so as to 
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propose a strategy of Localization Error reweighting in Regression (LER) and a strat-

egy of Proposal Reliability reweighting in Classification (PRC). In LER, by introducing 

a localization-aware branch into the object detector and trains it using a KL divergence-

based regression loss, the key information for calculating the localization quality score 

can be obtained. The localization quality score of the pseudo-label is then used to dy-

namically reweight the unsupervised regression loss, enabling the model to focused on 

pseudo-labels with higher localization quality during training. In RPC, since low-qual-

ity proposals are more likely to be misled by noisy pseudo-labels, we use the more 

stable teacher model to evaluate the quality of the proposals generated by the student 

model. The reliability scores for both foreground and background proposals are com-

puted by combining the teacher's predicted class probabilities with the localization 

quality score, and then used to dynamically reweight the unsupervised classification 

loss, ensuring that more reliable proposals contribute more effectively to classification 

learning. The main contributions of this paper are as follows: 

1. We analyze the negative effects brought by noisy pseudo-labels on bounding box 

regression and classification tasks, and propose a localization quality score that effec-

tively quantifies localization errors. 

2. We propose LER and PRC strategies, which take localization errors into account 

during the trainings of teacher and student models. These two strategies alleviate the 

negative impact of pseudo-label noise on model training and make better use of unla-

beled data to enhance model performance. 

3. Extensive experiments on the object detection benchmark datasets MS COCO [7] 

and PASCAL VOC [8] demonstrate that our approach achieves significant performance 

gains compared with the supervised baseline, and surpasses the mainstream state-of-

the-art SSOD methods in detection accuracy. 

2 Related works 

2.1 Semi-supervised image classification 

In the field of computer vision, semi-supervised learning has been widely applied to 

image classification tasks, existing methods can be categorized into two groups: con-

sistency regularization based methods and pseudo-label based methods [9]. Recent 

studies [10-12] have combined consistency regularization with pseudo-labeling, signif-

icantly improving the performance of SSIC. These methods generate pseudo-labels on 

weak augmented unlabeled images, and then train the model on strong augmented un-

labeled images to ensure that the model has consistent predictions for different aug-

mentations. Although SSIC has made significant progress, applying semi-supervised 

learning to the more complex task of object detection remains challenging. Therefore, 

this paper focuses on the problem of SSOD. 

 

2.2 Semi-supervised object detection 

The current mainstream SSOD methods draw on the success of SSIC. STAC [1] first 

proposed the SSOD framework that combines pseudo-label and data augmentation, 



using a pre-trained teacher model to generate pseudo-labels offline for unlabeled data. 

Subsequent studies were inspired by Mean Teacher [13], utilized the EMA mechanism 

to continuously update the teacher model and generate pseudo-labels online after each 

training iteration, achieving an end-to-end framework. For instance, Instant-teaching 

[14] and ISMT [15] improved the quality of pseudo-labels by aggregating the model’s 

predictions under the EMA mechanism. CST [16] proposed a cyclic self-training 

method to overcome the coupling between the teacher and student models caused by 

EMA. Additionally, RPL [17] and USD [18] dynamically adjusted the thresholds used 

to generate pseudo-labels. MUM [3], Robust Teacher [19] and Elaborate Teacher [20] 

introduced new data augmentation strategies to better exploit information in unlabeled 

images. However, most of these methods overlook the impact of localization errors in 

pseudo-labels. Therefore, Unbiased Teacher [21] directly discards the regression loss 

calculation of unlabeled data, but it wastes potentially valuable localization infor-

mation. Soft Teacher [2] employs a bounding box jittering technique to select reliable 

pseudo-labels for regression, but this approach requires tuning several hyperparame-

ters. In contrast, our method dynamically adjusts the contribution of different samples 

in training via loss reweighting. This ensures the retention of effective localization in-

formation while avoiding the introduction of additional hyperparameters. 

3  Method 

3.1 Overview 

 
 

Fig. 2. The overall framework of our method. Both the teacher and the student models use Faster 

R-CNN as the detector, which consists of a backbone network, a region proposal network (RPN), 

and a region of interest (ROI) head. 

