

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

Privacy-Preserving Defense Against Poisoning Attacks in

Federated Learning

Youlin Huang1, Bencan Gong2 and Shuoxiang Wang3

1,3 Hubei Key Laboratory of Intelligent Vision Monitoring for Hydropower Engineering,

Three Gorges University, Yichang, China
2 College of Computer and Information Technology, Three Gorges University, Yichang, China

gonbc@sina.com

Abstract. Federated Learning (FL), as a collaborative training paradigm that

does not rely on raw data sharing, faces dual security threats of privacy leakage

and data poisoning attacks. These threats not only compromise client data privacy

but also degrade the performance of the global model. To address this challenge,

we propose a Privacy-Preserving Defense against Poisoning Attacks (PPDPA),

which integrates privacy preservation and poisoning detection through a lossless

masking mechanism. In this framework, the gradient uploaded by each client is

first masked using a removable mask to protect gradient privacy. Without reveal-

ing the original gradients, the masked gradients are then aggregated, and Singular

Value Decomposition (SVD) is employed to extract features and perform dimen-

sionality reduction. In the resulting low-dimensional space, a clustering-based

approach is used to identify poisoned gradients. Additionally, a verification

mechanism is designed to ensure the integrity of the masking process during ag-

gregation, effectively preventing attackers from manipulating the mask for

stealthy poisoning. Finally, poisoned gradients are either removed during aggre-

gation to defend against data poisoning attacks. Extensive experiments demon-

strate that PPDPA outperforms existing state of the art privacy-preserving detec-

tion methods in both detection accuracy and defense efficiency.

Keywords: Federated Learning (FL), Defense Mechanism, Privacy Preservation,

Label Flipping Attacks, Singular Value Decomposition (SVD).

1 INTRODUCTION

Federated Learning (FL) [1], as an emerging distributed machine learning paradigm,

has already shown its potential in privacy-sensitive domains. FL enables collaborative

model training while ensuring that data remains on edge devices, avoiding the need for

centralized data storage [2, 3]. However, with the expansion of its applications, re-

searchers have discovered that attackers may be able to infer local data [4, 5] from

gradient information, which undoubtedly poses new challenges to data privacy.

To address this issue, Privacy-Preserving Federated Learning (PPFL) has emerged

[6, 7]. By employing various privacy-preserving techniques to conceal the original gra-

dients, PPFL effectively enhances data privacy. However, existing privacy-preserving

techniques face several challenges in practical applications. On one hand, while Secure

Multi-party computation (MPC) [8, 9] can be employed, it incurs substantial commu-

nication overhead due to frequent information exchanges among clients, severely lim-

iting its practicality in scenarios with numerous clients or constrained communication

resources. On the other hand, selecting an appropriate differential privacy (DP) [10, 11]

budget remains highly challenging, as it requires a delicate trade-off between privacy

protection and model performance. Consequently, when gradients are encrypted or

masked, effectively defending against poisoning attacks becomes a critical yet unre-

solved challenge.

Due to its high computational efficiency and negligible impact on model perfor-

mance, the Singular Value Decomposition (SVD)-based masking mechanism is con-

sidered an effective and practical approach for gradient protection in FL [12]. The core

idea is as follows: Instead of directly uploading raw gradients, each client perturbs its

locally computed gradient matrix by applying two locally generated orthogonal mask-

ing matrices and, producing an encrypted gradient. Upon receiving all masked gradi-

ents from clients, the server can reconstruct the original gradients using pre-agreed in-

verse transformations.

However, the SVD-based masking mechanism also has potential security risks. It

provides untrusted clients with two potential poisoning attack vectors: 1) A malicious

client may upload carefully crafted poisoned gradients under the cover of SVD mask-

ing, contaminating the global model in a manner similar to traditional poisoning attacks.

2) An attacker could tamper with the orthogonal masking matrices, introducing bias

errors during gradient reconstruction or aggregation, even if the original gradients

themselves are benign.

 We observe two main limitations in existing research: 1) Most studies [13, 14] sep-

arately address privacy preservation (e.g., encryption, masking, differential privacy)

and robust defense (e.g., anomaly detection, trusted aggregation), lacking a unified

modeling framework. 2) Existing defense methods heavily rely on prior knowledge and

ideal assumptions, such as the existence of trusted clients or known attack ratios. To

overcome these limitations, we propose a novel removable noise mechanism that not

only effectively preserves data privacy but also enables precise identification of poi-

soned data within masked matrices. The main contributions of this study are summa-

rized as follows.

1. We propose a PPFL poisoning detection method named PPDPA, which effectively

defends against poisoning attacks by analyzing the masked gradient features of the

final-layer neurons. The method integrates SVD to extract key features and reduce

dimensionality, significantly enhancing efficiency and compressing data volume.

Furthermore, a removable masking mechanism is introduced to eliminate sensitive

information without compromising model accuracy, thereby ensuring secure data

protection.

2. We propose a dual-sharing and commitment mechanism to validate both masked and

original gradients, enabling effective detection of poisoned gradients linked to anom-

alous masking. To further improve robustness against more covert adversarial strat-

egies, we incorporate the Calinski-Harabasz (CH) index to assess clustering quality

and enhance the reliability of the detection process.

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

3. We evaluated the performance of PPDPA in detecting malicious clients on both

CIFAR-10 and MNIST datasets, covering scenarios with attacker ratios of up to

40%. Compared to various advanced defense methods, PPDPA demonstrates supe-

rior performance in test scenarios.

2 RELATED WORK

2.1 Defense Algorithms Against Data Poisoning Attacks

In FL, data poisoning attacks disrupt model training by manipulating local training data,

seriously impacting the performance and security of the global model. To address this

issue, researchers have proposed various plaintext aggregation defense methods that

identify and isolate abnormal updates by analyzing the distributional characteristics of

client gradients, thereby enhancing the model’s robustness in adversarial environments.

