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Abstract. Federated Learning (FL), as a collaborative training paradigm that 

does not rely on raw data sharing, faces dual security threats of privacy leakage 

and data poisoning attacks. These threats not only compromise client data privacy 

but also degrade the performance of the global model. To address this challenge, 

we propose a Privacy-Preserving Defense against Poisoning Attacks (PPDPA), 

which integrates privacy preservation and poisoning detection through a lossless 

masking mechanism. In this framework, the gradient uploaded by each client is 

first masked using a removable mask to protect gradient privacy. Without reveal-

ing the original gradients, the masked gradients are then aggregated, and Singular 

Value Decomposition (SVD) is employed to extract features and perform dimen-

sionality reduction. In the resulting low-dimensional space, a clustering-based 

approach is used to identify poisoned gradients. Additionally, a verification 

mechanism is designed to ensure the integrity of the masking process during ag-

gregation, effectively preventing attackers from manipulating the mask for 

stealthy poisoning. Finally, poisoned gradients are either removed during aggre-

gation to defend against data poisoning attacks. Extensive experiments demon-

strate that PPDPA outperforms existing state of the art privacy-preserving detec-

tion methods in both detection accuracy and defense efficiency. 

Keywords: Federated Learning (FL), Defense Mechanism, Privacy Preservation, 

Label Flipping Attacks, Singular Value Decomposition (SVD). 

1 INTRODUCTION 

Federated Learning (FL) [1], as an emerging distributed machine learning paradigm, 

has already shown its potential in privacy-sensitive domains. FL enables collaborative 

model training while ensuring that data remains on edge devices, avoiding the need for 

centralized data storage [2, 3]. However, with the expansion of its applications, re-

searchers have discovered that attackers may be able to infer local data [4, 5] from 

gradient information, which undoubtedly poses new challenges to data privacy.  

To address this issue, Privacy-Preserving Federated Learning (PPFL) has emerged 

[6, 7]. By employing various privacy-preserving techniques to conceal the original gra-

dients, PPFL effectively enhances data privacy. However, existing privacy-preserving 

techniques face several challenges in practical applications. On one hand, while Secure 



Multi-party computation (MPC) [8, 9] can be employed, it incurs substantial commu-

nication overhead due to frequent information exchanges among clients, severely lim-

iting its practicality in scenarios with numerous clients or constrained communication 

resources. On the other hand, selecting an appropriate differential privacy (DP) [10, 11] 

budget remains highly challenging, as it requires a delicate trade-off between privacy 

protection and model performance. Consequently, when gradients are encrypted or 

masked, effectively defending against poisoning attacks becomes a critical yet unre-

solved challenge. 

Due to its high computational efficiency and negligible impact on model perfor-

mance, the Singular Value Decomposition (SVD)-based masking mechanism is con-

sidered an effective and practical approach for gradient protection in FL [12]. The core 

idea is as follows: Instead of directly uploading raw gradients, each client perturbs its 

locally computed gradient matrix by applying two locally generated orthogonal mask-

ing matrices and, producing an encrypted gradient. Upon receiving all masked gradi-

ents from clients, the server can reconstruct the original gradients using pre-agreed in-

verse transformations. 

However, the SVD-based masking mechanism also has potential security risks. It 

provides untrusted clients with two potential poisoning attack vectors: 1) A malicious 

client may upload carefully crafted poisoned gradients under the cover of SVD mask-

ing, contaminating the global model in a manner similar to traditional poisoning attacks. 

2) An attacker could tamper with the orthogonal masking matrices, introducing bias 

errors during gradient reconstruction or aggregation, even if the original gradients 

themselves are benign. 

 We observe two main limitations in existing research: 1) Most studies [13, 14] sep-

arately address privacy preservation (e.g., encryption, masking, differential privacy) 

and robust defense (e.g., anomaly detection, trusted aggregation), lacking a unified 

modeling framework. 2) Existing defense methods heavily rely on prior knowledge and 

ideal assumptions, such as the existence of trusted clients or known attack ratios. To 

overcome these limitations, we propose a novel removable noise mechanism that not 

only effectively preserves data privacy but also enables precise identification of poi-

soned data within masked matrices. The main contributions of this study are summa-

rized as follows. 

1. We propose a PPFL poisoning detection method named PPDPA, which effectively 

defends against poisoning attacks by analyzing the masked gradient features of the 

final-layer neurons. The method integrates SVD to extract key features and reduce 

dimensionality, significantly enhancing efficiency and compressing data volume. 

Furthermore, a removable masking mechanism is introduced to eliminate sensitive 

information without compromising model accuracy, thereby ensuring secure data 

protection. 

2. We propose a dual-sharing and commitment mechanism to validate both masked and 

original gradients, enabling effective detection of poisoned gradients linked to anom-

alous masking. To further improve robustness against more covert adversarial strat-

egies, we incorporate the Calinski-Harabasz (CH) index to assess clustering quality 

and enhance the reliability of the detection process. 
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3. We evaluated the performance of PPDPA in detecting malicious clients on both 

CIFAR-10 and MNIST datasets, covering scenarios with attacker ratios of up to 

40%. Compared to various advanced defense methods, PPDPA demonstrates supe-

rior performance in test scenarios. 

