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Abstract. In recent years, One-Shot Federated Learning (OSFL) has gained sig-

nificant attention for its communication efficiency. With the rise of generative 

models, many approaches leverage synthetic data on the server to improve global 

model performance. However, this efficiency introduces heightened privacy risks 

that remain largely unexplored. In this paper, we conduct the first systematic ex-

ploration of privacy risks in OSFL by designing a Membership Inference Attack 

(MIA) strategy tailored to this paradigm. In our strategy, we introduce a general 

approach designed for all generative models, which infers membership by align-

ing query data with the global client distribution. Building on this, we extend the 

approach specifically for diffusion models, integrating global alignment with 

query-specific fine-grained details through finetuning and conditional genera-

tion, thereby enabling more robust inference. In particular, our strategy does not 

rely on auxiliary data, making it particularly relevant for privacy-sensitive OSFL 

settings. Extensive experiments validate the effectiveness of the proposed strat-

egy, highlighting the critical privacy risks posed by generative models in OSFL. 

Keywords: Membership Inference Attacks, One-Shot Federated Learning, 

Generative Model 

1 INTRODUCTION 

One-Shot Federated Learning (OSFL) [1,2,3,4] has gained attention as an efficient dis-

tributed learning paradigm.OSFL distinguishes itself by requiring only a single round 

of communication between the central server and clients to complete the learning pro-

cess. This streamlined approach not only reduces bandwidth consumption but also ex-

pedites the learning process,making it a practical alternative for large scale applications 

[1,4,5]. 



 

Fig. 1. Illustration of MIA in OSFL 

Recently,generative model-based approaches have demonstrated significant research 

value and broad application prospects in OSFL [1,3].These methods  employ a novel 

communication paradigm where clients only need to transmit lightweight “medi-

ums”(such as descriptors, partial model parameters,and prototype representations) to 

the server,which then leverages powerful generative models to synthesize samples that 

capture the characteristics of client data distributions. This design not only enhances 

global model performance through training with synthetic data but also maintains com-

munication efficiency. 

Though generative model-based OSFL offers significant benefits,it also introduces 

potential privacy risks.The highfidelity synthetic data generated by these models may 

expose characteristics of the original data, making the system vulnerable to Member-

ship Inference Attacks (MIAs).In Federated Learning (FL),MIAs aim to determine 

whether a specific query sample is part of the training dataset and rely on techniques 

like gradient difference analysis [6], shadow model training  [7], and output-based con-

fidence  score analysis [8]. 

Unfortunately, these methods can be applied to various FL scenarios but they are 

specifically designed for multi-round communication settings. At present, research on 

MIAs in OSFL, especially in contexts involving generative models,remains largely un-

explored. 

To address this gap, we propose a MIA strategy tailored for generative models based 

OSFL. In this scenario, clients transmit training “mediums” to the server, which syn-

thesizes images. Attackers exploit the synthetic data generated by the server to perform 

MIA, as illustrated in Fig. 1. We introduce AttackI-Base, a general method for all gen-
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erative models. It extracts features from server-generated data, computes a feature cen-

ter for the client distribution, and infers membership by comparing this center with the 

attacker’s query data. While effective, it focuses only on overall client distributions and 

overlooks fine-grained details, which limits its inference accuracy. To achieve more 

accurate inference, we propose AttackII-Finetune, which finetunes the widely used dif-

fusion models to better align with client distributions. By using query data as condi-

tional input, this approach generates detailed, query-specific synthetic images, thereby 

significantly enhancing inference accuracy. Specifically, AttackII-Finetune incorpo-

rates a dual similarity evaluation mechanism: initial similarity assesses the global align-

ment between the query data and the overall client distribution, offering a stable refer-

ence, while conditional similarity captures fine-grained, query-specific details using the 

fine-tuned model. This dual approach ensures a comprehensive exploration of privacy 

risks in OSFL with generative models. 

Overall, our main contributions can be summarized as follows: 

• We summarize existing methods that utilize generative models in OSFL and 

highlight their potential privacy vulnerabilities. 

• We propose a MIA strategy, consisting of a general purpose approach for 

OSFL generative models and a diffusion-specific method that leverages fine-

tuning and conditional generation to enhance accuracy and robustness. 