FL-Defender [17] identifies suspicious updates by extracting client update features

and applying anomaly detection techniques (e.g., Local Outlier Factor). While demon-

strating strong adaptability and interpretability, it suffers from high computational costs

in high-dimensional spaces and sensitivity to parameter settings. Fung et al. [15] pro-

posed a detection algorithm called FoolsGold that dynamically adjusts aggregation

weights based on historical similarity of client updates, effectively defending against

colluding attacks. However, it tends to misclassify benign participants in non-IID (non-

Independent and Identically Distributed) data environments.

In Bulyan [18], it combines Krum and Trimmed Mean advantages, achieving

stronger theoretical robustness at the cost of higher computational complexity and re-

quiring predefined attacker ratios. The authors in [16] introduced the use of Principal

Component Analysis (PCA) to address this issue. Building upon this, [21] proposed an

enhanced defense method by incorporating Kernel Principal Component Analysis

(KPCA) combined with K-means clustering. In a related approach, [19] applied K-

means clustering to group the gradients of the output layer, enabling the identification

of neurons with the largest gradient magnitudes as likely source neurons and target

classes. FLAME [20] uses parameter pruning and recovery to remove backdoors, along

with Mahalanobis distance to detect and filter suspicious updates. While effective

against various attacks, it converges slowly and struggles when too many clients are

malicious.

2.2 Privacy-Preserving Algorithms

In FL, privacy algorithms focus on preventing sensitive information leakage during

gradient transmission. Although local training avoids centralized data storage, client

model updates can still expose user data. Therefore, various protection methods have

been proposed to reduce this risk and ensure security in sensitive environments.

In the study of poisoning detection under encrypted or masked data settings, Liu et

al. proposed the Privacy-Enhanced Federated Learning (PEFL) framework [6], the first

solution capable of identifying anomalous gradients in ciphertext. PEFL employs ho-

momorphic encryption (HE) [5] to compute Pearson correlation coefficients between

encrypted gradients, distinguishing malicious from benign updates while preserving

data privacy and improving defense efficacy. However, the computational overhead of

homomorphic encryption limits its scalability in large-scale deployments. In addition

to HE, Zhao et al. [23] presented a scheme that performs aggregation within a Trusted

Execution Environment (TEE) under constrained memory conditions.

Differential privacy (DP) techniques are also widely applied in FL poisoning de-

fense. Ziteng et al. [24] mitigated malicious gradient impacts through gradient clipping

and Gaussian noise injection. While computationally efficient, DP inevitably trades off

model convergence speed and precision, with limited effectiveness against sophisti-

cated attacks. For MPC, Chen et al. [22] performs encrypted gradient distance calcula-

tions via MPC protocols. Despite rigorous privacy guarantees, complex computations

and multi-round interactions cause significant efficiency degradation with growing cli-

ent numbers or model sizes. Overall, these methods strike varying balances between

privacy preservation and poisoning detection, yet further optimizations in efficiency,

accuracy, and practical deploy ability remain imperative.

In conclusion, the dual trade-off between robustness and privacy protection remains

a key challenge. How to achieve efficient and accurate anomaly detection and robust

aggregation without exposing the original gradients continues to be a core difficulty.

3 PRELIMINARIES

3.1 Federated Learning

FL is a privacy-preserving distributed machine learning framework. Unlike traditional

centralized training approaches, FL enables multiple clients (e.g., mobile devices, edge

nodes) to participate in model training while keeping raw data locally stored, eliminat-

ing the need to upload data to a central server. This approach not only preserves data

privacy but also significantly reduces communication overhead. More precisely, the FL

procedure can be formulated as follows:

1. Model Initialization and Distribution: The server first initializes the global model

parameters 𝑊(0) and distributes them to a selected set of clients 𝐶 ⊆ {1,2, … , 𝑛}.

2. Local Client Training: Each client 𝑖 ∈ 𝐶 performs local training on its dataset 𝐷𝑖 =
{< 𝑥𝑗 , 𝑦𝑖 >, (𝑗 = 1,2, … , 𝑚)} using the current global model parameters 𝑊(𝑡) ,

where m denotes the number of samples in local dataset 𝐷𝑖 for client i.

The local objective function can be defined as:

 𝐿𝑖(𝑊) =
1

|𝐷𝑖|
∑ ℒ(𝑊; 𝑥𝑗 , 𝑦𝑗)

|𝐷𝑖|

𝑗=1 (1)

where ℒ(∙) is the loss function for a single sample. The client updates its local model

through several steps of gradient descent (e.g., SGD):

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

 𝑊𝑖
(𝑡+1)

= 𝑊(𝑡) − 𝜂∇𝐿𝑖(𝑤(𝑡)) (2)

where 𝜂 is the learning rate and ∇𝐿𝑖 is the gradient of the local loss function with

respect to the model parameters.

3. Server Model Aggregation: All participating clients upload their updated model pa-

rameters 𝑊𝑖
(𝑡+1)

 to the server, which performs weighted averaging to generate the

new global model as shown in (3):

 𝑊(𝑡+1) = ∑
|𝐷𝑖|

∑ |𝐷𝑗|𝑗∈𝐶𝑛

𝑊𝑖
(𝑡+1)

𝑖𝜖𝐶𝑛
 (3)

This weighting strategy is known as the Federated Averaging (FedAvg) [25] algo-

rithm, which is one of the most classic and widely used methods in FL. Steps 2 and

3 are repeated until the model on the server meets the desired accuracy or reaches

the predefined number of iterations.

3.2 Label Flipping Attack

Label Flipping Attack (LFA) constitutes a classic targeted data poisoning attack, ini-

tially proposed in centralized machine learning [27] environments and widely applied

in security-sensitive classification tasks such as intrusion detection and spam filtering.

In centralized settings, attackers typically gain control over partial training data and

subvert model learning by manipulating labels to induce erroneous decision boundaries.

With the widespread adoption of FL in practical applications, LFA have demon-

strated enhanced attack potential in this distributed setting. Due to clients having com-

plete access and control over their local data, malicious participants can stealthily ma-

nipulate labels by altering samples from a source class to a predetermined target class

while preserving original feature values. These poisoned samples are then used for local

training, generating misleading gradients that subsequently get uploaded to the server

for global model aggregation.