Following the Soft Teacher [2], our method adopts the teacher–student framework 

which is trained in an end-to-end manner, which is shown as Fig. 2. In each training 
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iteration, we randomly sample a fixed ratio of labeled and unlabeled images from the 

dataset to form the training batch. Subsequently, the labeled images are fed into the 

student model for training, and the supervised loss is computed using the ground-truth 

labels: 

 𝐿𝑠 = 𝐿𝑠
𝑐𝑙𝑠 + 𝐿𝑠

𝑟𝑒𝑔

 
 (1) 

where 𝐿𝑠
𝑐𝑙𝑠 and 𝐿𝑠

𝑟𝑒𝑔
 denote the supervised classification loss and supervised regres-

sion loss, respectively.  

Meanwhile, the unlabeled images are processed through strong and weak data aug-

mentation, respectively. The weak augmented images are fed into the teacher model to 

generate predicted bounding box, which are then filtered using Non-Maximum Sup-

pression (NMS) and a foreground score threshold to produce pseudo-labels; the strong 

augmented images are sent to the student model for training, and the pseudo-labels 

generated by the teacher are used to compute the unsupervised loss: 

 𝐿𝑢 = 𝐿𝑢
𝑐𝑙𝑠 + 𝐿𝑢

𝑟𝑒𝑔

 
 (2) 

In this process, the LER strategy computes a localization quality score 𝑠𝑙𝑜𝑐 for each 

pseudo-label and uses it to reweight the unsupervised regression loss 𝐿𝑢
𝑟𝑒𝑔

, enhancing 

the contribution of accurately localized pseudo-labels to the bounding box regression 

task. Then, proposals generated by the RPN of student model are fed to the ROI head 

of teacher model for prediction. The PRC strategy computes the reliability scores 

𝑠𝑓𝑔and 𝑠𝑏𝑔for foreground and background proposals, respectively, and uses them to 

reweight the unsupervised classification loss 𝐿𝑢
𝑐𝑙𝑠 , reducing the negative impact of 

low-quality proposals on classification.  

Finally, the student model’s parameters are updated via backpropagation, while the 

teacher model’s parameters are updated using an EMA of the student model’s parame-

ters. The overall loss is defined as a weighted sum of the supervised loss and the unsu-

pervised loss: 

 𝐿 = 𝐿𝑠 + 𝛽𝐿𝑢 
 (3) 

where 𝛽 is the weight of the unsupervised loss, which controls its contribution to the 

overall training process. 

 

3.2 Localization quality score 

Existing SSOD methods retain the predicted bounding boxes with a foreground score 

higher than the threshold as pseudo-labels. However, as shown in Fig. 3(a), our visual-

ization experiment reveals the lack of correlation between the foreground score and the 

localization quality, which implies that this selection criterion may result in pseudo-

labels with significant localization errors. To address this issue, we propose a new met-

ric to assess the localization error of predicted bounding boxes, i.e. localization quality 

score. 



 

Fig. 3 Visualization of the correlation between IoU with ground-truth (GT) and different criteria. 
Each data point represents a predicted bounding box, where a higher IoU indicates better locali-

zation quality. (a) the correlation between the IoU with ground-truth and foreground score. (b) 

the correlation between the IoU with ground-truth and localization quality score.  

Specifically, in the Faster R-CNN detector adopted in this work, the predicted bound-

ing box coordinates are modeled as a simple Dirac delta distribution [22], which only 

represents the exact position and fails to reflect localization error. Therefore, we instead 

model the bounding box coordinates as Gaussian distributions to extract information 

indicative of localization error. For computational simplicity, we assume independence 

among coordinates and adopt univariate Gaussian distributions, which are defined as 

follows: 

 
𝐺𝛩(𝑡) =

1

√2𝜋𝜎2
𝑒

−
(𝑡−𝑡𝑒)2

2𝜎2  (4) 

where  𝑡 ∈ {𝑥1, 𝑦1, 𝑥2, 𝑦2} denote the four bounding box coordinates (top-left and 

bottom-right). Each coordinate is optimized individually as a random variable of the 

Gaussian distribution. 𝛩 is the set of learnable parameters of the model. 𝑡𝑒 represents 

the predicted coordinates of the bounding box, which serves as the mean of the Gauss-

ian distribution.𝜎2 denotes the coordinate variance (as detailed in Section 3.3), which 

serves as the variance of the Gaussian distribution. 