• We systematically evaluate our attack strategy through extensive experiments 

across various backbone architectures and evaluation metrics, with further 

analyses on similarity metrics and client numbers, where AttackII-Finetune 

demonstrates better performance in most scenarios, validating our approach’s 

effectiveness in exploiting OSFL generative models’ privacy vulnerabilities. 

2 RELATED WORK 

2.1 Generative model-based One-Shot Federated Learning 

Generative models have emerged as a versatile solution for addressing data heteroge-

neity and mitigating high computational costs OSFL. These methods can be broadly 

categorized into three approaches based on their focus: model aggregation, representa-

tion abstraction, and classification-guided synthesis. In the model aggregation category, 

methods like FEDCVAE[9] utilize Conditional Variational Autoencoders to aggregate 

locally trained decoders for flexible and client-specific data synthesis. FedDiff [5] trains 

diffusion models locally and uploads parameters for centralized synthesis at the server. 

For representation abstraction methods, FedDEO [1] and FedDISC [2] utilize descrip-

tive vectors or extracted features from client data to capture key client distribution char-

acteristics with reduced communication overhead. Similarly, FedBiP [10] uploads per-

sonalized latent representations and optimized concept vectors, enabling the central 

server to synthesize data that closely  aligns with client distributions while preserving 

privacy. Finally, classification-guided synthesis is exemplified by FedCADO [3], 

which uploads lightweight classifiers trained locally to steer server-side generative 



models for class-specific synthesis. These methods highlight the adaptability of gener-

ative models in OSFL, providing efficient and scalable solutions for collaboration in 

highly heterogeneous environments. However, they have overlooked the privacy issues 

introduced by generative models in OSFL. 

2.2 Federated Membership Inference Attack 

MIAs in FL are broadly classified into two types: update-based MIAs and trend-based 

MIAs, which exploit either model updates or trends in the training process to deter-

mine whether specific data points are part of the training set. Update-based MIAs lev-

erage gradients shared during FL to infer membership information. Gradient-based at-

tacks analyze raw gradient values or the differences between gradients across con- secu-

tive training iterations, as explored in works such as[11] and[6]. Alternatively, single 

model-based attacks use shadow training to simulate the behavior of the target model 

or modify its structure to enable membership inference, as demonstrated in [7]. These 

methods are effective in scenarios where gradient information is abundant but often 

come with significant computational costs and are sensitive to factors like batch size. 

Trend-based MIAs infer membership by analyzing the evolution of model outputs 

during training. Model output-based attacks track changes in prediction confidence 

over multiple training rounds to distinguish between members and non-members 

[8,12]. While these methods are lightweight in computation, their success heavily relies 

on the availability of multiple snapshots of the model and the degree of sensitivity in 

parameter changes. In our work, we focus on MIAs in OSFL, where the attacker lever-

ages information obtained from a malicious server to perform the attack. 

3 Methodology 

3.1 Problem Formulation 

Federated Setting. We consider a OSFL scenario involving K clients and a server, 

where communication between clients and the server occurs only once. In this setting, 

each client transmits to the server the “mediums” {𝜇𝑘}𝑘=1
𝐾 (e.g., model parameters or 

intermediate features)that capture the characteristics of its local data distribution. With-

out direct access to the raw data on the clients, the server leverages these “mediums” 

and a generative model 𝜃𝐺 to generate synthetic data, which is subsequently used to 

train the global model.  

Attacker Capability. We assume that the attacker operates in a malicious server envi-

ronment. The attacker has no access to auxiliary datasets to train shadow models and 

can only rely on a query dataset to conduct the attack. The query dataset consists of 

samples related to the client data, as well as non-client samples drawn from the same 

data distribution as the client data. Similar to other MIA setting [13], the attacker cannot 

distinguish the origin of these samples. This capability assumption aligns more closely 

with practical FL scenarios that emphasize data privacy protection. 
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Fig. 2: Illustration of our attack strategy. 

3.2 Attack Pipelines 

We next introduce the proposed attack strategy, which includes AttackI-Base, applica-

ble to all generative models, and its extension, AttackII-Finetune, tailored for diffusion 

models. The attack process on the server is illustrated in Fig. 2. 