2 RELATED WORK 

2.1 Defense Algorithms Against Data Poisoning Attacks 

In FL, data poisoning attacks disrupt model training by manipulating local training data, 

seriously impacting the performance and security of the global model. To address this 

issue, researchers have proposed various plaintext aggregation defense methods that 

identify and isolate abnormal updates by analyzing the distributional characteristics of 

client gradients, thereby enhancing the model’s robustness in adversarial environments. 

FL-Defender [17] identifies suspicious updates by extracting client update features 

and applying anomaly detection techniques (e.g., Local Outlier Factor). While demon-

strating strong adaptability and interpretability, it suffers from high computational costs 

in high-dimensional spaces and sensitivity to parameter settings. Fung et al. [15] pro-

posed a detection algorithm called FoolsGold that dynamically adjusts aggregation 

weights based on historical similarity of client updates, effectively defending against 

colluding attacks. However, it tends to misclassify benign participants in non-IID (non-

Independent and Identically Distributed) data environments.  

In Bulyan [18], it combines Krum and Trimmed Mean advantages, achieving 

stronger theoretical robustness at the cost of higher computational complexity and re-

quiring predefined attacker ratios. The authors in [16] introduced the use of Principal 

Component Analysis (PCA) to address this issue. Building upon this, [21] proposed an 

enhanced defense method by incorporating Kernel Principal Component Analysis 

(KPCA) combined with K-means clustering. In a related approach, [19] applied K-

means clustering to group the gradients of the output layer, enabling the identification 

of neurons with the largest gradient magnitudes as likely source neurons and target 

classes. FLAME [20] uses parameter pruning and recovery to remove backdoors, along 

with Mahalanobis distance to detect and filter suspicious updates. While effective 

against various attacks, it converges slowly and struggles when too many clients are 

malicious. 

2.2 Privacy-Preserving Algorithms 

In FL, privacy algorithms focus on preventing sensitive information leakage during 

gradient transmission. Although local training avoids centralized data storage, client 

model updates can still expose user data. Therefore, various protection methods have 

been proposed to reduce this risk and ensure security in sensitive environments. 

In the study of poisoning detection under encrypted or masked data settings, Liu et 

al. proposed the Privacy-Enhanced Federated Learning (PEFL) framework [6], the first 



solution capable of identifying anomalous gradients in ciphertext. PEFL employs ho-

momorphic encryption (HE) [5] to compute Pearson correlation coefficients between 

encrypted gradients, distinguishing malicious from benign updates while preserving 

data privacy and improving defense efficacy. However, the computational overhead of 

homomorphic encryption limits its scalability in large-scale deployments. In addition 

to HE, Zhao et al. [23] presented a scheme that performs aggregation within a Trusted 

Execution Environment (TEE) under constrained memory conditions. 

Differential privacy (DP) techniques are also widely applied in FL poisoning de-

fense. Ziteng et al. [24] mitigated malicious gradient impacts through gradient clipping 

and Gaussian noise injection. While computationally efficient, DP inevitably trades off 

model convergence speed and precision, with limited effectiveness against sophisti-

cated attacks. For MPC, Chen et al. [22] performs encrypted gradient distance calcula-

tions via MPC protocols. Despite rigorous privacy guarantees, complex computations 

and multi-round interactions cause significant efficiency degradation with growing cli-

ent numbers or model sizes. Overall, these methods strike varying balances between 

privacy preservation and poisoning detection, yet further optimizations in efficiency, 

accuracy, and practical deploy ability remain imperative. 

In conclusion, the dual trade-off between robustness and privacy protection remains 

a key challenge. How to achieve efficient and accurate anomaly detection and robust 

aggregation without exposing the original gradients continues to be a core difficulty. 

3 PRELIMINARIES 

3.1 Federated Learning 

FL is a privacy-preserving distributed machine learning framework. Unlike traditional 

centralized training approaches, FL enables multiple clients (e.g., mobile devices, edge 

nodes) to participate in model training while keeping raw data locally stored, eliminat-

ing the need to upload data to a central server. This approach not only preserves data 

privacy but also significantly reduces communication overhead. More precisely, the FL 

procedure can be formulated as follows: 

1. Model Initialization and Distribution: The server first initializes the global model 

parameters 𝑊(0) and distributes them to a selected set of clients 𝐶 ⊆ {1,2, … , 𝑛}. 

2. Local Client Training: Each client 𝑖 ∈ 𝐶 performs local training on its dataset 𝐷𝑖 =
{< 𝑥𝑗 , 𝑦𝑖 >, (𝑗 = 1,2, … , 𝑚)} using the current global model parameters 𝑊(𝑡) , 

where m denotes the number of samples in local dataset 𝐷𝑖  for client i. 

The local objective function can be defined as: 

 𝐿𝑖(𝑊) =
1

|𝐷𝑖|
∑ ℒ(𝑊; 𝑥𝑗 , 𝑦𝑗)

|𝐷𝑖|

𝑗=1  (1) 

where ℒ(∙) is the loss function for a single sample. The client updates its local model 

through several steps of gradient descent (e.g., SGD): 
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 𝑊𝑖
(𝑡+1)

= 𝑊(𝑡) − 𝜂∇𝐿𝑖(𝑤(𝑡)) (2) 

where 𝜂 is the learning rate and ∇𝐿𝑖  is the gradient of the local loss function with 

respect to the model parameters. 