After modeling the predicted bounding box as a Gaussian distribution, its coordinates 

are transformed from definite values to probability representations, with larger 𝜎2 in-

dicates lower localization reliability and greater error. Therefore, to assess the overall 

localization error of a predicted bounding box, we compute the average variance across 

its four coordinates and apply sigmoid normalization to obtain the localization quality 

score:  

 
𝑠𝑙𝑜𝑐 = 1 − 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(

∑ 𝜎𝑘
24

𝑘=1

4
) (5) 
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As shown in Fig. 3(b), compared with the foreground score, the proposed localization 

quality score demonstrates a stronger correlation with the actual localization quality, 

validating its effectiveness in measuring localization error. 

 

3.3 Localization Error reweighting in Regression 

Incorporating pseudo-labels with localization errors into training can hinder the opti-

mization of the bounding box regression task, resulting in decreased localization accu-

racy. To address this issue, we propose a strategy of Localization Error re-

weighting in Regression (LER), which utilize the proposed localization quality score to 

assess the localization error of pseudo-labels and guide the student’s model training.  

Specifically, the calculation of the localization quality score depends on the coordi-

nate variance. Therefore, we introduce a localization-aware branch in the ROI head of 

Faster R-CNN, designed to predict coordinate variances, as depicted in Fig. 4. To 

jointly train the original localization branch and the newly added localization-aware 

branch, allowing the model to simultaneously estimate bounding box coordinates and 

coordinate variances, we reformulate the regression loss based on a Gaussian distribu-

tion. 

Fig. 4 The structure of improved ROI head. The dashed part represents the localization-aware 

branch, which is constructed by a fully connected layer. To avoid gradient explosion during train-

ing, this branch predicts 𝑙𝑜𝑔(𝜎2) instead of 𝜎2 directly. 

First, similar to the predicted bounding boxes, the ground-truth box coordinates 𝑡𝑔 

are also modeled as Gaussian distributions. In this case, as 𝜎2 → 0, the Gaussian dis-

tribution degenerates into a Dirac delta distribution: 

 𝐷(𝑡) = 𝛿(𝑡 − 𝑡𝑔) (6) 

Then, the objective of the bounding box regression task is defined as learning a set 

of parameters 𝛩̂ that minimizes the distance between the predicted bounding box dis-

tribution 𝐺𝛩(𝑡), as defined in Eq. (4), and the ground-truth box distribution 𝐷(𝑡) over 

𝑁 samples: 

 𝛩̂ = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝛩

1

𝑁
∑ ℳ𝐾𝐿(𝐺𝛩(𝑡)‖𝐷(𝑡)) (7) 



Finally, we adopt the KL divergence as the metric for distribution distance to calcu-

late the regression loss, which is called the KL regression loss: 

 

𝐿𝐾𝐿 = ℳ𝐾𝐿(𝐺𝛩(𝑡) ∥ 𝐷(𝑡)) = 𝑒−𝑙𝑜𝑔 (𝜎2)
(𝑡𝑔 − 𝑡𝑒)2

2
+

1

2
𝑙𝑜𝑔 (𝜎2) (8) 

To reduce the interference of outliers on backpropagation and improve training sta-

bility, when |𝑡𝑙 − 𝑡𝑒| > 1, the loss is smoothed in a manner similar to the Smooth L1 

loss: 

 
𝐿𝐾𝐿 = 𝑒− 𝑙𝑜𝑔(𝜎2) (|𝑡𝑔 − 𝑡𝑒| −

1

2
) +

1

2
𝑙𝑜𝑔(𝜎2) (9) 

When the error between 𝑡𝑒 and 𝑡𝑔 is large, increasing 𝜎2 can reduce 𝐿𝐾𝐿. There-

fore, we replace the traditional Smooth L1 regression loss in Faster R-CNN with the 

KL regression loss, aiming to encourage the model to output a larger 𝜎2 when the 

localization prediction is inaccurate by minimizing 𝐿𝐾𝐿. This ensures that the localiza-

tion quality score calculated based on 𝜎2 can effectively reflect the localization error 

of the predicted bounding box. 

In the teacher-student framework, the student model is jointly trained with labeled 

and unlabeled images. Since the noisy pseudo-labels on the unlabeled images can in-

terfere with the training of the localization-aware branch, we only calculate 𝐿𝐾𝐿 when 

training the student model with labeled images. Therefore, the supervised regression 

loss is expressed as: 

 

𝐿𝑠
𝑟𝑒𝑔

=
1

𝑁𝑠
𝑓𝑔

∑ 𝐿𝐾𝐿(𝑡𝑖
𝑒 , 𝑡𝑖

𝑔
)

𝑁𝑠
𝑓𝑔

𝑖=1

 (10) 

where 𝑁𝑠
𝑓𝑔

 is the number of foreground proposals generated by the student model on 

labeled images, 𝑡𝑖
𝑒  and 𝑡𝑖

𝑔
 represent the predicted bounding box coordinates and the 

corresponding ground-truth box coordinates of the i-th foreground proposal, respec-

tively. 