 

Algorithm 1 AttackI-Base 

Require: Query dataset 𝐷𝑞𝑢𝑒𝑟𝑦 , synthetic dataset 𝐷𝑠𝑦𝑛 = 𝜃𝐺(𝜇)  

Ensure: Membership prediction y for each query sample 

1:for each class j do 

 

2: f̅G
j

←
1

Nsyn
j

∑ fG
i,j

Nsyn
j

i=1
 

▷ Calculate feature center 

3: end for  

4: for each query sample do  

5: S ← CosineSimilarity(fQ, fG̅) ▷ Calculate similarity 

6: end for  

7: 𝜏∗ ← 𝐹𝑖𝑛𝑑 𝑂𝑝𝑡𝑖𝑚𝑎𝑙 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝐵𝑦 𝑅𝑂𝐶  

8: for each similarity score s in S do  

9: if  s ≥ τ∗ then  

10: y ← 1 ▷ Member 

11: else  

12: y ← 0 ▷ Non-member 

13: end if  

14: end for  

 

 



AttackI-Base. AttackI-Base is an attack method for universal generative models that 

determines a query sample’s membership by measuring its feature similarity to the syn-

thetic data generated by the server. We provide pseudo code for the attack strategy in 

Algorithms 1. 

 

Feature Extraction. We first extract features of samples of synthetic set data 𝐷𝑠𝑦𝑛 =

𝜃𝐺(𝜇) and samples of query set 𝐷query  using pre-training models to perform similarity 

computation in a unified feature space. 

 

Feature  Center Calculation. Since the synthetic data is generated based on the medium 

µ uploaded by clients, its feature distribution can indirectly reflect the distribution char-

acteristics of the client training data. Therefore, we further calculate the feature center 

for each class within the synthetic data as a concentrated representation of the distribu-

tion of the client’s training data:

 

 𝑓𝐺̅
𝑗

=
1

𝑁𝑠𝑦𝑛
𝑗 ∑ 𝑓𝐺

𝑖,𝑗𝑁𝑠𝑦𝑛
𝑖

𝑖=1
 (1) 

where 𝑓𝐺
𝑖,𝑗

 is the feature of the i-th synthetic image of class j, and 𝑁𝑠𝑦𝑛
𝑖  is the total num-

ber of synthetic images of class j. The feature center reduces computational complexity 

by allowing comparisons with a single representative vector instead of all generated 

samples. It also improves stability by mitigating the influence of noise and outliers, and 

it effectively represents the global distribution of client data. 

 

Similarity  Calculation. We calculate the similarity between each query sample 𝑓𝑄  and 

the feature center𝑓𝐺̅  using cosine similarity,i.e.,S(fQ, fG̅) = 〈fQ, fG̅〉/‖fQ‖ ∙ ‖fG̅‖. The 

S(fQ, fG̅) provides a quantitative measure of the alignment between the query data and 

the global feature distribution of the client data. 

 

Threshold Setting and Inference of Membership. Based on the similarity scores, we 

utilize the Receiver Operating Characteristic (ROC) curve [14] to determine the optimal 

threshold 𝜏∗ to infer the membership of the query sample. Specifically, the threshold is 

chosen to maximize Youden’s J statistic, ensuring the best trade-off between sensi-

tivity and specificity. The membership inference can be expressed as follows: 

 𝑦 = {
1,     𝑆(𝑓𝑄 , 𝑓𝐺̅) ≥ 𝜏∗,

0,     𝑆(𝑓𝑄 , 𝑓𝐺̅) < 𝜏∗.
 (2) 

AttackII-Finetune. Leveraging the fine-tuning capabilities of diffusion models, we 

propose an MIA method specifically designed to enhance attack performance on syn-

thetic data. This method builds on research [13], which explicitly demonstrates that if 

a target sample x is used during training, the generated samples will closely resemble 

x.We provide pseudo-code for the attack strategy in Algorithms 2. 
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Finetune  Using Synthetic Data. To adapt the diffusion model to the client data distri-

bution, we begin by fine-tuning it via LoRA [15] on the synthesized data. This step 

aligns the model with the characteristics of the synthetic data, improving its capacity to 

represent client-specific features. Mathematically, given the diffusion model 𝜃𝐺 , we 

denote the trainable parameters by 𝜃̃𝐺. 

 

Using  Query Data as a  Condition. The initial synthetic samples mainly capture the 

global distribution of client data but fail to reflect the fine-grained details of query data, 

limiting membership inference accuracy. To address this, we finetune the diffusion 

model using query data as a condition to generate query-specific synthetic set 𝐷𝑞𝑠 . 