3. Server Model Aggregation: All participating clients upload their updated model pa-

rameters 𝑊𝑖
(𝑡+1)

  to the server, which performs weighted averaging to generate the 

new global model as shown in (3): 

 𝑊(𝑡+1) = ∑
|𝐷𝑖|

∑ |𝐷𝑗|𝑗∈𝐶𝑛

𝑊𝑖
(𝑡+1)

𝑖𝜖𝐶𝑛
 (3) 

This weighting strategy is known as the Federated Averaging (FedAvg) [25] algo-

rithm, which is one of the most classic and widely used methods in FL. Steps 2 and 

3 are repeated until the model on the server meets the desired accuracy or reaches 

the predefined number of iterations. 

3.2 Label Flipping Attack 

Label Flipping Attack (LFA) constitutes a classic targeted data poisoning attack, ini-

tially proposed in centralized machine learning [27] environments and widely applied 

in security-sensitive classification tasks such as intrusion detection and spam filtering. 

In centralized settings, attackers typically gain control over partial training data and 

subvert model learning by manipulating labels to induce erroneous decision boundaries. 

With the widespread adoption of FL in practical applications, LFA have demon-

strated enhanced attack potential in this distributed setting. Due to clients having com-

plete access and control over their local data, malicious participants can stealthily ma-

nipulate labels by altering samples from a source class to a predetermined target class 

while preserving original feature values. These poisoned samples are then used for local 

training, generating misleading gradients that subsequently get uploaded to the server 

for global model aggregation. 

Research indicates that even with a low proportion of attackers, the global model 

may exhibit significant prediction bias toward the target class for source-class samples, 

substantially compromising overall model robustness. Unlike Byzantine attacks that 

randomly perturb parameters or gradients, LFA specifically distorts decision bounda-

ries between targeted classes while minimally affecting accuracy on non-target classes, 

resulting in weaker detectability and stronger stealth. Consequently, developing detec-

tion and defense mechanisms against LFA has become a critical research focus in FL 

security. 

3.3 Removable Mask Mechanism 

SVD is a fundamental and widely used matrix decomposition technique. Given a real 

matrix 𝐺 ∈ ℝ𝑚×𝑛, where 𝑚 is the number of rows and 𝑛 is the number of columns. 

SVD can decompose it into the product of three matrices as shown in (4), where 𝑈 ∈
ℝ𝑚×𝑚  and 𝑉 ∈ ℝ𝑛×𝑛  are the left and right singular matrices with orthonormal col-



umns, and Σ ∈ ℝ𝑚×𝑛 is a diagonal matrix. The non-negative real numbers on the diag-

onal of Σ, denoted as 𝜎1, 𝜎2, …, 𝜎𝑟 (r = rank (𝐺)), are the singular values of the matrix 

𝐺. 

 𝐺 = 𝑈Σ𝑉Τ (4) 

 Building upon the above analysis, a mask mechanism based on SVD can be designed 

to perturb and protect the original matrix. Specifically, let 𝑋 ∈ ℝ𝑚×𝑚 and 𝑌 ∈ ℝ𝑛×𝑛 

be two random orthogonal matrices. By multiplying the original data matrix 𝐺 from the 

left and right, a masked version of the transformed matrix is obtained, as shown in (5). 

 𝐺̃ = 𝑋𝐺𝑌 (5) 

From (1) and (2), we know that the masked matrix 𝐺̃ can be decomposed using SVD, 

and the resulting decomposition can be expressed as shown in (6). Based on the prop-

erties of orthogonal matrices, as demonstrated in (7) and (8), 𝑈 and 𝑉̃ remain orthogo-

nal matrices, where 𝑈 = 𝑋𝑈, 𝑉̃Τ = 𝑉Τ𝑌, Σ̃ = Σ. 

 𝐺̃ = 𝑈Σ̃𝑉̃Τ = 𝑋𝑈Σ𝑉Τ𝑌 (6) 

 (𝑋𝑈)−1 = 𝑈−1𝑋−1 = 𝑈Τ𝑋Τ = (𝑋𝑈)Τ (7) 

 (𝑉Τ𝑌)−1 = 𝑌−1(𝑉Τ)−1 = 𝑌Τ𝑉 = (𝑉Τ𝑌)Τ (8) 

In summary, the SVD-based masking method employs orthogonal transformations 

to perturb data, effectively protecting gradients or parameters uploaded by clients while 

supporting lossless decoding and restoration. This approach demonstrates favorable 

computational efficiency and reversibility. 

3.4 Feature Extraction using SVD 

SVD decomposes a matrix into three components, allowing for the extraction of essen-

tial information and facilitating dimensionality reduction. It is closely associated with 

Principal Component Analysis (PCA), which is one of the most commonly used tech-

niques for reducing data dimensionality. 

Let there be a matrix 𝐺𝑚×𝑛 = [𝑥1, 𝑥2, … , 𝑥𝑛]Τ, where each row 𝑥𝑖 is a 1 × 𝑚 vector. 

Our goal is to extract the main features from 𝐺𝑚×𝑛 while reducing its dimensionality. 

To achieve this, we apply SVD to decompose 𝐺𝑚×𝑛 as 𝑈Σ𝑉Τ. It can be proven that the 

column vectors of matrix 𝑉 are in fact the eigenvectors of 𝐺Τ𝐺, which enables us to 

perform dimensionality reduction via PCA. 

