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Abstract. Federated Learning (FL) facilitates collaborative model training across 

distributed clients while preserving data privacy through decentralized computa-

tion. Architectural limitations render FL susceptible to adversarial attacks. In cur-

rent attack methodologies, the absence of collaboration among attackers renders 

them more susceptible to detection. This paper proposes CAGA (Collaborative 

Attack via Graph Autoencoder), an innovative model poisoning framework. At-

tackers exploit graph-structured correlations among benign local models to infer 

the training data characteristics of the target model and subsequently adversari-

ally reconstruct these correlations, aiming to significantly degrade the perfor-

mance of global FL model through crafted malicious updates. Unlike conven-

tional attack methodologies, CAGA leverages pre-trusted malicious users em-

bedded within benign user groups to execute dual-mode attacks—combining ex-

plicit adversarial actions with implicit exploitation of internal user privileges. The 

experimental results demonstrate that the proposed CAGA attack is highly ag-

gressive and difficult to detect. The attack outperforms the existing GAE attack 

in terms of both aggressiveness and stealth. 

Keywords: Federated Learning, Collaborative Attack, Graph Autoencoder, 

Dual-mode Attack. 

1 INTRODUCTION 

Federated Learning (FL) [1] is a decentralized paradigm that enables multiple clients 

to collaboratively train a global model without exposing raw data, thereby preserving 

privacy and complying with regulations such as GDPR (General Data Protection Reg-

ulation) [2]. In a typical FL workflow, a central server distributes the current global 

model to selected clients, who perform local training on their private datasets; the server 

then aggregates these updates—commonly via FedAvg—over multiple rounds until 

convergence [3]. Although FL mitigates data silos and accommodates heterogeneous, 

non-IID (Non-Independent and Identically Distributed) data distributions to support 

personalized learning [4], its decentralized architecture expands the attack surface. In 

data poisoning, adversaries manipulate local datasets (e.g., by flipping labels or inject-

ing malicious samples) to degrade model accuracy or implant stealthy backdoors. In 



contrast, model poisoning directly alters gradients or parameters to evade anomaly de-

tectors and undermine robust aggregation schemes [5]. More recently, data-agnostic 

attacks exploit structural correlations among intercepted benign updates to launch 

highly stealthy poisoning campaigns without accessing raw training data [6]. However, 

the attack is usually executed by a single malicious client, neglecting the potential for 

coordinated efforts among multiple malicious clients. 

In this paper, we propose CAGA, a model-poisoning attack on federated learning 

that fully exploits both malicious clients and their colluding peers. CAGA acquires be-

nign local models through interactions with seemingly benign yet malicious models. 

This attack leverages both the data of local benign models and the structural correla-

tions between local and global benign models to maximize its effectiveness. The at-

tacker first constructs a graph of structural relationships by extracting feature correla-

tions from the benign local models and the underlying data characteristics that give rise 

to these models. Next, with the objective of maximizing federated learning training 

loss, the adversary reconstructs this graph using a graph autoencoder architecture, pre-

serving essential structural features while introducing adversarial perturbations. The 

resulting adversarial graph is integrated with benign feature vectors to construct mali-

cious local models. Prior to aggregation, these models engage in coordinated behavior 

by embedding adversarial information into ostensibly benign counterparts, thereby fa-

cilitating collaboration among malicious clients. This strategy leads to a substantial 

degradation in the performance of the aggregated global model. In wireless federated 

settings, the broadcast nature of wireless channels amplifies the impact of CAGA, en-

abling propagation across multiple clients and posing severe security threats. CAGA 

achieves strong attack potency while maintaining high stealth, subtly skewing the 

global model at each aggregation round and influencing even honest participants. 

The contributions of this paper are summarized as follows: 

1. Collaborative attack framework: We propose CAGA, a model poisoning attack 

against federated learning (FL). Unlike traditional attack methods, CAGA exploits 

trusted peers within the benign environment to coordinate collaborative attacks, 

thereby achieving a significantly enhanced attack effectiveness. 

2. Structural correlation-based poisoned model generation: CAGA exploits genuine be-

nign model updates and the intrinsic correlations among local models to construct 

adversarial models through sub-gradient descent optimization. This process manip-

ulates inter-model relationships while preserving stealth during aggregation, ensur-

ing that malicious updates remain undetected. 