To help the model focus on pseudo-labels with high localization quality during train-

ing, the teacher model predicts the coordinate variance of each pseudo-label through 

the localization-aware branch. The resulting localization quality score, is then used as 

the weight for the unsupervised regression loss: 

 

𝐿𝑢
𝑟𝑒𝑔

=
1

𝑁𝑢
𝑓𝑔

∑ 𝑠𝑗
𝑙𝑜𝑐𝐿𝑠𝑚𝑜𝑜𝑡ℎ𝐿1 (𝑡̂𝑗

𝑒, 𝑡̂𝑗
𝑢)

𝑁𝑢
𝑓𝑔

𝑗=1

 

 

(11) 

where 𝑁𝑢
𝑓𝑔

 is the number of foreground proposals generated by the student model on 

unlabeled images. 𝑡̂𝑗
𝑒   and 𝑡̂𝑗

𝑢 represent the predicted bounding box coordinates and 

the corresponding pseudo-label coordinates of the j-th foreground proposal, respec-

tively. 𝑠𝑗
𝑙𝑜𝑐 denotes the localization quality score of the pseudo-label. 𝐿𝑠𝑚𝑜𝑜𝑡ℎ𝐿1 re-

fers to the Smooth L1 loss adopted by default in Faster R-CNN. 
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By reweighting the loss, the contribution of each pseudo-label is dynamically ad-

justed during training according to its localization quality. This guides the model to 

learn reliable localization information from noisy pseudo-labels and effectively en-

hances localization accuracy. 

 

3.4 Proposal Reliability reweighting in Classification 

The Faster R-CNN adopted in this work uses an IoU-based label assignment strategy, 

where a proposal is assigned as foreground if its IoU with a ground-truth box exceeds 

a predefined threshold; otherwise, it is treated as background. However, when training 

with pseudo-labels that contain localization errors (i.e., noisy pseudo-labels), the devi-

ation between the pseudo-labels and the ground-truth boxes can lead to incorrect as-

signments. These misassigned proposals will confuse the decision boundary between 

foreground and background, ultimately degrading the model’s classification accuracy. 

To mitigate this issue, we propose a strategy of Proposal Reliability 

weighting in Classification (PRC). Since low-quality proposals are more susceptible to 

be misled by noisy pseudo-labels, we design a reliability score to assess the quality of 

each proposal and use it to reweight the unsupervised classification loss. Specifically, 

the proposals generated by the student model within the RPN are fed into the ROI head 

of the teacher model for re-prediction. For the i-th foreground proposal, the foreground 

class probability 𝑝𝑖
𝑓𝑔(𝑇) predicted by the teacher model is used to estimate the likeli-

hood of being a real foreground; the predicted coordinate variance is then used to com-

pute the localization quality score 𝑠𝑖
𝑙𝑜𝑐, as defined in Eq. (5), which evaluate its local-

ization error. Thus, the reliability score for a foreground proposal is defined as:  

  𝑠𝑖
𝑓𝑔

= 𝑚𝑎𝑥( 𝑝𝑖
𝑓𝑔(𝑇)) ∙ 𝑠𝑖

𝑙𝑜𝑐  (12) 

For the j-th background proposal, we directly use the background probability 

𝑝𝑗
𝑏𝑔(𝑇) predicted by the teacher model as its reliability score, which reflects the like-

lihood of being a real background. It is defined as follows:  

  𝑠𝑗
𝑏𝑔

= 𝑝𝑗
𝑏𝑔(𝑇) (13) 

It should be noted that the unlabeled images fed into the teacher and the student 

model undergo different data augmentations. Geometric transformations such as flip-

ping, scaling, and translation may cause spatial misalignment between the proposals 

generated by the two models. Therefore, before feeding the student model’s proposals 

into the teacher model, we apply the corresponding inverse transformations to align 

them spatially. 