To effectively reduce the dimensionality of the original data, we retain only the top 

𝑟 directions corresponding to the largest singular values. The associated right singular 

vectors form the matrix 𝑉𝑛×𝑟, and the reduced-dimensional data matrix 𝐺̂𝑚×𝑟 can be 

obtained using the following (9). This result represents a projection of the original data 

into an 𝑟-dimensional space, which captures the directions of greatest variation and 

richest information. 

  𝐺̂𝑚×𝑟 = 𝐺𝑚×𝑛𝑉𝑛×𝑟 (9) 
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Based on the above SVD decomposition, an approximate representation as shown in 

(10) can also be obtained. In other words, we can use 𝑈𝑚×𝑟Σ𝑟×𝑟 to represent the re-

duced-dimensional data  𝐺̂𝑚×𝑟, thereby expressing the most important information 

from the original data with fewer dimensions. 

 G𝑚×𝑛𝑉𝑛×𝑟 = 𝑈𝑚×𝑟Σ𝑟×𝑟 (10) 

4 PROPOSED ALGORITHM 

4.1 Design Overview 

As shown in Fig. 1, the system architecture comprises two servers, namely the Aggre-

gation Server (AS) and the Mask Server (MS), along with n clients. Clients are respon-

sible for local model training and uploading. Each client is required to generate two 

public commitments: one corresponding to the masked gradient and the other to the 

mask itself. AS identifies the authenticity of the gradients using statistical features and 

clustering methods, and verifies the masked gradients uploaded by clients. MS is tasked 

with receiving and validating the masks submitted by clients, aggregating those from 

all legitimate clients, and forwarding the aggregated result to the AS. 

 

Fig. 1. System architecture. 

Initially, AS creates and initializes a global model, then selects a subset of clients. 

In each iteration, the server and the selected clients perform the following operations: 



1. Client downloads global model and performs training (see ① and ②). During each 

FL round, a set of k clients is selected, with each client 𝐶𝑖 (𝑖 ∈ ([1, 𝑘])) downloading 

the current global model from the AS. Each client then trains the model locally on 

its private data and computes its local gradient, which is an 𝑚 × 𝑛 matrix. 

2. Clients mask their gradients and upload them (see ③ and ④). Firstly, AS generates 

a mask matrix 𝑋 and splits it into 𝑘 column vectors, denoted as 𝑋 = [𝑋1, 𝑋2, … , 𝑋𝑘] 
distributing each 𝑋𝑖 ∈ ℝ𝑘×1 to the corresponding client. Meanwhile, each client gen-

erates its own mask matrix 𝑌 ∈ 𝑅𝑛×𝑛 and combines it with 𝑋𝑖 to conceal its gradient 

𝐺𝑖, resulting in a masked gradient. Each client then creates two public commitments: 

one for the masked gradient and another for the mask itself. The masked gradient is 

sent to the AS, while the mask is sent to MS. Both commitments are published to 

allow verification by AS and MS. 

3. Servers verify gradients and masks (see ⑤ and ⑥). Malicious clients may launch 

poisoning attacks by submitting harmful gradients or incorrect masks. Specifically, 

after receiving the masked gradients, the AS applies SVD to reduce their dimension-

ality and extract the principal components that capture the most significant variance. 

These reduced client representations are then clustered using K-means, and the CH 

index is used to evaluate the clustering quality, enabling the identification of anom-

alous clients for effective poisoning detection and defense. In parallel, AS verifies 

the commitment from each client to ensure that the submitted masked gradient 

matches the corresponding public commitment. After completing the verification, 

AS forms a set of legitimate clients and sends the list to MS. MS then verifies that 

the submitted mask from each client matches the corresponding public commitment. 

Finally, MS sends the verified masks and client list back to AS. 

4. AS aggregates the gradients and updates the global model (see ⑦). Upon receiving 

the masks, AS removes them to recover the aggregated gradient. The global model 

is then updated using this aggregated gradient. Finally, AS distributes the updated 

global model to all users for the next round of training. 

The complete pseudocode description is provided in Algorithm 1. 

Algorithm 1: PPDPA. 

Input: 𝐶𝑡: Random set of k clients in training round t,  𝑋,  𝑌,  𝑘 

Output: benign client set 

1: Divide the matrix 𝑋 along its columns into 𝑘 parts 

2: Distribute 𝑋𝑖 to client 𝐶𝑖 

3: 𝑊 ← ∅   //Initialize empty set for commitments 

4: 𝜔𝑡−1 ← the global model resulting from round 𝑡 − 1 

5: for each class 𝑠 ∈ [1, |𝑂|] do 

6:       for each 𝑖 ∈ 𝐶𝑡 do  

7:             𝜔𝑡,𝑖 ← obtain the model parameters at round 𝑡 

8:             𝜔𝑡,𝑖
𝑠 ← obtain the parameters of the last layer associated with class 𝑠 

9:             𝐺𝑖
(𝑠)

← 𝜔𝑡,𝑖
𝑠  

10:           𝐺̃𝑖
(𝑠)

← 𝑋𝑖𝐺𝑖
(𝑠)

𝑌 

11:           𝑐𝑔𝑖
(𝑠)

← 𝐻𝑎𝑠ℎ(𝐺̃𝑖
(𝑠)

) 
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12:           𝑐𝑟𝑖
(𝑠)

← 𝐻𝑎𝑠ℎ(𝑋𝑖||𝑌) 