Research indicates that even with a low proportion of attackers, the global model

may exhibit significant prediction bias toward the target class for source-class samples,

substantially compromising overall model robustness. Unlike Byzantine attacks that

randomly perturb parameters or gradients, LFA specifically distorts decision bounda-

ries between targeted classes while minimally affecting accuracy on non-target classes,

resulting in weaker detectability and stronger stealth. Consequently, developing detec-

tion and defense mechanisms against LFA has become a critical research focus in FL

security.

3.3 Removable Mask Mechanism

SVD is a fundamental and widely used matrix decomposition technique. Given a real

matrix 𝐺 ∈ ℝ𝑚×𝑛, where 𝑚 is the number of rows and 𝑛 is the number of columns.

SVD can decompose it into the product of three matrices as shown in (4), where 𝑈 ∈
ℝ𝑚×𝑚 and 𝑉 ∈ ℝ𝑛×𝑛 are the left and right singular matrices with orthonormal col-

umns, and Σ ∈ ℝ𝑚×𝑛 is a diagonal matrix. The non-negative real numbers on the diag-

onal of Σ, denoted as 𝜎1, 𝜎2, …, 𝜎𝑟 (r = rank (𝐺)), are the singular values of the matrix

𝐺.

 𝐺 = 𝑈Σ𝑉Τ (4)

 Building upon the above analysis, a mask mechanism based on SVD can be designed

to perturb and protect the original matrix. Specifically, let 𝑋 ∈ ℝ𝑚×𝑚 and 𝑌 ∈ ℝ𝑛×𝑛

be two random orthogonal matrices. By multiplying the original data matrix 𝐺 from the

left and right, a masked version of the transformed matrix is obtained, as shown in (5).

 𝐺̃ = 𝑋𝐺𝑌 (5)

From (1) and (2), we know that the masked matrix 𝐺̃ can be decomposed using SVD,

and the resulting decomposition can be expressed as shown in (6). Based on the prop-

erties of orthogonal matrices, as demonstrated in (7) and (8), 𝑈 and 𝑉̃ remain orthogo-

nal matrices, where 𝑈 = 𝑋𝑈, 𝑉̃Τ = 𝑉Τ𝑌, Σ̃ = Σ.

 𝐺̃ = 𝑈Σ̃𝑉̃Τ = 𝑋𝑈Σ𝑉Τ𝑌 (6)

 (𝑋𝑈)−1 = 𝑈−1𝑋−1 = 𝑈Τ𝑋Τ = (𝑋𝑈)Τ (7)

 (𝑉Τ𝑌)−1 = 𝑌−1(𝑉Τ)−1 = 𝑌Τ𝑉 = (𝑉Τ𝑌)Τ (8)

In summary, the SVD-based masking method employs orthogonal transformations

to perturb data, effectively protecting gradients or parameters uploaded by clients while

supporting lossless decoding and restoration. This approach demonstrates favorable

computational efficiency and reversibility.

3.4 Feature Extraction using SVD

SVD decomposes a matrix into three components, allowing for the extraction of essen-

tial information and facilitating dimensionality reduction. It is closely associated with

Principal Component Analysis (PCA), which is one of the most commonly used tech-

niques for reducing data dimensionality.

Let there be a matrix 𝐺𝑚×𝑛 = [𝑥1, 𝑥2, … , 𝑥𝑛]Τ, where each row 𝑥𝑖 is a 1 × 𝑚 vector.

Our goal is to extract the main features from 𝐺𝑚×𝑛 while reducing its dimensionality.

To achieve this, we apply SVD to decompose 𝐺𝑚×𝑛 as 𝑈Σ𝑉Τ. It can be proven that the

column vectors of matrix 𝑉 are in fact the eigenvectors of 𝐺Τ𝐺, which enables us to

perform dimensionality reduction via PCA.

To effectively reduce the dimensionality of the original data, we retain only the top

𝑟 directions corresponding to the largest singular values. The associated right singular

vectors form the matrix 𝑉𝑛×𝑟, and the reduced-dimensional data matrix 𝐺̂𝑚×𝑟 can be

obtained using the following (9). This result represents a projection of the original data

into an 𝑟-dimensional space, which captures the directions of greatest variation and

richest information.

 𝐺̂𝑚×𝑟 = 𝐺𝑚×𝑛𝑉𝑛×𝑟 (9)

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

Based on the above SVD decomposition, an approximate representation as shown in

(10) can also be obtained. In other words, we can use 𝑈𝑚×𝑟Σ𝑟×𝑟 to represent the re-

duced-dimensional data 𝐺̂𝑚×𝑟, thereby expressing the most important information

from the original data with fewer dimensions.

 G𝑚×𝑛𝑉𝑛×𝑟 = 𝑈𝑚×𝑟Σ𝑟×𝑟 (10)

4 PROPOSED ALGORITHM

4.1 Design Overview

As shown in Fig. 1, the system architecture comprises two servers, namely the Aggre-

gation Server (AS) and the Mask Server (MS), along with n clients. Clients are respon-

sible for local model training and uploading. Each client is required to generate two

public commitments: one corresponding to the masked gradient and the other to the

mask itself. AS identifies the authenticity of the gradients using statistical features and

clustering methods, and verifies the masked gradients uploaded by clients. MS is tasked

with receiving and validating the masks submitted by clients, aggregating those from

all legitimate clients, and forwarding the aggregated result to the AS.

Fig. 1. System architecture.

Initially, AS creates and initializes a global model, then selects a subset of clients.

In each iteration, the server and the selected clients perform the following operations:

1. Client downloads global model and performs training (see ① and ②). During each

FL round, a set of k clients is selected, with each client 𝐶𝑖 (𝑖 ∈ ([1, 𝑘])) downloading

the current global model from the AS. Each client then trains the model locally on

its private data and computes its local gradient, which is an 𝑚 × 𝑛 matrix.