3. Empirical validation of attack impact: Experimental results demonstrate that CAGA 

significantly degrades FL model accuracy, bypasses the detection of poisoning de-

fense mechanisms, and propagates adversarial effects among benign clients, leading 

to severe performance deterioration in FL systems. 
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2 RELATED WORK 

2.1 Data Poisoning Attacks and Defenses 

Data poisoning attacks manipulate clients’ local training datasets to embed mali-

cious behavior into the global model. Studies indicate that such attacks can signif-

icantly undermine model integrity, even when only a small fraction of clients are 

compromised [7]. Bagdasaryan et al. [8] first demonstrate backdoor poisoning in 

FL, where malicious clients inject trigger-specific samples during local training, 

causing the global model to behave normally on benign inputs but misclassify in-

puts containing secret triggers. Follow-up studies, such as “Towards Practical 

Backdoor Attacks on Federated Learning Systems”, optimize trigger patterns to 

evade detection while maximizing backdoor effectiveness across diverse FL set-

tings [9]. Zhang et al. [10] introduce a poisoning technique that induces cata-

strophic forgetting in global models to impair specific learned behaviors. Recent 

studies have also explored label-free backdoor attacks [11] and broader security 

challenges in vertical FL settings [12]. 

To mitigate data poisoning, researchers have proposed defense strategies such as 

robust loss functions and the use of external validation datasets. Wang et al. [13] pro-

pose a trimmed-mean aggregation rule that discards extreme update values before av-

eraging, effectively reducing the impact of poisoned gradients under non-IID client dis-

tributions. Purohit et al. [14] develop DataDefense, which utilizes a small clean valida-

tion set to train a detector that assigns credibility scores to client updates, enabling 

weighted aggregation that suppresses poisoned contributions. 

2.2 Model Poisoning Attacks and Defenses 

In recent years, federated learning (FL) has become increasingly susceptible to model 

poisoning attacks. Xie et al. proposed Poisoned FL, a method that enhances attack ef-

fectiveness by maintaining consistency in malicious client updates across multiple 

training rounds, thereby bypassing various defenses and exposing persistent vulnera-

bilities in FL systems [2]. To counter these threats, Yaldiz [15] et al. introduced 

CosDefense, a defense mechanism that uses cosine similarity between the global model 

and individual client updates to identify and filter potentially malicious clients without 

requiring additional information, thus improving FL security. Wan et al. [16] examined 

the vulnerabilities of split federated learning (SFL) through the MISA attack, which 

simultaneously poisons both top and bottom models, significantly degrading global per-

formance and challenging the assumed robustness of SFL architectures. In federated 

recommender systems, Yin et al. [17] developed PoisonFRS, an attack that leverages 

fake users to inject malicious updates, effectively promoting targeted items without ac-

cess to genuine user data or server aggregation rules, increasing the attack’s stealth and 

effectiveness. Additionally, Wang et al. [18] investigated evasion-based poisoning at-

tacks on FL-based signal classifiers, demonstrating that even a single malicious client 



can introduce adversarial perturbations that substantially degrade global model perfor-

mance, highlighting serious real-world security concerns for FL systems. 

Traditional model poisoning attacks in FL often overlook structural correlations 

among local models, making them vulnerable to detection by recent graph-based de-

fenses that utilize probabilistic modeling or structural anomaly detection. Furthermore, 

perturbations applied independently to individual model updates are often diluted dur-

ing aggregation, resulting in detectable differences between malicious and benign up-

dates. In contrast, this paper proposes a novel model poisoning attack CAGA that con-

structs a graph representing structural dependencies derived from benign local models 

and reconstructs it using a graph autoencoder to inject adversarial perturbations at the 

relational level. This approach preserves the statistical and structural integrity of poi-

soned models, allowing them to remain indistinguishable from benign updates while 

progressively degrading the global model’s performance over multiple communication 

rounds. 

3 SYSTEM MODEL 

We investigate a realistic and impactful adversarial scenario where malicious clients 

participate in FL with the intention of poisoning the global model. Unlike conventional 

model poisoning attacks, this approach exploits malicious peers that have gained the 

trust of benign users. It leverages the broadcast nature of federated learning and the 

collaboration among colluding clients to extract and exploit information from benign 

participants. Specifically, the adversary can obtain benign local model updates by im-

personating a legitimate participant. After collecting these model parameters, the at-

tacker analyzes their statistical and structural properties, focusing on the correlation 

between benign local models and the aggregated global model. This analysis guides the 

generation of malicious model updates designed to disrupt the learning process while 

evading detection. 