13:           Add 𝑋𝑖 in 𝑊 

14:           send (𝐺̃𝑖
(𝑠)

, 𝑐𝑔𝑖
(𝑠)

) to AS 

15:           send (𝑋𝑖||𝑌, 𝑐𝑔𝑖
(𝑠)

) to MS 

16:     𝑃̃𝑠 ← ∑ 𝐺̃𝑖
(𝑠)𝑘

𝑖  

17:     𝑈𝑠, Σ̃𝑠, 𝑉̃𝑠
Τ ← SVD (𝑃̃𝑠)     

18:     𝑈𝑠 ←  𝑊Τ𝑈𝑠  

19:     𝑃̂𝑠 ← 𝑈𝑠Σ̃𝑠 

20:     𝐶𝐻, (𝑏𝑒𝑛𝑖𝑔𝑛, 𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠) ← Detecting Malicious Clients (𝑃̂𝑠) 

21:     for each 𝑖 ∈ 𝐶 do      

22:         if not Verify (𝑐𝑔𝑖
(𝑠)

, 𝐺̃𝑖
(𝑠)

) then 

23:                  remove i from 𝐶 

24:         Send 𝐶1 to MS //Set of clients whose commitments are verified by AS 

25:     for each 𝑖 ∈ 𝐶1 do     

26:         if not Verify (𝑐𝑟𝑖
(𝑠)

, 𝑋𝑖||𝑌) then 

27:                  remove i from 𝐶1 

28:         Send 𝐶2 to AS //Set of clients whose commitments are verified by MS 

29: return 𝑡ℎ𝑒 𝑠𝑒𝑡 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 ℎ𝑖𝑔𝑒𝑠𝑡 𝐶𝐻  

4.2 Apply Mask to Gradients 

During the 𝑡-th training round, each client 𝐶𝑖 computes the local gradient for the current 

round using its own dataset 𝐷𝑖  and local model parameters 𝑊𝑖. Each client 𝐶𝑖 extracts 

the feature representations corresponding to the neurons in the output layer of the 

model.  

Specifically, for each output-layer neuron, a weight vector is formed by collecting 

all the parameters that connect this neuron to the preceding hidden layer. These weight 

vectors determine how the outputs of the previous layer influence the activation of each 

output-layer neuron. We denote the weight vector of client 𝐶𝑖 associated with the 𝑠-

th output neuron as 𝐺𝑖
(𝑠)

, where 𝑠 ranges from 1 to |𝑂|. Then, to protect the privacy 

of the model parameters, each client 𝐶𝑖 encrypts every weight vector 𝐺𝑖
(𝑠)

 using a 

masking matrix 𝑋𝑖 and matrix 𝑌. The masked weight vector can be computed using 

formula: 

 𝐺̃𝑖
(𝑠)

= 𝑋𝑖𝐺𝑖
(𝑠)

𝑌   (𝑠 = 1,2, … , |𝑂|) (11) 

Finally, client 𝐶𝑖 uploads all the masked output-layer weight vectors 𝐺̃𝑖 =

𝐺̃𝑖
(1)

, 𝐺̃𝑖
(2)

, … , 𝐺̃𝑖
(|𝑂|)

 to the server AS for subsequent federated aggregation. 



4.3 Commitment Verification 

To ensure the verifiability and integrity of model updates uploaded by clients during 

FL without revealing the original gradients. This work introduces a commitment mech-

anism between clients and servers. Specifically, each client locally generates two com-

mitment values for its masked matrix and masked gradients, respectively. These com-

mitments are used for verification on different servers, thereby preventing clients from 

uploading tampered or inconsistent updates. The steps for commitment verification are 

as follows: 

1. Client generates commitment values. In each round of FL, client 𝐶𝑖 first performs 

local training to obtain a weight vector 𝐺𝑖, which consists of all parameters connect-

ing each output layer neuron to the final hidden layer. Then, the client obtains two 

mask vectors 𝑋𝑖 and 𝑌𝑖 with the same dimensions as 𝐺𝑖, and generates the masked 

gradient 𝐺̃𝑖=𝑋𝑖𝐺𝑖𝑌𝑖. 

2. AS verifies the commitment values. AS verifies whether the masked gradient 𝐺̃𝑖 is 

consistent with the commitment 𝑐𝑔𝑖 submitted by client 𝐶𝑖, according to (12). This 

ensures that the uploaded model updates have not been tampered with. 

 𝐻𝑎𝑠ℎ(𝐺̃𝑖) = 𝑐𝑔𝑖  (12) 

3. MS verifies the commitment values. MS verifies whether the masks 𝑋𝑖 and 𝑌𝑖 up-

loaded by the client are consistent with the commitment 𝑐𝑟𝑖 , according to (13). This 

prevents clients from forging masks to bypass system detection. 

 𝐻𝑎𝑠ℎ = (𝑋𝑖||𝑌𝑖) =  𝑐𝑟𝑖  (13) 

4.4 Secure Aggregation 

AS aggregates the masked weight data from all clients, denoted as 𝑃̃𝑠. Accordingly, the 

original gradient data of each client can be represented as 𝑃𝑠 = [𝐺1
(𝑠)

, 𝐺2
(𝑠)

, … , 𝐺𝑘
(𝑠)

]. 