2. Clients mask their gradients and upload them (see ③ and ④). Firstly, AS generates

a mask matrix 𝑋 and splits it into 𝑘 column vectors, denoted as 𝑋 = [𝑋1, 𝑋2, … , 𝑋𝑘]
distributing each 𝑋𝑖 ∈ ℝ𝑘×1 to the corresponding client. Meanwhile, each client gen-

erates its own mask matrix 𝑌 ∈ 𝑅𝑛×𝑛 and combines it with 𝑋𝑖 to conceal its gradient

𝐺𝑖, resulting in a masked gradient. Each client then creates two public commitments:

one for the masked gradient and another for the mask itself. The masked gradient is

sent to the AS, while the mask is sent to MS. Both commitments are published to

allow verification by AS and MS.

3. Servers verify gradients and masks (see ⑤ and ⑥). Malicious clients may launch

poisoning attacks by submitting harmful gradients or incorrect masks. Specifically,

after receiving the masked gradients, the AS applies SVD to reduce their dimension-

ality and extract the principal components that capture the most significant variance.

These reduced client representations are then clustered using K-means, and the CH

index is used to evaluate the clustering quality, enabling the identification of anom-

alous clients for effective poisoning detection and defense. In parallel, AS verifies

the commitment from each client to ensure that the submitted masked gradient

matches the corresponding public commitment. After completing the verification,

AS forms a set of legitimate clients and sends the list to MS. MS then verifies that

the submitted mask from each client matches the corresponding public commitment.

Finally, MS sends the verified masks and client list back to AS.

4. AS aggregates the gradients and updates the global model (see ⑦). Upon receiving

the masks, AS removes them to recover the aggregated gradient. The global model

is then updated using this aggregated gradient. Finally, AS distributes the updated

global model to all users for the next round of training.

The complete pseudocode description is provided in Algorithm 1.

Algorithm 1: PPDPA.

Input: 𝐶𝑡: Random set of k clients in training round t, 𝑋, 𝑌, 𝑘

Output: benign client set

1: Divide the matrix 𝑋 along its columns into 𝑘 parts

2: Distribute 𝑋𝑖 to client 𝐶𝑖

3: 𝑊 ← ∅ //Initialize empty set for commitments

4: 𝜔𝑡−1 ← the global model resulting from round 𝑡 − 1

5: for each class 𝑠 ∈ [1, |𝑂|] do

6: for each 𝑖 ∈ 𝐶𝑡 do

7: 𝜔𝑡,𝑖 ← obtain the model parameters at round 𝑡

8: 𝜔𝑡,𝑖
𝑠 ← obtain the parameters of the last layer associated with class 𝑠

9: 𝐺𝑖
(𝑠)

← 𝜔𝑡,𝑖
𝑠

10: 𝐺̃𝑖
(𝑠)

← 𝑋𝑖𝐺𝑖
(𝑠)

𝑌

11: 𝑐𝑔𝑖
(𝑠)

← 𝐻𝑎𝑠ℎ(𝐺̃𝑖
(𝑠)

)

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

12: 𝑐𝑟𝑖
(𝑠)

← 𝐻𝑎𝑠ℎ(𝑋𝑖||𝑌)

13: Add 𝑋𝑖 in 𝑊

14: send (𝐺̃𝑖
(𝑠)

, 𝑐𝑔𝑖
(𝑠)

) to AS

15: send (𝑋𝑖||𝑌, 𝑐𝑔𝑖
(𝑠)

) to MS

16: 𝑃̃𝑠 ← ∑ 𝐺̃𝑖
(𝑠)𝑘

𝑖

17: 𝑈𝑠, Σ̃𝑠, 𝑉̃𝑠
Τ ← SVD (𝑃̃𝑠)

18: 𝑈𝑠 ← 𝑊Τ𝑈𝑠

19: 𝑃̂𝑠 ← 𝑈𝑠Σ̃𝑠

20: 𝐶𝐻, (𝑏𝑒𝑛𝑖𝑔𝑛, 𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠) ← Detecting Malicious Clients (𝑃̂𝑠)

21: for each 𝑖 ∈ 𝐶 do

22: if not Verify (𝑐𝑔𝑖
(𝑠)

, 𝐺̃𝑖
(𝑠)

) then

23: remove i from 𝐶

24: Send 𝐶1 to MS //Set of clients whose commitments are verified by AS

25: for each 𝑖 ∈ 𝐶1 do

26: if not Verify (𝑐𝑟𝑖
(𝑠)

, 𝑋𝑖||𝑌) then

27: remove i from 𝐶1

28: Send 𝐶2 to AS //Set of clients whose commitments are verified by MS

29: return 𝑡ℎ𝑒 𝑠𝑒𝑡 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 ℎ𝑖𝑔𝑒𝑠𝑡 𝐶𝐻

4.2 Apply Mask to Gradients

During the 𝑡-th training round, each client 𝐶𝑖 computes the local gradient for the current

round using its own dataset 𝐷𝑖 and local model parameters 𝑊𝑖. Each client 𝐶𝑖 extracts

the feature representations corresponding to the neurons in the output layer of the

model.

Specifically, for each output-layer neuron, a weight vector is formed by collecting

all the parameters that connect this neuron to the preceding hidden layer. These weight

vectors determine how the outputs of the previous layer influence the activation of each

output-layer neuron. We denote the weight vector of client 𝐶𝑖 associated with the 𝑠-

th output neuron as 𝐺𝑖
(𝑠)

, where 𝑠 ranges from 1 to |𝑂|. Then, to protect the privacy

of the model parameters, each client 𝐶𝑖 encrypts every weight vector 𝐺𝑖
(𝑠)

 using a

masking matrix 𝑋𝑖 and matrix 𝑌. The masked weight vector can be computed using

formula:

 𝐺̃𝑖
(𝑠)

= 𝑋𝑖𝐺𝑖
(𝑠)

𝑌 (𝑠 = 1,2, … , |𝑂|) (11)

Finally, client 𝐶𝑖 uploads all the masked output-layer weight vectors 𝐺̃𝑖 =

𝐺̃𝑖
(1)

, 𝐺̃𝑖
(2)

, … , 𝐺̃𝑖
(|𝑂|)

 to the server AS for subsequent federated aggregation.