As illustrated in Fig. 1, the model poisoning attack unfolds as follows. In the t-th 

communication round, the malicious client obtains local model updates by leveraging 

interactions with seemingly benign peers during communication with the server. Based 

on this information, the attacker crafts poisoned updates that closely resemble the dis-

tribution of benign models, increasing their likelihood of being accepted during aggre-

gation. These updates are then securely distributed to colluding peers, who embed the 

malicious payloads into their local models, resulting in poisoned updates. Finally, the 

attacker and its accomplices jointly upload these malicious updates to the central server. 

An attacker detection model that utilizes Euclidean distance [19] is introduced as a 

statistical anomaly metric within a server-side detection framework. The key idea is to 

evaluate how far each client’s local update deviates from the current global model. The 

assumption is that honest clients’ updates are similar and hence lie in a compact region 

of the model parameter space, whereas malicious clients’ updates tend to exhibit greater 

divergence. 
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Fig. 1. System model. 

We consider a centralized FL system comprising 𝐾 benign and 𝐽 malicious clients, 

all coordinating under a central server’s orchestration. For each client 𝑐 ∈ {1, . . . , 𝐾}, 

the server computes the Euclidean distance between the local model parameters 𝜃𝑐 and 

the global model parameters 𝜃𝑔 as follows: 

 𝐷𝑐 = ‖𝜃𝑐 − 𝜃𝑔‖
2

 (1) 

where ‖∙‖2 denotes the L2 norm (Euclidean distance). After computing these distances, 

the server compares each 𝐷𝑐  with a pre-defined threshold 𝜏. A model update is flagged 

as anomalous if: 

 𝐷𝑐 > 𝜏 (2) 

Such updates are then either discarded or down-weighted during aggregation. This 

approach ensures that the influence of poisoned updates on the global model is mini-

mized, thereby improving the robustness of FL systems. 

Suppose that each benign client holds 𝑆𝑐(𝑡) training samples at t-th round. Denote 

the i-th sample’s feature vector by 𝑥𝑐,𝑖(𝑡) and its ground-truth label by 𝑦𝑐,𝑖(𝑡), with 𝑖 ∈

{1, . . . , 𝑆𝑐(𝑡)}. We define the per-sample loss ℓ𝑐,𝑖(𝜃𝑐(𝑡); 𝑥𝑐,𝑖(𝑡), 𝑦𝑐,𝑖(𝑡)) to quantify the 

prediction error of the local model parameter 𝜃𝑐(𝑡) on (𝑥𝑐,𝑖(𝑡), 𝑦𝑐,𝑖(𝑡)). 

Each client minimizes a regularized empirical risk: 

 𝐹𝑐(𝜃𝑐(𝑡)) =
1

𝑆𝑐(𝑡)
∑ ℓ𝑐,𝑖

𝑆𝑐(𝑡)
𝑖=1 + 𝛼𝑅(𝜃𝑐(𝑡)) (3) 

where 𝑅(∙) is a regularizer and 𝛼 ∈ [0, 1] its weight. 

Clients perform one or more local gradient‐based updates: 

 𝜃𝑐(𝑡 + 1) = 𝜃𝑐(𝑡) − 𝜂𝛻𝐹𝑐(𝜃𝑐(𝑡)) (4) 

where 𝜂 is the learning rate. 



After each local iteration 𝑇𝑖𝑡𝑒𝑟 , benign clients upload their updated model parameters 

to the central server, which aggregates them using a weighted average based on the 

clients’ data sizes. The resulting global model is then distributed to all clients. 

The cumulative amount of local training data declared by all participating clients to 

the server is expressed as follow: 

 𝑆(𝑡) = ∑ 𝑆𝑘(𝑡)𝐾
𝑘=1 + ∑ 𝑆𝑗

𝑎(𝑡)𝐽
𝑗=1  (5) 

where 𝑆𝑗
𝑎(𝑡), 𝑗 ∈ [1, 𝐽] represents the number of local data samples claimed by the j-th 

malicious participants at t-th round. 