Thus, the relationship between 𝑃̃𝑠 and 𝑃𝑠 is given by (14): 

𝑃̃𝑠 = ∑ 𝐺̃𝑖
(𝑠)

𝑖∈𝑘

 

     = 𝑋1𝐺1
(𝑠)

𝑌 + 𝑋2𝐺2
(𝑠)

𝑌 + ⋯ + 𝑋𝑘𝐺𝑘
(𝑠)

𝑌       

     = [𝑋1, 𝑋2, … , 𝑋𝑘][𝐺1
(𝑠)

, 𝐺2
(𝑠)

, … , 𝐺𝑘
(𝑠)

]
Τ

𝑌 

     = [𝑋1, 𝑋2, … , 𝑋𝑘]𝑃𝑠𝑌   (𝑠 = 1,2, … , |𝑂|)                        (14)                                      

where 𝑋 denotes a block matrix formed by concatenating the mask matrices of all cli-

ents. 

To reduce the dimensionality of the data and extract the main features of the original 

weight vector 𝐺𝑖
(𝑠)

 from the matrix 𝑃̃𝑠, SVD is applied 𝑃̃𝑠 according to (4). As a result, 

(15) can be obtained as follows. 
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 𝑃̃𝑠 = 𝑈𝑠Σ̃𝑠𝑉̃𝑠
Τ (15) 

Moreover, 𝑈𝑠Σ𝑆𝑉𝑠
Τ can also be obtained from 𝑃𝑠 through SVD. Based on the above 

analysis, we can summarize (16) as follows. 

 𝑈𝑠Σ̃𝑠𝑉̃𝑠
Τ = [𝑋1, 𝑋2, … , 𝑋𝑘]𝑈𝑠Σ𝑆𝑉𝑠

Τ𝑌 (16) 

Revisiting Section 3.3, 𝑃̃𝑠 and 𝑃𝑠 share the same singular value matrix, which implies 

that Σ̃𝑠 = Σ𝑆. Therefore, based on (16), we can derive (17) as follows. 

 𝑈𝑠 = [𝑋1, 𝑋2, … , 𝑋𝑘]𝑈𝑠     𝑉̃𝑠
Τ = 𝑉𝑠

Τ𝑌 (17) 

Since [𝑋1, 𝑋2, … , 𝑋𝑘] is an orthogonal matrix, we obtain (18) through a matrix trans-

formation as follows. 

 𝑈𝑠 = [𝑋1, 𝑋2, … , 𝑋𝑘]Τ𝑈𝑠 (18) 

Based on the above analysis, AS possesses the matrix [𝑋1, 𝑋2, … , 𝑋𝑘] and can re-

cover the original 𝑈𝑠 by utilizing the relationship in (18). Therefore, (19) can be ob-

tained as follows. The matrix 𝐺̂𝑠 is a dimensionality-reduced representation of the orig-

inal data 𝐺𝑠, containing its most essential feature information. 

 𝐺̂𝑠 = 𝑈𝑠Σ𝑠 (19) 

4.5 Detecting Malicious Clients  

In this section, we propose an unsupervised approach to detect malicious clients in FL 

by analyzing the Euclidean distance-based distribution of client gradients in a two-di-

mensional space. Assuming a majority of benign clients, we apply K-means clustering 

(k=2) to group clients and classify the larger cluster as benign. Gradients identified as 

malicious are excluded from aggregation in each round, thereby improving global 

model robustness. 

However, this method may misclassify benign clients in the absence of attacks, as 

K-means still enforces a binary division. To address this, we introduce the CH index to 

evaluate clustering quality. When malicious clients are present, the gradient distribution 

shows a clear bimodal pattern, while in attack-free rounds, it is more concentrated. The 

CH index helps distinguish between these scenarios, enhancing detection robustness 

against stealthy attacks. 

The CH index, also known as the Variance Ratio Criterion (VRC), is used to evaluate 

the compactness and separability of clustering results. It is defined as follows: 

 𝐶𝐻(𝑘) =
𝑇𝑟(𝐵𝑘)

𝑇𝑟(𝑊𝑘)
∙

𝑛−𝑘

𝑘−1
  (20) 

where 𝑛 denotes the total number of samples, and 𝑘 represents the number of clusters. 

 𝑇𝑟(𝐵𝑘) is the trace of the between-cluster dispersion matrix, representing the degree 

of deviation between each cluster center and the overall center. The formula for com-

puting 𝑇𝑟(𝐵𝑘) is given as follows: 



 𝐵𝑘 = ∑ 𝑛𝑖
𝑘
𝑖=1 ‖𝑐𝑖 − 𝑐‖2 (21) 

where 𝑛𝑖 denotes the number of samples in the 𝑖-th cluster, 𝑐 is the global center of all 

samples, and ‖𝑐𝑖 − 𝑐‖2 is the squared distance between the i-th cluster center and the 

global center. 

𝑇𝑟(𝑊𝑘) is the trace of the within-cluster dispersion matrix, representing the degree 

of deviation between each sample and its corresponding cluster center. The formula for 

computing 𝑇𝑟(𝑊𝑘) is given as follows: 

 𝑊𝑘 = ∑ ∑ ‖𝑥 − 𝑐𝑖‖
2

𝑥∈𝐶𝑖

𝑘
𝑖=1  (22) 

where 𝐶𝑖 denotes the 𝑖-th cluster, 𝑐𝑖 is the center of the 𝑖-th cluster, and 𝑥 ∈ 𝐶𝑖 repre-

sents all sample points within the cluster. 