4.3 Commitment Verification

To ensure the verifiability and integrity of model updates uploaded by clients during

FL without revealing the original gradients. This work introduces a commitment mech-

anism between clients and servers. Specifically, each client locally generates two com-

mitment values for its masked matrix and masked gradients, respectively. These com-

mitments are used for verification on different servers, thereby preventing clients from

uploading tampered or inconsistent updates. The steps for commitment verification are

as follows:

1. Client generates commitment values. In each round of FL, client 𝐶𝑖 first performs

local training to obtain a weight vector 𝐺𝑖, which consists of all parameters connect-

ing each output layer neuron to the final hidden layer. Then, the client obtains two

mask vectors 𝑋𝑖 and 𝑌𝑖 with the same dimensions as 𝐺𝑖, and generates the masked

gradient 𝐺̃𝑖=𝑋𝑖𝐺𝑖𝑌𝑖.

2. AS verifies the commitment values. AS verifies whether the masked gradient 𝐺̃𝑖 is

consistent with the commitment 𝑐𝑔𝑖 submitted by client 𝐶𝑖, according to (12). This

ensures that the uploaded model updates have not been tampered with.

 𝐻𝑎𝑠ℎ(𝐺̃𝑖) = 𝑐𝑔𝑖 (12)

3. MS verifies the commitment values. MS verifies whether the masks 𝑋𝑖 and 𝑌𝑖 up-

loaded by the client are consistent with the commitment 𝑐𝑟𝑖 , according to (13). This

prevents clients from forging masks to bypass system detection.

 𝐻𝑎𝑠ℎ = (𝑋𝑖||𝑌𝑖) = 𝑐𝑟𝑖 (13)

4.4 Secure Aggregation

AS aggregates the masked weight data from all clients, denoted as 𝑃̃𝑠. Accordingly, the

original gradient data of each client can be represented as 𝑃𝑠 = [𝐺1
(𝑠)

, 𝐺2
(𝑠)

, … , 𝐺𝑘
(𝑠)

].

Thus, the relationship between 𝑃̃𝑠 and 𝑃𝑠 is given by (14):

𝑃̃𝑠 = ∑ 𝐺̃𝑖
(𝑠)

𝑖∈𝑘

 = 𝑋1𝐺1
(𝑠)

𝑌 + 𝑋2𝐺2
(𝑠)

𝑌 + ⋯ + 𝑋𝑘𝐺𝑘
(𝑠)

𝑌

 = [𝑋1, 𝑋2, … , 𝑋𝑘][𝐺1
(𝑠)

, 𝐺2
(𝑠)

, … , 𝐺𝑘
(𝑠)

]
Τ

𝑌

 = [𝑋1, 𝑋2, … , 𝑋𝑘]𝑃𝑠𝑌 (𝑠 = 1,2, … , |𝑂|) (14)

where 𝑋 denotes a block matrix formed by concatenating the mask matrices of all cli-

ents.

To reduce the dimensionality of the data and extract the main features of the original

weight vector 𝐺𝑖
(𝑠)

 from the matrix 𝑃̃𝑠, SVD is applied 𝑃̃𝑠 according to (4). As a result,

(15) can be obtained as follows.

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

 𝑃̃𝑠 = 𝑈𝑠Σ̃𝑠𝑉̃𝑠
Τ (15)

Moreover, 𝑈𝑠Σ𝑆𝑉𝑠
Τ can also be obtained from 𝑃𝑠 through SVD. Based on the above

analysis, we can summarize (16) as follows.

 𝑈𝑠Σ̃𝑠𝑉̃𝑠
Τ = [𝑋1, 𝑋2, … , 𝑋𝑘]𝑈𝑠Σ𝑆𝑉𝑠

Τ𝑌 (16)

Revisiting Section 3.3, 𝑃̃𝑠 and 𝑃𝑠 share the same singular value matrix, which implies

that Σ̃𝑠 = Σ𝑆. Therefore, based on (16), we can derive (17) as follows.

 𝑈𝑠 = [𝑋1, 𝑋2, … , 𝑋𝑘]𝑈𝑠 𝑉̃𝑠
Τ = 𝑉𝑠

Τ𝑌 (17)

Since [𝑋1, 𝑋2, … , 𝑋𝑘] is an orthogonal matrix, we obtain (18) through a matrix trans-

formation as follows.

 𝑈𝑠 = [𝑋1, 𝑋2, … , 𝑋𝑘]Τ𝑈𝑠 (18)

Based on the above analysis, AS possesses the matrix [𝑋1, 𝑋2, … , 𝑋𝑘] and can re-

cover the original 𝑈𝑠 by utilizing the relationship in (18). Therefore, (19) can be ob-

tained as follows. The matrix 𝐺̂𝑠 is a dimensionality-reduced representation of the orig-

inal data 𝐺𝑠, containing its most essential feature information.

 𝐺̂𝑠 = 𝑈𝑠Σ𝑠 (19)

4.5 Detecting Malicious Clients

In this section, we propose an unsupervised approach to detect malicious clients in FL

by analyzing the Euclidean distance-based distribution of client gradients in a two-di-

mensional space. Assuming a majority of benign clients, we apply K-means clustering

(k=2) to group clients and classify the larger cluster as benign. Gradients identified as

malicious are excluded from aggregation in each round, thereby improving global

model robustness.

However, this method may misclassify benign clients in the absence of attacks, as

K-means still enforces a binary division. To address this, we introduce the CH index to

evaluate clustering quality. When malicious clients are present, the gradient distribution

shows a clear bimodal pattern, while in attack-free rounds, it is more concentrated. The

CH index helps distinguish between these scenarios, enhancing detection robustness

against stealthy attacks.

The CH index, also known as the Variance Ratio Criterion (VRC), is used to evaluate

the compactness and separability of clustering results. It is defined as follows:

 𝐶𝐻(𝑘) =
𝑇𝑟(𝐵𝑘)

𝑇𝑟(𝑊𝑘)
∙

𝑛−𝑘

𝑘−1
 (20)

where 𝑛 denotes the total number of samples, and 𝑘 represents the number of clusters.