When the query data contains client samples, the feature 𝑓𝑄𝑆 of the generated sample 

in 𝐷𝑞𝑠 will better align with client-specific characteristics. Conversely, for non-client 

query data, the feature 𝑓𝑄𝑆 may reflect non-client features but remain influenced by the 

client distribution, weakening non-client-specific representations. 

 

Algorithm 2 Attack II - Finetune 

Require:  Query dataset 𝐷𝑞𝑢𝑒𝑟𝑦 , synthetic dataset 𝐷𝑠𝑦𝑛, diffusion model 𝜃𝐺 , finetuning steps 

T 

Ensure:  Membership prediction y for each query sample 

1:for each class j do 

2: 
𝑓𝐺̅

𝑗
←

1

𝑁𝑠𝑦𝑛
𝑗

∑ 𝑓𝐺
𝑖,𝑗

𝑁𝑠𝑦𝑛
𝑗

𝑖=1
 

▷ Calculate feature center 

3: end for  

4: for each query sample do  

5: 𝑆𝑖𝑛𝑖𝑡 ← 𝐶𝑜𝑠𝑖𝑛𝑒𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑓𝐺 , 𝑓𝐺̅)  

6: end for  

7: 𝜃̅𝐺 ← 𝐹𝑖𝑛𝑒𝑡𝑢𝑛𝑒(𝜃𝐺 , 𝐷𝑠𝑦𝑛) ▷ Finetune on synthetic data 

8: 𝐷𝑞𝑠 ← 𝜃̅𝐺(𝐷𝑞𝑢𝑒𝑟𝑦) ▷ Generate query-synthetic set 

9: for each query sample do  

10: 𝑆𝑐𝑜𝑚𝑑 ← 𝑚𝑎𝑥 (𝐶𝑜𝑠𝑖𝑛𝑒𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑓𝑄, 𝑓𝑄𝑆))  

11: end for  

12: for each query sample do  

13: 𝑆𝑐𝑜𝑚𝑝 ← 𝑆𝑖𝑛𝑖𝑡 + 𝑆𝑐𝑜𝑛𝑑   

14: if 𝑆𝑐𝑜𝑚𝑝 > 𝜏∗  then  

15: y ← 1 ▷ Member 

16: else  

17: y ← 0 ▷ Non-member 

18: end if  

19: end for  

 

Calculating  Conditional Similarity. To evaluate the alignment between the query data 

and query-conditioned synthetic samples, we compute the conditional similarity 𝑆𝑐𝑜𝑛𝑑  , 

which focuses on capturing the fine-grained details of query data and provides a query-



specific alignment score. For each feature 𝑓𝑄  of the query sample in 𝐷𝑞𝑢𝑒𝑟𝑦  the condi-

tional similarity is computed as: 

 𝑆𝑐𝑜𝑛𝑑(𝑓𝑄) = max
𝑓𝑄𝑆∈𝐷𝑞𝑠

〈𝑓𝑄𝑆,𝑓𝑄〉

‖𝑓𝑄𝑆‖∙‖𝑓𝑄‖
 (3) 

By selecting the maximum similarity score between a query sample and the generated 

images, 𝑆𝑐𝑜𝑛𝑑  captures the strongest alignment for each query sample, focusing on its 

query-specific characteristics. 

 

Calculating Initial Similarity. Although conditional generation effectively incorporates 

query-specific details, non-client data can still influence the generated results. This may 

lead to an overestimated conditional similarity 𝑆𝑐𝑜𝑛𝑑   for non-client data, reducing the 

discriminative power of the framework. To address this issue, we introduce 𝑆𝑖𝑛𝑖𝑡  from 

attackI-Base to calcu- late the relationship between the query data and the overall client-

distributed data synthetic samples: 

 𝑆𝑖𝑛𝑖𝑡(𝑓𝑄) =
〈𝑓𝑄,𝑓̅𝐺〉

‖𝑓𝑄‖∙‖𝑓̅𝐺‖
 (4) 

By assessing the query data’s strongest global alignment, Sinit serves to counterbalance 

potential overestimations in 𝑆𝑐𝑜𝑛𝑑 , thereby enhancing the robustness and reliability of 

the overall evaluation. 