To mitigate the adverse effects of incorrectly assigned low-quality proposals during 

training, we reweight the unsupervised classification loss using the proposal reliability 

scores: 



 𝐿𝑢
𝑐𝑙𝑠 =

1

𝑁𝑢
𝑓𝑔

∑ 𝑠𝑖
𝑓𝑔

𝐿𝐶𝐸(𝑝𝑖
𝑓𝑔

(𝑆), 𝑐̂𝑖
𝑓𝑔

)

𝑁𝑢
𝑓𝑔

𝑖=1

+
1

𝑁𝑢
𝑏𝑔 ∑ 𝑠𝑗

𝑏𝑔
𝐿𝐶𝐸(𝑝𝑗

𝑏𝑔
(𝑆), 𝑐̂𝑗

𝑏𝑔
)

𝑁𝑢
𝑏𝑔

𝑗=1

 (14) 

where 𝑁𝑢
𝑓𝑔

 and 𝑁𝑢
𝑏𝑔

 denote the numbers of foreground and background proposals 

generated by student model on unlabeled images, respectively. 𝐿𝐶𝐸  represents the 

cross-entropy loss. 𝑝𝑖
fg

(𝑆)  is the foreground probability predicted by the student 

model, 𝑐̂𝑖
𝑓𝑔

 is the pseudo-label category. Similarly, 𝑝𝑗
bg

(𝑆), 𝑐̂𝑗
𝑏𝑔

and 𝑠𝑗
𝑏𝑔

 denote the 

background predicted probability, pseudo-label, and reliability score for the back-

ground proposal, respectively. As for the supervised classification loss 𝐿𝑠
𝑐𝑙𝑠, the default 

classification loss of Faster R-CNN is directly used.  

Compared with the student model, the teacher model updated by EMA has stronger 

generalization ability, resulting in more stable predictions. Therefore, using the relia-

bility scores provided by the teacher model as loss weights enhances the contribution 

of reliable proposals to the classification task, which leads to improved classification 

performance. 

4 Experiments 

4.1 Dataset and metrics 

To evaluate the effectiveness of the proposed method, we conduct experiments on two 

widely used benchmarks datasets MS COCO [7] and PASCAL VOC [8]. MS COCO 

dataset contains 80 object categories, with 118k images in the train2017 set, 123k un-

labeled images in the unlabeled2017 set, and 5k images in the val2017 set. The PAS-

CAL VOC dataset includes 20 categories, with 5,011 images in VOC07 trainval set, 

11,540 in VOC12 trainval set, and 4,952 in VOC07 test set. 

The model performance is measured by mean Average Precision (mAP) which is the 

standard metric in object detection. Specifically, we report AP50 (IoU threshold of 0.5), 

AP75 (IoU threshold of 0.75), and AP50:95 (averaged over IoU thresholds from 0.5 to 

0.95 in steps of 0.05). The larger the IoU threshold, the stricter the requirement for the 

predicted localization. Thus, AP50 mainly reflects classification performance, AP75 bet-

ter reflects the localization accuracy, and AP50:95 provides a comprehensive measure of 

overall performance. 

 

4.2 Implementation details 

All experiments were conducted on a hardware environment equipped with two 

NVIDIA RTX 3090 GPUs and implemented using the MMDetection toolbox. For fair 

comparison, we adopt Faster R-CNN with a Feature Pyramid Network (FPN) as the 

base detector and use ResNet-50 as the backbone network. Following the experimental 

settings in related works [2][20][21], for the MS COCO datasets, we set the batch size 

to 10 per GPU, with a labeled to unlabeled image ratio of 1:4. The unsupervised loss 
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weight β is set to 4, and the model is trained for 180k iterations. For the PASCAL VOC 

dataset, we set the batch size to 8 per GPU, with a labeled to unlabeled image ratio of 

1:1. The unsupervised loss weight β is set to 2, and the model is trained for 72k itera-

tions. The data augmentation strategy is consistent with those used in related work.  

 

4.3 Performance Comparisons 

To evaluate the performance of our method, we compare it with Faster R-CNN trained 

on limited labeled data only (supervised baseline) and several mainstream state-of-the-

art SSOD methods. All the compared methods are implemented within the teacher-

student framework and use Faster R-CNN as the detector. Following the practices of 

most SSOD methods, we evaluate our method under three experimental settings: 

COCO-standard, COCO-addition and PASCAL VOC. The experimental results are 

presented in Table 1 and Table 2. 