 𝑇𝑟(𝐵𝑘) is the trace of the between-cluster dispersion matrix, representing the degree

of deviation between each cluster center and the overall center. The formula for com-

puting 𝑇𝑟(𝐵𝑘) is given as follows:

 𝐵𝑘 = ∑ 𝑛𝑖
𝑘
𝑖=1 ‖𝑐𝑖 − 𝑐‖2 (21)

where 𝑛𝑖 denotes the number of samples in the 𝑖-th cluster, 𝑐 is the global center of all

samples, and ‖𝑐𝑖 − 𝑐‖2 is the squared distance between the i-th cluster center and the

global center.

𝑇𝑟(𝑊𝑘) is the trace of the within-cluster dispersion matrix, representing the degree

of deviation between each sample and its corresponding cluster center. The formula for

computing 𝑇𝑟(𝑊𝑘) is given as follows:

 𝑊𝑘 = ∑ ∑ ‖𝑥 − 𝑐𝑖‖
2

𝑥∈𝐶𝑖

𝑘
𝑖=1 (22)

where 𝐶𝑖 denotes the 𝑖-th cluster, 𝑐𝑖 is the center of the 𝑖-th cluster, and 𝑥 ∈ 𝐶𝑖 repre-

sents all sample points within the cluster.

 This index measures the ratio of between-cluster dispersion to within-cluster disper-

sion, adjusted by the number of samples and clusters. A higher CH index indicates

better clustering performance, meaning that samples are more compact within clusters

and more separated between clusters. The complete pseudocode description is provided

in Algorithm 2.

Algorithm 2: Detecting Malicious Clients.

Input: 𝑃̂𝑠: Low-dimensional matrix for K-means clustering detection

Output:𝑠𝑒𝑡𝑖𝑛𝑔 𝑟𝑒𝑠𝑢𝑙𝑡𝑖𝑛𝑔 𝑙𝑎𝑏𝑒𝑙𝑠

1: max _𝑐ℎ = 0

2: for each class 𝑖 ∈ [1, |𝑂|] do

3: 𝑆1, 𝑆2 ← K-means (𝑃̂𝑠)

4: for each vector 𝑗 ∈ 𝑆1 ∪ 𝑆2 do

5: 𝐵𝑗 ← using (21)

6: 𝑊𝑗 ← using (22)

7: 𝐶𝐻(𝑖) ←
𝑇𝑟(𝐵𝑘)

𝑇𝑟(𝑊𝑘)
∙

𝑛−𝑘

𝑘−1

8: if max _𝑐ℎ < 𝐶𝐻(𝑖) then

9: max _𝑐ℎ ← 𝐶𝐻(𝑖)

10: 𝑙𝑎𝑏𝑒𝑙𝑠 ← Divide all clients into two categories and select the best result

11: return 𝐶𝐻, 𝑙𝑎𝑏𝑒𝑙𝑠

 In summary, the proposed method can effectively identify and remove malicious

participants launching poisoning attacks in FL. By incorporating the CH index as a

robustness metric, the approach effectively avoids false positives in scenarios without

attacks, further enhancing the security of the system and the reliability of the model.

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

5 EXPERIMENTS

5.1 Experimental Setup

We conducted a series of experiments using two datasets (CIFAR-10 and MNIST) to

evaluate the performance of the proposed PPDPA algorithm. We used a Dirichlet dis-

tribution to generate non-IID data for each client. Specifically, the number of FL rounds

was set to 100, with a total of 50 clients, and 20 clients participating in training during

each round.

This study focuses on two dynamic label-flipping attack modes: single-label flipping

and multi-label flipping. Unlike traditional static attacks, these two attack strategies

perform label manipulations dynamically in each training round, making the attacks

more covert and persistent. As a result, they increase the difficulty of defense and pose

new challenges to the security of FL systems. We adopted a comparative experimental

approach, evaluating the performance of DPFLA against four classical methods (e.g.,

FedAvg [25], FLAME [20], FoolsGold [15] and FLDetector [26]). To quantify the im-

pact of label flipping attacks and on the trained model, we employ the following eval-

uation metrics on the test dataset.

1) Model Accuracy (MA): The proportion of all test samples that are correctly clas-

sified, reflecting the overall performance of the global model.

2) Attack Success Rate (ASR): The proportion of source-class samples that are mis-

classified into the target class (i.e., the incorrect class specified by the attacker). A lower

ASR indicates better suppression of label flipping attacks by the defense algorithm.

3) Recognition Accuracy (RA): The proportion of clients correctly identified as be-

nign or malicious. A higher value indicates stronger detection capability of the defense

system.

5.2 Model Accuracy of Samples

Single-Label Flipping Attacks

To evaluate the defense capability of PPDPA against single-label flipping attacks, we

set the attacker ratios to 10%, 20%, 30%, and 40%, respectively. In this type of attack,

the attacker flips the labels of all samples from a specific class to a designated target

label.

Fig. 2 presents the accuracy curves of different algorithms on the CIFAR-10 and

MNIST datasets over training rounds. PPDPA algorithm consistently achieves the high-

est accuracy across all scenarios. As the proportion of malicious clients increases, the

accuracy of models trained with other algorithms declines significantly, whereas the

accuracy drop for PPDPA remains relatively moderate. When the attacker ratio exceeds

20%, the accuracy of the FedAvg algorithm begins to fluctuate noticeably. These ex-

perimental results indicate that all evaluated algorithms are capable of effectively de-

fending against single-label flip attacks, with PPDPA demonstrating the strongest de-

fense performance.

Fig. 2. Model accuracy of different algorithms under single-label flip attacks.

Table 1 compares the main evaluation metrics of various algorithms under single-la

bel flip attacks with varying proportions of malicious clients. The PPDPA scheme

demonstrates the most outstanding overall defense performance, maintaining a MA of

74.52% and limiting the ASR to 16.2% on the CIFAR-10 dataset even with 40% of

participants being malicious. Simultaneously, it achieves a MA of 96.86% and an ASR

of only 1.01% on the MNIST dataset, significantly outperforming the other approaches.

Table 1. Experimental metrics of various algorithms under single-label flip attacks.