 

Computing a  Comprehensive Similarity Score, Finally, we obtain a comprehensive 

similarity score 𝑆𝑐𝑜𝑚𝑝 as the sum of initial similarity Sinit  and conditional similarity 

𝑆𝑐𝑜𝑛𝑑  : 

 𝑆𝑐𝑜𝑚𝑝 = 𝑆𝑖𝑛𝑖𝑡 + 𝑆𝑐𝑜𝑛𝑑 (5) 

By combining both 𝑆𝑐𝑜𝑛𝑑  and 𝑆𝑖𝑛𝑖𝑡 , the strategy ensures higher similarity scores for 

genuine client data, enabling robust and accurate membership inference across diverse 

scenarios. 

 

Classifying  Client Membership. Similar to AttackI-Base, we use ROC based on the 

distribution of the composite similarity score 𝑆𝑐𝑜𝑚𝑝 to determine the optimal threshold 

for inference 𝜏∗ and to infer membership in the query sample: 

 𝑦 = {
1,     𝑖𝑓 𝑆𝑐𝑜𝑚𝑝 ≥ 𝜏∗,

0,     𝑖𝑓 𝑆𝑐𝑜𝑚𝑝 < 𝜏∗.
 (6) 
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Table 1. Evaluation of Attack Methods Across Different Architectures and Datasets (FEDDEO 

and FEDDISC). 

Dataset Method Backbone 
FEDDEO FEDDISC 

ASR AUC TPR@1% ASR AUC TPR@1% 

OxfordPet 

AttackI-Base 

ResNet18 0.52 0.52 2.62% 0.68 0.71 0.88% 

ResNet50 0.52 0.54 3.17% 0.68 0.71 1.33% 

ResNet101 0.55 0.58 6.20% 0.68 0.71 0.88% 

DeiT 0.48 0.49 0.96% 0.54 0.48 0.32% 

ViT 0.50 0.51 0.41% 0.57 0.49 1.20% 

AttackII-Finetune 

ResNet18 0.52 0.57 2.75% 0.65 0.68 1.52% 

ResNet50 0.58 0.66 15.98% 0.68 0.72 3.41% 

ResNet101 0.59 0.69 16.80% 0.67 0.71 2.40% 

DeiT 0.51 0.54 0.83% 0.48 0.47 0.32% 

ViT 0.51 0.50 0.83% 0.48 0.48 0.95% 

DomainNet 

AttackI-Base 

ResNet18 0.63 0.73 23.28% 0.55 0.72 9.70% 

ResNet50 0.64 0.74 25.57% 0.58 0.76 12.08% 

ResNet101 0.67 0.82 36.24% 0.62 0.79 20.37% 

DeiT 0.51 0.66 1.94% 0.59 0.60 3.26% 

ViT 0.58 0.62 3.62% 0.55 0.66 2.56% 

AttackII-Finetune 

ResNet18 0.70 0.84 24.78% 0.60 0.81 17.90% 

ResNet50 0.70 0.8 29.37% 0.60 0.80 17.11% 

ResNet101 0.70 0.83 39.77% 0.66 0.82 26.01% 

DeiT 0.61 0.63 3.62% 0.51 0.60 3.88% 

ViT 0.52 0.61 7.14% 0.64 0.63 3.26% 

OxfordFlower 

AttackI-Base 

ResNet18 0.50 0.50 0.12% 0.50 0.50 0.08% 

ResNet50 0.49 0.50 0.02% 0.50 0.46 0.38% 

ResNet101 0.50 0.52 0.38% 0.50 0.52 0.75% 

DeiT 0.50 0.48 0.75% 0.51 0.46 2.00% 

ViT 0.50 0.28 0.02% 0.50 0.50 1.38% 

AttackII-Finetune 

ResNet18 0.61 0.62 2.12% 0.59 0.56 1.12% 

ResNet50 0.60 0.64 3.12% 0.57 0.51 0.50% 

ResNet101 0.59 0.60 0.62% 0.57 0.56 0.75% 

DeiT 0.51 0.47 0.62% 0.51 0.45 0.75% 

ViT 0.54 0.53 1.25% 0.53 0.50 0.38% 

 

3.3 Experimental Setup 

Dataset:In our experiments, we utilize three widely-used image datasets: Oxford-IIIT 

Pet [16], DomainNet [17], and Oxford 102 Flowers[18]. For each dataset, we config-

ure the number of clients to 3,10, and 50, respectively, to evaluate the scalability of the 

proposed approach. To simulate non-i.i.d. data distributions across clients, we adopt the 



Dirichlet Distribution with a concentration parameter α = 1, ensuring diverse yet con-

trolled levels of data imbalance. 