 This index measures the ratio of between-cluster dispersion to within-cluster disper-

sion, adjusted by the number of samples and clusters. A higher CH index indicates 

better clustering performance, meaning that samples are more compact within clusters 

and more separated between clusters. The complete pseudocode description is provided 

in Algorithm 2. 

Algorithm 2: Detecting Malicious Clients. 

Input: 𝑃̂𝑠: Low-dimensional matrix for K-means clustering detection 

Output:𝑠𝑒𝑡𝑖𝑛𝑔 𝑟𝑒𝑠𝑢𝑙𝑡𝑖𝑛𝑔 𝑙𝑎𝑏𝑒𝑙𝑠 

1: max _𝑐ℎ = 0 

2: for each class 𝑖 ∈ [1, |𝑂|] do 

3:       𝑆1, 𝑆2 ← K-means (𝑃̂𝑠) 

4:       for each vector 𝑗 ∈ 𝑆1 ∪ 𝑆2 do 

5:             𝐵𝑗 ← using (21) 

6:             𝑊𝑗 ← using (22) 

7:       𝐶𝐻(𝑖) ←
𝑇𝑟(𝐵𝑘)

𝑇𝑟(𝑊𝑘)
∙

𝑛−𝑘

𝑘−1
 

8: if max _𝑐ℎ < 𝐶𝐻(𝑖) then 

9:        max _𝑐ℎ ← 𝐶𝐻(𝑖) 

10:      𝑙𝑎𝑏𝑒𝑙𝑠 ← Divide all clients into two categories and select the best result 

11: return 𝐶𝐻, 𝑙𝑎𝑏𝑒𝑙𝑠 

 In summary, the proposed method can effectively identify and remove malicious 

participants launching poisoning attacks in FL. By incorporating the CH index as a 

robustness metric, the approach effectively avoids false positives in scenarios without 

attacks, further enhancing the security of the system and the reliability of the model. 
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5 EXPERIMENTS 

5.1 Experimental Setup 

We conducted a series of experiments using two datasets (CIFAR-10 and MNIST) to 

evaluate the performance of the proposed PPDPA algorithm. We used a Dirichlet dis-

tribution to generate non-IID data for each client. Specifically, the number of FL rounds 

was set to 100, with a total of 50 clients, and 20 clients participating in training during 

each round.  

This study focuses on two dynamic label-flipping attack modes: single-label flipping 

and multi-label flipping. Unlike traditional static attacks, these two attack strategies 

perform label manipulations dynamically in each training round, making the attacks 

more covert and persistent. As a result, they increase the difficulty of defense and pose 

new challenges to the security of FL systems. We adopted a comparative experimental 

approach, evaluating the performance of DPFLA against four classical methods (e.g., 

FedAvg [25], FLAME [20], FoolsGold [15] and FLDetector [26]). To quantify the im-

pact of label flipping attacks and on the trained model, we employ the following eval-

uation metrics on the test dataset. 

1) Model Accuracy (MA): The proportion of all test samples that are correctly clas-

sified, reflecting the overall performance of the global model.  

2) Attack Success Rate (ASR): The proportion of source-class samples that are mis-

classified into the target class (i.e., the incorrect class specified by the attacker). A lower 

ASR indicates better suppression of label flipping attacks by the defense algorithm.  

3) Recognition Accuracy (RA): The proportion of clients correctly identified as be-

nign or malicious. A higher value indicates stronger detection capability of the defense 

system. 

5.2 Model Accuracy of Samples 

Single-Label Flipping Attacks 

To evaluate the defense capability of PPDPA against single-label flipping attacks, we 

set the attacker ratios to 10%, 20%, 30%, and 40%, respectively. In this type of attack, 

the attacker flips the labels of all samples from a specific class to a designated target 

label.  

Fig. 2 presents the accuracy curves of different algorithms on the CIFAR-10 and 

MNIST datasets over training rounds. PPDPA algorithm consistently achieves the high-

est accuracy across all scenarios. As the proportion of malicious clients increases, the 

accuracy of models trained with other algorithms declines significantly, whereas the 

accuracy drop for PPDPA remains relatively moderate. When the attacker ratio exceeds 

20%, the accuracy of the FedAvg algorithm begins to fluctuate noticeably. These ex-

perimental results indicate that all evaluated algorithms are capable of effectively de-

fending against single-label flip attacks, with PPDPA demonstrating the strongest de-

fense performance. 

 



 

 

Fig. 2.  Model accuracy of different algorithms under single-label flip attacks. 

Table 1 compares the main evaluation metrics of various algorithms under single-la 

bel flip attacks with varying proportions of malicious clients. The PPDPA scheme 

demonstrates the most outstanding overall defense performance, maintaining a MA of 

74.52% and limiting the ASR to 16.2% on the CIFAR-10 dataset even with 40% of 

participants being malicious. Simultaneously, it achieves a MA of 96.86% and an ASR 

of only 1.01% on the MNIST dataset, significantly outperforming the other approaches. 

Table 1. Experimental metrics of various algorithms under single-label flip attacks. 