Algorithm Dataset
M=10% M=20% M=30% M=40%

MA ASR MA ASR MA ASR MA ASR

FedAvg
CIFAR-10 71.28 26.8 70.31 36.7 68.03 46.4 64.39 71.6

MNIST 94.80 1.46 92.58 1.68 90.66 2.91 90.37 9.75

FLAME
CIFAR-10 74.64 20.2 73.35 23.8 71.77 25.3 71.48 52.0

MNIST 97.00 1.46 97.74 1.65 93.70 2.02 92.84 2.34

FoolsGold
CIFAR-10 73.40 15.7 72.04 21.4 70.54 21.8 69.12 36.1

MNIST 95.29 1.57 93.74 1.68 91.68 2.91 90.39 9.98

FLDetector
CIFAR-10 74.58 14.4 72.82 23.0 71.07 37.6 70.89 52.9

MNIST 96.79 1.27 94.24 1.32 92.59 2.02 91.41 4.04

PPDPA
CIFAR-10 77.16 12.3 76.35 12.5 74.62 13.2 74.52 16.2

MNIST 97.76 0.45 97.52 0.9 97.11 0.78 96.86 1.01

Multi-Label Flipping Attacks

In the multi-label attack scenario, malicious clients randomly modify the labels of all

samples. Fig. 3 presents the model accuracy curves over training rounds for different

algorithms under varying proportions of malicious clients on the CIFAR-10 and

MNIST datasets. PPDPA consistently maintains the highest accuracy across all attack

ratios, indicating its strong robustness against multi-label flipping attacks. In contrast,

the FedAvg method is the most sensitive to attacks, with a slightly larger drop in accu-

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

racy compared to other algorithms. The experimental results demonstrate that all eval-

uated algorithms are effective in defending against multi-label flipping attacks, with

PPDPA exhibiting the strongest defense performance.

Fig. 3. Model accuracy of different algorithms under multi-label flip attacks.

Table 2 demonstrates that the PPDPA algorithm exhibits superior defensive perfor-

mance under 40% malicious client attacks. On the CIFAR-10 dataset, PPDPA main-

tains a model accuracy of 74.50%, significantly outperforming other algorithms, while

its attack success rate of 12.8% is substantially lower than FedAvg's 42.2%. On the

MNIST dataset, PPDPA maintains its leading advantage with 97.64% accuracy and a

remarkably low attack success rate of just 1.32%.

Table 2. Experimental metrics of various algorithms under multi-label flip attacks.

Algorithm Dataset
M=10% M=20% M=30% M=40%

MA ASR MA ASR MA ASR MA ASR

FedAvg
CIFAR-10 73.01 13.8 70.48 26.3 70.44 32.1 70.31 42.2

MNIST 93.78 3.26 93.43 4.51 92.79 6.78 92.73 10.4

FLAME
CIFAR-10 73.61 7.3 72.00 13.0 72.14 16.3 72.26 18.2

MNIST 95.79 1.18 95.35 1.84 94.78 2.32 94.64 2.96

FoolsGold
CIFAR-10 72.50 9.6 71.61 10.8 71.64 13.2 71.26 16.4

MNIST 94.28 2.67 93.86 4.32 93.29 5.68 93.14 8.89

FLDetector
CIFAR-10 72.92 9.4 72.20 12.2 72.01 16.6 71.84 20.9

MNIST 94.85 1.43 94.40 2.57 93.85 3.48 93.76 4.28

PPDPA
CIFAR-10 74.77 3.2 74.61 6.3 74.56 8.12 74.50 12.8

MNIST 97.80 0.56 97.85 0.89 97.79 1.12 97.64 1.32

5.3 Recognition Accuracy of Clients

Single-Label Flipping Attacks

Fig. 4 presents the comparison curves of recognition accuracy over training rounds for

four defense algorithms under varying proportions of malicious clients.

Fig. 4. Recognition accuracy of different algorithms under attacker ratios.

 According to Fig. 4, at a 40% proportion of malicious clients, PPDPA achieves the

highest detection accuracy on both the CIFAR-10 and MNIST datasets, reaching ap-

proximately 85% and 90%, respectively. In comparison, FoolsGold shows the lowest

performance, with accuracies of 60% on CIFAR-10 and 70% on MNIST, which are

25% and 20% lower than those of PPDPA.

Multi-Label Flipping Attacks

Fig. 5 presents the comparison curves of recognition accuracy over training rounds for

four defense algorithms under varying proportions of malicious clients.

Fig. 5. Recognition accuracy of different algorithms under attacker ratios.

 According to Fig. 5, at a 40% proportion of malicious clients, PPDPA performs the

best on both the CIFAR-10 and MNIST datasets, achieving an accuracy of around 90%

in both cases. In contrast, FoolsGold shows the lowest accuracy, with 65% on CIFAR-

10 and 70% on MNIST, which are 15% and 20% lower than PPDPA, respectively.

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

6 CONCLUSION

This paper proposes the PPDPA framework, an innovative FL defense mechanism that

achieves dual optimization in both privacy preservation and poisoning attack detection.

The scheme employs gradient masking technology to ensure client data privacy, utilizes

SVD for feature extraction and dimensionality reduction, and accurately identifies ma-

licious clients through an enhanced clustering algorithm. Experimental results demon-

strate that compared to existing defense approaches, PPDPA exhibits significant ad-

vantages in both model accuracy and attack detection rate while maintaining superior

robustness.

References

1. Bagdasaryan, E., Veit, A., Hua, Y., Estrin, D., Shmatikov, V.: How to backdoor federated

learning. In: Proceedings of the International Conference on Artificial Intelligence and Sta-

tistics, pp. 2938–2948. PMLR (2020)

2. Jiang, Y., et al.: Model pruning enables efficient federated learning on edge devices. IEEE

Trans. Neural Netw. Learn. Syst. 34(12), 10374–10386 (2023)

3. Rahman, S.A., Tout, H., Ould-Slimane, H., Mourad, A., Talhi, C., Guizani, M.: A survey on

federated learning: The journey from centralized to distributed on-site learning and beyond.