Target approaches:In our evaluation, we conduct attacks against several state-of-

the-art approaches, including FedDEO [1], FedCADO  [3], FedDISC [2], and FedBIP 

[10]. These approaches represent different methodologies within the OSFL framework, 

allowing us to comprehensively evaluate the effectiveness of our attack strategy across 

various target methods. 

Table 2. Evaluation of Attack Methods Across Different Architectures and Datasets(FedCADO 

and FEDBIP) 

Dataset Method Backbone 
FEDCADO FEDBIP 

ASR AUC TPR@1% ASR AUC TPR@1% 

OxfordPet 

AttackI-Base 

ResNet18 0.61 0.61 2.02% 0.73 0.77 2.72% 

ResNet50 0.61 0.59 3.03% 0.77 0.82 7.65% 

ResNet101 0.62 0.59 4.05% 0.73 0.82 7.27% 

DeiT 0.51 0.51 1.45% 0.50 0.49 0.88% 

ViT 0.53 0.53 1.07% 0.52 0.51 1.01% 

AttackII-Finetune 

ResNet18 0.61 0.59 1.96% 0.67 0.75 4.36% 

ResNet50 0.62 0.58 5.12% 0.72 0.82 11.38% 

ResNet101 0.67 0.71 5.69% 0.78 0.83 8.41% 

DeiT 0.52 0.52 0.76% 0.51 0.51 1.20% 

ViT 0.50 0.50 1.01% 0.48 0.49 1.26% 

DomainNet 

AttackI-Base 

ResNet18 0.62 0.62 18.87% 0.61 0.59 8.29% 

ResNet50 0.64 0.67 21.08% 0.48 0.54 8.38% 

ResNet101 0.69 0.69 26.10% 0.56 0.56 10.85% 

DeiT 0.51 0.55 0.60% 0.60 0.56 1.85% 

ViT 0.48 0.57 0.79% 0.48 0.57 0.79% 

AttackII-Finetune 

ResNet18 0.68 0.78 20.19% 0.59 0.67 9.79% 

ResNet50 0.68 0.80 29.37% 0.62 0.69 11.90% 

ResNet101 0.70 0.84 31.92% 0.67 0.70 11.73% 

DeiT 0.57 0.63 4.06% 0.58 0.64 2.20% 

ViT 0.62 0.61 4.59% 0.57 0.59 4.50% 

OxfordFlower 

AttackI-Base 

ResNet18 0.49 0.48 0.25% 0.50 0.53 0.88% 

ResNet50 0.50 0.44 0.38% 0.50 0.52 1.00% 

ResNet101 0.50 0.49 0.38% 0.49 0.54 0.02% 

DeiT 0.49 0.46 0.02% 0.49 0.51 0.25% 

ViT 0.50 0.24 0.12% 0.50 0.53 0.50% 

AttackII-Finetune 

ResNet18 0.56 0.56 0.38% 0.62 0.63 1.38% 

ResNet50 0.51 0.49 0.12% 0.63 0.68 3.50% 

ResNet101 0.54 0.52 0.12% 0.62 0.64 1.00% 

DeiT 0.52 0.49 0.25% 0.50 0.46 0.50% 

ViT 0.55 0.55 3.75% 0.51 0.47 1.12% 
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Evaluation Metrics:To evaluate the effectiveness of the proposed attack strategy, we 

conduct experiments under a fixed 1% False Positive Rate (FPR). The evaluation met-

rics include:  

(1) Attack Success Rate (ASR), measuring the accuracy in distinguishing member from 

non-member samples;  

(2) Area Under the ROC Curve (AUC), providing a threshold- independent assessment 

of attack performance; 

(3) True Positive Rate at 1% FPR (TPR@1%), indicating the proportion of correctly 

identified member samples under the FPR constraint. Our experiments are conducted 

on a NVIDIA  GeForce RTX 3090 GPU, leveraging the pre-trained Stable Diffusion 

v1-5 model[19] and the official implementation of the LoRA method . 