Unaware of the adversarial activity, the server aggregates all submitted model up-

dates via weighted averaging according to the reported data sizes, producing a compro-

mised global model: 

 𝜃𝑔
𝑎(𝑡) = ∑

𝑆𝑘(𝑡)

𝑆(𝑡)

𝐾
𝑘=1 𝜃𝑘(𝑡) + ∑

𝑆𝑗
𝑎(𝑡)

𝑆(𝑡)
𝜃𝑗

𝑎(𝑡)𝐽
𝑗=1  (6) 

where 𝜃𝑗
𝑎(𝑡) denotes the model parameters of the j-th malicious user. 

Subsequently, the server broadcasts the compromised global model 𝜃𝑔
𝑎(𝑡) to all par-

ticipating clients. This model is derived through the federated learning (FL) training 

process, which aims to optimize the global model by minimizing a global loss function 

calculated across all participating user devices, including the adversary’s claimed da-

taset: 

 min
𝜃𝑔

𝑎(𝑡)
𝐹(𝜃𝑔

𝑎(𝑡)) = ∑
𝑆𝑘(𝑡)

𝑆(𝑡)
𝐹𝑘(𝜃𝑔

𝑎(𝑡)) + ∑
𝑆𝑗

𝑎(𝑡)

𝑆(𝑡)
𝐹𝑗

𝑎(𝜃𝑔
𝑎(𝑡))𝐽

𝑗=1
𝐾
𝑘=1  (7) 

where 𝐹𝑎(∙) denotes the local loss function claimed by the attacker, which is stated to 

comply with (3). 

To achieve its malicious intent, the attacker seeks to maximize 𝐹(𝜃𝑔
𝑎(𝑡)) while en-

suring that the crafted adversarial model remains undetected by the server. In the fed-

erated learning training process, the server typically assesses the similarity among local 

models at each communication round or periodically after several rounds, thereby fil-

tering out potentially malicious models. The attacker’s optimization problem can be 

formally expressed as follows: 

 𝑚𝑎𝑥
𝜃𝑗

𝑎(𝑡),𝛽𝑘,𝑐(𝑡)
𝐹(𝜃𝑔

𝑎(𝑡)) (8a) 

 𝑠. 𝑡. 𝑑(𝜃𝑗
𝑎(𝑡), 𝜃𝑔

𝑎(𝑡)) ≤ 𝑑𝜏 (8b) 

 ∑ 𝛽𝑘,𝑗(𝑡)𝐾
𝑘=1 𝑑(𝜃𝑐(𝑡), 𝜃𝑔(𝑡)) ≤ 𝐷𝜏  (8c) 

 𝛽𝑘,𝑗(𝑡) ∈ {0, 1} (8d) 

where 𝑑(∙,∙) is computed based on (1), and 𝑑𝜏 is a predetermined threshold. Constraint 

(8b) requires the adversary’s malicious local model to remain close to the global model 

in Euclidean space, thereby maintaining the attack’s subtlety and evading detection.    
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Constraint (8c) enforces that the Euclidean distance between each selected surrogate 

model and the aggregated malicious model does not exceed a predefined threshold, 

ensuring consistency among malicious updates. Collectively, these constraints regulate 

spatial relationships between models, enabling the attack to bypass detection mecha-

nisms such as Krum and Multi-Krum, which utilize distance-based anomaly detection 

to identify and exclude outliers. 

4 DESIGN DETAILS 

In this section, we present the CAGA attack and its operational workflow. The adver-

sary trains a malicious local model on private data, optimizing both task-specific per-

formance and adversarial objectives. Leveraging graph autoencoding, the attacker 

crafts poisoned updates that subtly manipulate gradient distributions to evade detection. 

These updates are disseminated among colluding peers, whose coordinated efforts am-

plify the attack’s impact during global aggregation. 

4.1 Processing Procedure of the CAGA 

The CAGA optimization problem in (8) is a non-convex combinatorial challenge, dif-

ficult to solve with standard methods. We address this by decomposing it into two sub-

problems—adversarial model generation and bandwidth allocation—using the Lagran-

gian dual method [20]. We propose an iterative framework that updates adversarial lo-

cal models via contrastive graph autoencoding and sub-gradient descent, as shown in 

Fig. 2. 