Table 1. Comparison results on COCO-standard and COCO-addition. The AP50:95 (%) is used 

as the evaluation metric. Bold numbers indicate the best performance. — means that the results 

are missing in the source paper. * denotes the results we reproduced. 

Methods 
COCO-standard COCO-addition 

1% 5% 10% 100% 

Supervised [1] 9.05 18.47 23.86 37.63 

STAC [1] 13.97 24.38 28.64 39.21 

Instant-Teaching [14] 18.05 26.75 30.40 40.20 

ISMT [15]  18.88 26.37 30.53 39.64 

Unbiased Teacher [21]  20.75 28.27 31.50 41.30 

Soft Teacher* [2]  19.21 29.70 32.08 42.50 

MUM [3]  21.88 28.52 31.87 42.11 

CST [16] 22.20 29.75 32.65 42.05 

RPL [17] 19.02 28.40 32.23 41.00 

Elaborate Teacher [20] 22.65 30.05 32.90 — 

Ours 20.10 30.70 33.52 43.20 

 

COCO-standard. We randomly sample 1%, 5%, and 10% of the COCO train2017 set 

as labeled data, using the remaining images as unlabeled data. The method's perfor-

mance is evaluated on the COCO val2017 set. As shown in Table 1, our method 

achieves improvements of 11.05%, 12.23%, and 9.66% in AP50:95 over the supervised 

baseline at 1%, 5%, and 10% labeling ratios, respectively, demonstrating significant 

performance gains. Compared with other state-of-the-art SSOD methods, the proposed 

method achieves the best performance on the 5% and 10% labeled ratios. At the 1% 

labeling ratios, our method underperforms some SSOD methods. This is likely because, 

to effectively assess the localization error, we train the localization-aware branch on 

the labeled images only. As a result, the model fails to fully capture the localization 

information in the case of extremely scarce labeled data. Nevertheless, when the pro-

portion of labeled data increases to a certain extent (5%, 10%), our method achieves 

superior detection accuracy compared to these methods. These results demonstrate that 



our method effectively leverages a small amount of labeled data along with abundant 

unlabeled data to boost detection performance. 

COCO-addition. We use the entire COCO train2017 set (100%) as labeled data and 

COCO unlabeled2017 as additional unlabeled data. The method's performance is eval-

uated on the COCO val2017 set. As shown in Table 1, our method improves AP50:95 by 

5.57% over the supervised baseline and outperforms other state-of-the-art SSOD meth-

ods. This improvement can be attributed to the method’s ability to make full use of the 

prediction information on unlabeled data to guide the model training, which enhances 

the utilization efficiency of unlabeled data. The aforementioned results indicate that 

when the amount of labeled data is relatively large, our method can still effectively 

utilize the additional unlabeled data to achieve better performance. 

Table 2. Comparison results on PASCAL VOC. The AP50 (%), AP75 (%) and AP50:95 (%) is 

used as the evaluation metric. Bold numbers indicate the best performance. — means that the 

results are missing in the source paper. * denotes the results we reproduced. 

Method AP50 AP75 AP50:95 

Supervised* 72.20 45.10 42.40 

STAC [1] 77.40 — 44.60 

Instant-Teaching [14]  78.30 52.00 48.70 

ISMT [15] 77.23 — 46.23 

Unbiased Teacher [21]  77.40 — 48.70 

Soft Teacher* [2] 79.00 57.40 51.47 

MUM [3]  78.90 — 50.20 

CST [16] 78.70 — 51.50 

RPL [17] 76.90 57.90 52.40 

Elaborate Teacher [20] 78.30 — 50.20 

Ours 80.40 58.80 52.81 

 

PASCAL VOC. In addition to the MS COCO dataset, we also conducted experiments 

on the PASCAL VOC dataset. We use VOC07 trainval set as labeled data, VOC train-

val set as the unlabeled data. The method's performance is evaluated on the VOC07 test 

set. As shown in Table 2, our method outperforms other state-of-the-art SSOD methods 

across all evaluation metrics, further demonstrating its superiority. Notably, in terms of 

the metric for higher localization accuracy (AP75), our method achieves a significant 

1.4% improvement over Soft Teacher [2], which also considers the localization errors 

in pseudo-labels. This result indicates that our approach improves the localization qual-

ity for SSOD. 

 

4.4 Ablation studies 

Ablations of LER and PRC. To evaluate the effectiveness of the proposed LER and 

PRC strategy, we conducted ablation studies under the 10% labeled COCO-standard 

setting. As shown in Table 3, compared to the teacher-student framework baseline (No. 