3.4 Performance Analysis of Attack Methods 

We systematically evaluate the impact of different backbone architectures for feature 

extraction in both strategies, including ResNet18/50/101 [20], Vison Transformer 

(ViT) [21], and DeiT [22]. The ResNet series, known for its hierarchical feature repre-

sentation, is highly effective at capturing fine-grained image details. In contrast, ViT 

employs a self-attention mechanism to model global contextual information. DeiT, a 

data-efficient variant of ViT, achieves comparable feature extraction performance 

while reducing dependency on large-scale datasets. 

 

 

Table 3. Comparison of Different Numbers of Clients for FEDDISC. 

Dataset Clients 

AttackI-Base AttackII-Finetune 

ASR AUC TPR@1% ASR AUC TPR@1% 

OxfordPet 

3 0.68 0.71 0.88% 0.67 0.72 2.40% 

10 0.68 0.72 0.88% 0.70 0.75 2.02% 

50 0.70 0.73 1.07% 0.69 0.74 3.03% 

DomainNet 

3 0.62 0.79 20.37% .0.66 0.82 26.01% 

10 0.60 0.81 20.11% 0.69 0.84 25.75% 

50 0.68 0.84 30.16% 0.69 0.88 31.39% 

OxfordFlower 

3 0.50 0.52 0.75% 0.57 0.56 0.75% 

10 0.50 0.52 0.75% 0.68 0.57 1.00% 

50 0.50 0.53 1.50% 0.65 0.57 0.88% 

 

 



Table 4. Comparison of Different Numbers of Clients for FEDCADO. 

Dataset Clients 

AttackI-Base AttackII-Finetune 

ASR AUC TPR@1% ASR AUC TPR@1% 

OxfordPet 

3 0.62 0.60 4.05% 0.67 0.71 5.69% 

10 0.62 0.61 4.11% 0.70 0.75 4.87% 

50 0.62 0.6 3.60% 0.69 0.74 3.29% 

DomainNet 

3 0.56 0.56 10.85% 0.66 0.82 11.73% 

10 0.70 0.69 25.31% 0.73 0.87 32.54% 

50 0.62 0.75 26.01% 0.73 0.83 31.75% 

OxfordFlower 

3 0.50 0.52 0.38% 0.54 0.52 0.12% 

10 0.50 0.52 0.12% 0.55 0.53 0.25% 

50 0.50 0.53 0.50% 0.58 0.55 0.25% 

 

As shown in Table 1 and 2, where bold values represent the best attack performance 

for each dataset, our experimental results highlight robust attack performance across 

different target approaches and backbone architectures, with ASR consistently surpas-

sing 50% and reaching up to 70% in several scenarios. A closer comparison between 

AttackI-Base and AttackII-Finetune reveals that AttackII-Finetune generally achieves 

better overall performance, particularly excelling in terms of TPR@1%. This improve-

ment is especially pronounced in scenarios with strict false positive constraints, where 

AttackII-Finetune demonstrates significantly higher true positive rates while maintain-

ing the same false positive rate. These results indicate that AttackII-Finetune is more 

effective at distinguishing member samples from non-member samples, achieving a 

more reliable balance between sensitivity and specificity. 

Table 5. Comparison of Different Numbers of Clients for FEDDEO. 

Dataset Clients 

AttackI-Base AttackII-Finetune 

ASR AUC TPR@1% ASR AUC TPR@1% 

OxfordPet 

3 0.55 0.58 6.20% 0.59 0.69 16.80% 

10 0.48 0.50 1.74% 0.51 0.61 2.18% 

50 0.43 0.43 3.48% 0.48 0.58 8.11% 

DomainNet 

3 0.67 0.82 36.24% 0.70 0.83 39.77% 

10 0.59 0.71 16.31% 0.63 0.73 16.70% 

50 0.63 0.71 17.61% 0.60 0.68 17.20% 

OxfordFlower 

3 0.50 0.52 0.38% 0.59 0.6 0.62% 

10 0.50 0.51 0.76% 0.63 0.56 0.07% 

50 0.50 0.50 1.19% 0.63 0.57 0.15% 
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Table 6. Comparison of Different Numbers of Clients for FEDBIP. 