Algorithm Dataset 
M=10% M=20% M=30% M=40% 

MA ASR MA ASR MA ASR MA ASR 

FedAvg 
CIFAR-10 71.28 26.8 70.31 36.7 68.03 46.4 64.39 71.6 

MNIST 94.80 1.46 92.58 1.68 90.66 2.91 90.37 9.75 

FLAME 
CIFAR-10 74.64 20.2 73.35 23.8 71.77 25.3 71.48 52.0 

MNIST 97.00 1.46 97.74 1.65 93.70 2.02 92.84 2.34 

FoolsGold 
CIFAR-10 73.40 15.7 72.04 21.4 70.54 21.8 69.12 36.1 

MNIST 95.29 1.57 93.74 1.68 91.68 2.91 90.39 9.98 

FLDetector 
CIFAR-10 74.58 14.4 72.82 23.0 71.07 37.6 70.89 52.9 

MNIST 96.79 1.27 94.24 1.32 92.59 2.02 91.41 4.04 

PPDPA 
CIFAR-10 77.16 12.3 76.35 12.5 74.62 13.2 74.52 16.2 

MNIST 97.76 0.45 97.52 0.9 97.11 0.78 96.86 1.01 

Multi-Label Flipping Attacks 

In the multi-label attack scenario, malicious clients randomly modify the labels of all 

samples. Fig. 3 presents the model accuracy curves over training rounds for different 

algorithms under varying proportions of malicious clients on the CIFAR-10 and 

MNIST datasets. PPDPA consistently maintains the highest accuracy across all attack 

ratios, indicating its strong robustness against multi-label flipping attacks. In contrast, 

the FedAvg method is the most sensitive to attacks, with a slightly larger drop in accu-
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racy compared to other algorithms. The experimental results demonstrate that all eval-

uated algorithms are effective in defending against multi-label flipping attacks, with 

PPDPA exhibiting the strongest defense performance. 

 

 

Fig. 3.  Model accuracy of different algorithms under multi-label flip attacks. 

Table 2 demonstrates that the PPDPA algorithm exhibits superior defensive perfor-

mance under 40% malicious client attacks. On the CIFAR-10 dataset, PPDPA main-

tains a model accuracy of 74.50%, significantly outperforming other algorithms, while 

its attack success rate of 12.8% is substantially lower than FedAvg's 42.2%. On the 

MNIST dataset, PPDPA maintains its leading advantage with 97.64% accuracy and a 

remarkably low attack success rate of just 1.32%. 

Table 2. Experimental metrics of various algorithms under multi-label flip attacks. 

Algorithm Dataset 
M=10% M=20% M=30% M=40% 

MA ASR MA ASR MA ASR MA ASR 

FedAvg 
CIFAR-10 73.01 13.8 70.48 26.3 70.44 32.1 70.31 42.2 

MNIST 93.78 3.26 93.43 4.51 92.79 6.78 92.73 10.4 

FLAME 
CIFAR-10 73.61 7.3 72.00 13.0 72.14 16.3 72.26 18.2 

MNIST 95.79 1.18 95.35 1.84 94.78 2.32 94.64 2.96 

FoolsGold 
CIFAR-10 72.50 9.6 71.61 10.8 71.64 13.2 71.26 16.4 

MNIST 94.28 2.67 93.86 4.32 93.29 5.68 93.14 8.89 

FLDetector 
CIFAR-10 72.92 9.4 72.20 12.2 72.01 16.6 71.84 20.9 

MNIST 94.85 1.43 94.40 2.57 93.85 3.48 93.76 4.28 

PPDPA 
CIFAR-10 74.77 3.2 74.61 6.3 74.56 8.12 74.50 12.8 

MNIST 97.80 0.56 97.85 0.89 97.79 1.12 97.64 1.32 

5.3 Recognition Accuracy of Clients 

Single-Label Flipping Attacks 

Fig. 4 presents the comparison curves of recognition accuracy over training rounds for 

four defense algorithms under varying proportions of malicious clients. 



 

Fig. 4.  Recognition accuracy of different algorithms under attacker ratios. 

 According to Fig. 4, at a 40% proportion of malicious clients, PPDPA achieves the 

highest detection accuracy on both the CIFAR-10 and MNIST datasets, reaching ap-

proximately 85% and 90%, respectively. In comparison, FoolsGold shows the lowest 

performance, with accuracies of 60% on CIFAR-10 and 70% on MNIST, which are 

25% and 20% lower than those of PPDPA. 

Multi-Label Flipping Attacks 

Fig. 5 presents the comparison curves of recognition accuracy over training rounds for 

four defense algorithms under varying proportions of malicious clients. 

 

Fig. 5.  Recognition accuracy of different algorithms under attacker ratios. 

 According to Fig. 5, at a 40% proportion of malicious clients, PPDPA performs the 

best on both the CIFAR-10 and MNIST datasets, achieving an accuracy of around 90% 

in both cases. In contrast, FoolsGold shows the lowest accuracy, with 65% on CIFAR-

10 and 70% on MNIST, which are 15% and 20% lower than PPDPA, respectively.  
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6 CONCLUSION 

This paper proposes the PPDPA framework, an innovative FL defense mechanism that 

achieves dual optimization in both privacy preservation and poisoning attack detection. 

The scheme employs gradient masking technology to ensure client data privacy, utilizes 

SVD for feature extraction and dimensionality reduction, and accurately identifies ma-

licious clients through an enhanced clustering algorithm. Experimental results demon-

strate that compared to existing defense approaches, PPDPA exhibits significant ad-

vantages in both model accuracy and attack detection rate while maintaining superior 

robustness. 
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