1), applying LER or PRC individually improves AP50:95 by 0.7% and 1.0%, respectively 
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(No. 2 and No .3). Meanwhile, LER increases AP75 by 1.2%, indicating that LER is 

beneficial to improving the localization performance. This is attributed to the proposed 

localization quality score, which helps the model focus on pseudo-labels with higher 

localization accuracy. PRC increases AP50 by 0.7%, suggesting a positive effect on 

classification performance. This improvement comes from the teacher model’s ability 

to better assess proposal reliability and enhance the impact of reliable proposals on 

classification. Furthermore, combining LER and PRC (No. 4) yields the best perfor-

mance across all metrics. This result indicates that LER and PRC are compatible and 

can work synergistically to achieve maximum performance gains. 

Table 3. Ablation study on the effects of LER and PRC. 

No. LER PRC AP50 AP75 AP50:95 

1   50.80 33.80 31.50 

2    50.60 35.00 32.20 

3    51.50 34.90 32.50 

4     53.40 35.70 33.50 

 

Analysis of foreground score threshold. We also investigated the impact of different 

foreground score thresholds (τ) on the proposed method. As shown in Table 4, when τ 

gradually increases from 0.6 to 0.8, AP50:95 gradually improves and reaches the opti-

mum at 0.8. This is because a higher threshold helps ensure the quality of pseudo-labels. 

However, when τ is further increased to 0.9, AP50:95 decreases by 0.9%, primarily due 

to an insufficient number of pseudo-labels, which leads to the loss of valuable training 

samples. Notably, despite the lower pseudo-label quality at τ = 0.8 compared to 0.9, the 

model achieves superior performance, which can be attributed to the effectiveness of 

LER and PRC in suppressing pseudo-label noise. Therefore, τ = 0.8 is selected as the 

final setting to achieve an optimal balance between pseudo-label quality and quantity. 

Table 4. Ablation study on the effects of different foreground score threshold. 

τ AP50 AP75 AP50:95 

0.6 52.70 35.10 32.90 

0.7 53.30 35.70 33.30 

0.8 53.40 35.70 33.50 

0.9 51.90 34.90 32.60 

4.5 Visualization 

To better observe and compare the detection performance of our method, we visualize 

the detection results under the 10% labeled COCO-standard setting. our method is com-

pared against the supervised baseline and the Soft Teacher [2] method, which also 



considers localization errors. Three images were randomly selected from the COCO 

val2017 set for detection, as shown in Fig. 5. In the first row of images, our method 

demonstrates more accurate object localization than the other two methods. In the sec-

ond row of images, the supervised baseline and Soft Teacher show false positives and 

missed detections, respectively, whereas our method correctly detects all objects. In the 

third row, the detected objects from our method exhibit higher foreground scores. These 

results highlight the superior detection performance of our method. This can be at-

tributed to the dynamic reweighting strategy we employed in the bounding box regres-

sion and the classification tasks, which effectively enhances the model's localization 

precision and classification accuracy. 

 

Fig. 5 Visualization of detection results. The first column shows the ground-truth, while the sec-

ond to fourth columns display the detection results from the supervised baseline, Soft Teacher 

method, and our method, respectively. 

5 Conclusion 

A novel semi-supervised object detection (SSOD) method based on dynamic re-

weighting of localization errors is proposed in this paper. A localization quality score 

is first introduced to estimate the localization error of predicted bounding boxes, and 

then a Localization Error reweighting in Regression (LER) strategy is proposed to re-

weight the unsupervised regression loss according to the localization quality of pseudo-

labels, thereby driving the model to prioritize accurately localized pseudo-labels during 

regression. Furthermore, a Proposal Reliability reweighting in Classification (PRC) 

strategy is proposed to adjust the unsupervised classification loss based on the reliabil-

ity scores of proposals, amplifying the contribution of reliable proposals to the 
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classification task. Collectively, these strategies effectively mitigate the detrimental im-

pact of localization noise within pseudo-labels on both the regression and classification 

tasks, enabling the model to fully leverage unlabeled data for performance enhance-

ment. Extensive experiments on the MS COCO and PASCAL VOC datasets demon-

strate that our method consistently surpasses the other mainstream state-of-the-art ap-

proaches. Our future work will focus on how to take advantage of unlabeled data more 

effectively to further improve the method's performance. 
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