IEEE Internet Things J. 8(7), 5476–5497 (2021)

4. Melis, L., Song, C., De Cristofaro, E., Shmatikov, V.: Exploiting unintended feature leakage

in collaborative learning. In: Proceedings of the IEEE Symposium on Security and Privacy

(SP), pp. 691–706 (2019)

5. Phong, L.T., Aono, Y., Hayashi, T., Wang, L., Moriai, S.: Privacy-preserving deep learning

via additively homomorphic encryption. IEEE Trans. Inf. Forensics Security 13, 1333–1345

(2018)

6. Liu, X., Li, H., Xu, G., Chen, Z., Huang, X., Lu, R.: Privacy enhanced federated learning

against poisoning adversaries. IEEE Trans. Inf. Forensics Security 16, 4574–4588 (2021)

7. Zhang, C., Li, S., Xia, J., Wang, W., Yan, F., Liu, Y.: BatchCrypt: Efficient homomorphic

encryption for cross-silo federated learning. In: Proceedings of the USENIX Annual Tech-

nical Conference (USENIX ATC 2020), pp. 493–506 (2020)

8. Sanon, S. P., Reddy, R., Lipps, C., Schotten, H. D.: Secure federated learning: An evaluation

of homomorphic encrypted network traffic prediction. In: Proceedings of the IEEE CCNC,

Las Vegas, NV, USA, pp. 1–6 (2023)

9. Zhong, L., Zhang, L., Xu, L., Wang, L.: MPC-based privacy-preserving serverless federated

learning. In: Proceedings of the International Conference on Big Data Analytics and Intelli-

gence Engineering (ICBAIE), Xi’an, China, pp. 493–497 (2022)

10. Sun, Z., Kairouz, P., Suresh, A. T., McMahan, H. B.: Can you really backdoor federated

learning? arXiv preprint arXiv:1911.07963 (2019)

11. Chen, X., Yu, H., Jia, X., Yu, X.: APFed: Anti-poisoning attacks in privacy-preserving het-

erogeneous federated learning. IEEE Trans. Inf. Forensics Security, 18, 5749–5761 (2023)

12. Wang, H., Liu, X., Niu, J., Tang, S.: SVDFed: Enabling communication-efficient federated

learning via singular-value-decomposition. In: Proceedings of the IEEE INFOCOM, New

York City, NY, USA, pp. 1–10 (2023).

13. Bell, J. H., Bonawitz, K. A., Gascón, A., Lepoint, T., Raykova, M.: Secure single-server

aggregation with (poly)logarithmic overhead. In: Proceedings of the ACM SIGSAC Con-

ference on Computer and Communications Security, pp. 1253–1269 (2020)

14. Bonawitz, K., et al.: Practical secure aggregation for privacy-preserving machine learning.

In: Proceedings of the ACM SIGSAC Conference on Computer and Communications Secu-

rity, pp. 1175–1191 (2017)

15. Fung, C., Yoon, C. J., Beschastnikh, I.: The limitations of federated learning in sybil settings.

In: Proceedings of the 23rd International Symposium on Research in Attacks, Intrusions and

Defenses, pp. 301–316 (2020)

16. Tolpegin, V., Truex, S., Gursoy, M. E., Liu, L.: Data poisoning attacks against federated

learning systems. In: Proceedings of the 25th European Symposium on Research in Com-

puter Security, pp. 480–501 (2020)

17. Jebreel, N. M., Domingo-Ferrer, J.: FL-defender: Combating targeted attacks in federated

learning. Knowledge-Based Systems, vol. 260, Article no. 110178 (2023)

18. El Mhamdi, E. M., Guerraoui, R., Rouault, S.: The hidden vulnerability of distributed learn-

ing in Byzantium. In: Proceedings of the 35th International Conference on Machine Learn-

ing (ICML), pp. 3521–3530 (2018)

19. Jebreel, N. M., Domingo-Ferrer, J., Sánchez, D., Blanco-Justicia, A.: Defending against the

label-flipping attack in federated learning. arXiv preprint arXiv:2207.01982 (2022)

20. Wu, W., Zhang, Z., Backes, M., Gong, N. Z., Zhang, Y.: FLAME: Taming backdoors in

federated learning. In: Proceedings of the 31st USENIX Security Symposium (USENIX Se-

curity 2022), pp. 287–304. Springer, Heidelberg (2022)

21. Li, D., Wong, W. E., Wang, W., Yao, Y., Chau, M.: Detection and mitigation of label-flip-

ping attacks in federated learning systems with KPCA and K-means. In: Proceedings of the

8th International Conference on Dependable Systems and Their Applications (DSA 2021),

pp. 551–559. Springer, Heidelberg (2021).

22. Sotthiwat, E., Zhen, L., Li, Z., Zhang, C.: Partially encrypted multi party computation for

federated learning. In: Proceedings of the IEEE/ACM 21st International Symposium on

Cluster, Cloud and Internet Computing (CCGrid), pp. 828–835 (2021)

23. Zhao, L., Jiang, J., Feng, B., Wang, Q., Shen, C., Li, Q.: SEAR: Secure and efficient aggre-

gation for Byzantine-robust federated learning. IEEE Trans. Dependable and Secure Com-

puting, 19(5), 3329–3342 (2022)

24. Sun, Z., Kairouz, P., Suresh, A. T., McMahan, H. B.: Can you really backdoor federated

learning? arXiv preprint arXiv:1911.07963 (2019)

25. McMahan, B., Moore, E., Ramage, D., Hampson, S., y Arcas, B. A.: Communication-effi-

cient learning of deep networks from decentralized data. In: Proceedings of the 20th Inter-

national Conference on Artificial Intelligence and Statistics (AISTATS), PMLR, pp. 1273–

1282 (2017)

26. Zhang, Z., Cao, X., Jia, J., Gong, N. Z.: FLDetector: Defending federated learning against

model poisoning attacks via detecting malicious clients. In: Proceedings of the 28th ACM

SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 2545–2555 (2022)

27. Biggio, B., Nelson, B., Laskov, P.: Support vector machines under adversarial label noise.

In: Proceedings of the Asian Conference on Machine Learning (ACML), pp. 97–112 (2011)