The proposed CAGA attack exploits the correlations learned among model parame-

ters 𝜃𝑐(𝑡) during federated learning to generate the adversarial parameter 𝜃𝑗
𝑎(𝑡). A 

graph autoencoder is utilized to jointly learn the adjacency matrix and the feature ma-

trix, producing a matrix 𝑍, which represents the encoder’s output. The decoder then 

reconstructs the correlation matrix by multiplying 𝑍 with its transpose and applying a 

sigmoid activation function. The CAGA attack iteratively updates the adversarial pa-

rameter 𝜃𝑗
𝑎(𝑡) to maximize the reconstruction loss, thereby enhancing the effectiveness 

of the attack. 

We denote 𝜆 and 𝜌 as the dual variables associated with the Lagrangian function. 

The Lagrangian corresponding to (8) is defined as follows: 

 𝐿(𝛽𝑘,𝑗(𝑡), 𝜆, 𝜌) = 𝐹 (𝜃𝑔
𝑎(𝑡)) + 𝜆 (𝑑𝜏 − 𝑑 (𝜃𝑗

𝑎(𝑡), 𝜃𝑔
𝑎(𝑡))) 

+𝜌(𝐷𝜏 − ∑ 𝛽𝑘,𝑗(𝑡)𝐾
𝑘=1 𝑑(𝜃𝑐(𝑡), 𝜃𝑔(𝑡)))    (9) 

The dual function associated with the Lagrangian is 

 𝑔(𝜆, 𝜌) = 𝑚𝑎𝑥
𝜃𝑗

𝑎(𝑡),𝛽𝑘,𝑗(𝑡)
𝐿(𝛽𝑘,𝑗(𝑡), 𝜆, 𝜌) (10) 



The dual problem associated with the primal formulation in (5) is expressed as fol-

lows: 

 𝑚𝑖𝑛
𝜆,𝜌

𝑔(𝜆, 𝜌) (11) 

 

Fig. 2. Processing procedure of the CAGA. 

At the t-th communication round, given the dual variables 𝜆 = 𝜆(𝑡) and 𝜌 = 𝜌(𝑡), 

the primary variable 𝛽𝑘,𝑗(𝑡), which governs bandwidth allocation, is optimized by solv-

ing the following problem: 

 𝛽𝑘,𝑗(𝑡)∗ = 𝑎𝑟𝑔𝑚𝑖𝑛
𝛽𝑘,𝑗(𝑡)

{∑ 𝛽𝑘,𝑗(𝑡)𝐾
𝑘=1 𝑑(𝜃𝑐(𝑡), 𝜃𝑔(𝑡))} (12) 

where the variable 𝛽𝑘,𝑗(𝑡) satisfies constraint (8d). This optimization problem is a 

standard 0/1 knapsack problem and can be efficiently solved using dynamic program-

ming. 

Given the adversarial model 𝜃𝑔(𝑡) and the optimized bandwidth-selection variable 

𝛽𝑘,𝑗(𝑡)∗, the dual variables 𝜆(𝑡) and 𝜌(𝑡) are updated using sub-gradient descent to 

solve the dual problem in (10). Specifically, at each iteration: 

 𝜆(𝑡 + 1) = [𝜆(𝑡) − 𝜀(𝑑(𝜃𝑗
𝑎(𝑡), 𝜃𝑔

𝑎(𝑡)) − 𝑑𝜏)]+ (13a) 

 𝜌(𝑡 + 1) = [𝜌(𝑡) − 𝜀(∑ 𝛽𝑘,𝑗(𝑡)∗𝐾
𝑘=1 𝑑(𝜃𝑐(𝑡), 𝜃𝑔(𝑡)) − 𝐷𝜏)]+ (13b) 

where ε denotes the step size and [∙]+ = 𝑚𝑎𝑥(0,∙). The initial values of the dual varia-

bles are set such that 𝜆(1) ≥ 0 and 𝜌(1) ≥ 0 to ensure the convergence of the updates 

in (12). 