Dataset Clients 

AttackI-Base AttackII-Finetune 

ASR AUC TPR@1% ASR AUC TPR@1% 

OxfordPet 

3 0.78 0.83 7.27% 0.73 0.82 8.41% 

10 0.68 0.71 2.02% 0.63 0.72 1.07% 

50 0.61 0.61 4.05% 0.59 0.69 3.98% 

DomainNet 

3 0.69 0.69 26.10% 0.70 0.84 31.92% 

10 0.61 0.59 11.82% 0.63 0.74 13.32% 

50 0.65 0.59 12.79% 0.60 0.69 13.76% 

OxfordFlower 

3 0.49 0.54 0.02% 0.62 0.64 1.00% 

10 0.50 0.51 0.88% 0.66 0.6 0.12% 

50 0.50 0.5 1.38% 0.66 0.61 0.25% 

 

Across both attacks, we  observe that ResNet consistently outperforms ViT in attack 

effectiveness. This can be attributed to the fact that, when client and non-client data 

originate from the same dataset, global differences between the two are minimal, plac-

ing greater emphasis on local feature comparison. While ViT prioritizes global contex-

tual information, it often weakens the representation of local features, particularly in its 

shallow layers. In contrast, ResNet’s hierarchical architecture progressively builds ro-

bust local representations, giving it an advantage in capturing fine-grained details [23]. 

 

Additionally, we note that attack performance on the Oxford 102 Flowers dataset is 

lower compared with other datasets. This is due to the inherent characteristics of the 

dataset, including large intra-class variations and small differences between classes 

[18]. Even when member and non-member samples belong to different classes, the high 

similarity between classes undermines the effectiveness of attack strategies that rely 

solely on model response similarity for distinguishing samples. This highlights the chal-

lenges posed by datasets with subtle inter-class distinctions and diverse intra-class fea-

tures. 

 

3.5 Impact of Different Distance Metrics 

Based on our comprehensive evaluation across multiple target approaches, summarized 

in Table 1, ResNet101 emerges as the most effective and stable feature extractor. 



 

Fig. 3. Comparison of different distance metrics for FEDCADO (first row) and FEDDISC (sec-

ond row) FEDDEO (third row) FEDBIP (fourth row) 

As a result, ResNet101 is selected as the primary feature extractor for further analysis 

of different similarity measures, including Cosine Similarity, Euclidean Distance, and 

Manhattan Distance. As illustrated in Fig. 3, we evaluate the impact of different simi-

larity metrics on the effectiveness of the attacks within both strategies on the Domain-

Net dataset in the case of three clients. Among the evaluated metrics, the Cosine Simi-

larity shows the highest bar in the bar chart, indicating its better effectiveness in our 

attack scenarios by successfully identifying the inherent correlations between data pat-

terns. 



 

 

 

2025 International Conference on Intelligent Computing 

July 26-29, Ningbo, China 

https://www.ic-icc.cn/2025/index.php 

 

 

 

Fig. 4. Visualization of Original Client Data, Synthetic Data, and Query-based Synthetic Data. 

3.6 The Effect of Different Client Numbers 

Based on the above analysis, we select ResNet101 as the backbone to further evaluate  

the  impact  of  the  number  of  clients  on  attack  performance.  As  shown  in Table 

3-Table 6, we analyze the effect of varying client numbers within the FEDDISC, 

FEDCADO, FEDDEO and FEDBIP methods. Notably, our attack performance remains 

robust across different client configurations, indicating that the effectiveness of our 

method is not compromised by changes in the number of clients. This demonstrates the 

reliability and stability of our approach under varying federated settings. 

3.7 Visualization of Synthetic Images 

As shown in Fig. 4, we visually present original images, initial synthetic images, and 

query-conditioned synthetic images. The initial synthetic images capture the global dis-

tribution of client data, representing broad dataset characteristics. In contrast, the query-

conditioned synthetic images refine these results by incorporating the finegrained de-

tails of the query data, ensuring better semantic alignment and detail preservation. 



4 Conclusion 

In this work, we propose a MIA strategy tailored for generative models based OSFL, 

which includes AttackI - Base, a general feature similarity based method applicable to 

all generative models, and AttackII - Finetune, designed specifically for diffusion mod-

els using fine - tuning and conditional generation to capture fine - grained query details. 

Experimental results demonstrate that both strategies effectively uncover privacy vul-

nerabilities in OSFL, showing that even diverse and high-quality synthetic data from 

generative models remain susceptible to exploitation. However, they have limitations 

in identifying the specific client of the queried data, which remains a key direction for 

improving attack efficacy and addressing OSFL privacy risks. 
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