The objective of the proposed CAGA attack is to maximize the Lagrangian function 

(9). Given the optimized variable 𝛽𝑘,𝑗(𝑡)∗, along with the dual variables 𝜆(𝑡) and 𝜌(𝑡), 

we proceed to optimize 𝜃𝑗
𝑎(𝑡) by solving the following problem: 
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 𝜃𝑗
𝑎(𝑡)∗ = 

𝑎𝑟𝑔𝑚𝑎𝑥
𝜃𝑗

𝑎(𝑡)

{𝐹(𝜃𝑔
𝑎(𝑡)) − 𝜆(𝑡)𝑑(𝜃𝑗

𝑎(𝑡), 𝜃𝑔
𝑎(𝑡)) − 𝜌(𝑡) ∑ 𝛽𝑘,𝑗(𝑡)∗𝐾

𝑘=1 𝑑(𝜃𝑐(𝑡), 𝜃𝑔(𝑡))} (14) 

Specifically, the proposed CAGA attack allows an attacker can observe local model 

parameters from benign clients and infer the intrinsic correlations among them. These 

correlations are modeled as a graph, which is then reconstructively manipulated using 

CAGA to generate the malicious local model 𝜃𝑗
𝑎(𝑡). The CAGA decoder is designed 

to replicate the original correlation patterns, thereby satisfying constraints (8b) - (8d) 

and minimizing structural dissimilarities between 𝜃𝑐(𝑡) and 𝜃𝑗
𝑎(𝑡). This strategy ena-

bles the attacker to maximize the objective in (10) while simultaneously hindering the 

convergence of the global model 𝜃𝑔
𝑎(𝑡). The rationale behind the design is detailed be-

low. 

1) Construction of correlation graph and feature extraction: In CAGA, the intrinsic 

correlations among the parameters of federated local models 𝜃𝑐(𝑡) where 𝑐 ∈ [1, 𝐾] at 

communication round t are represented by a graph 𝐺 = (𝑉, 𝐸, 𝑋) (see Fig. 2). The ver-

tex set 𝑉 consists of 𝑆 feature nodes, each corresponding to a dimension of the model. 

The edge set 𝐸 encodes the pairwise similarities between parameters, while the feature 

matrix 𝑋(𝑡) = [𝜃1(𝑡),···, 𝜃𝐾(𝑡)]𝑇 ∈ 𝑅𝐾×𝑆 collects all benign local models. To quantify 

correlations between parameters, let 𝜃𝑠(𝑡) ∈ 𝑅𝐾×1 denote the s-th column of 𝑋(𝑡). The 

cosine similarity between 𝜃𝑞(𝑡) and 𝜃𝑚(𝑡) is computed as 

 𝛿𝑞,𝑚(𝑡) =
(𝜃𝑞(𝑡))𝑇𝜃𝑚(𝑡)

‖𝜃𝑞(𝑡)‖·‖𝜃𝑚(𝑡)‖
 (15) 

where 𝑞, 𝑚 ∈ [1, 𝑆]. Subsequently, we define the adjacency matrix 𝐴(𝑡) = [𝛿𝑞,𝑚(𝑡)] ∈

𝑅𝑆×𝑆, which encodes the pairwise similarities among model parameters. This matrix is 

used as one of the inputs to the encoder of the CAGA model at the attacker’s side. 

Leveraging 𝐴(𝑡), the attacker reconstructs the topological structure of the correlation 

graph 𝐺. The feature matrix 𝑋(𝑡), which contains all benign local models, is provided 

as the other input to the encoder. 

2) Encoder design procedure: The encoder aims to project the graph 𝐺 into a lower-

dimensional latent space. To accomplish this, we implement a two-layer GCN (Graph 

Convolutional Network) that effectively learns representations capturing the intrinsic 

structural features of 𝐺. The resulting low-dimensional embedding is subsequently fed 

into the decoder, which reconstructs the original graph from this compressed represen-

tation, ultimately producing the malicious local model. For brevity and clarity, we omit 

the communication round index t in the subsequent exposition. The encoder is formally 

defined as follows: 

 𝑍(1) = 𝑓1(𝑋, 𝐴, |𝑊0) (16a) 

 𝑍(2) = 𝑓2(𝑍(1), 𝐴, |𝑊1) (16b) 

where 𝑓1(∙) denotes the Rectified Linear Unit (ReLU) activation function employed in 

the first layer, and 𝑓2(∙) denotes the linear activation function used in the second layer. 



The parameter set 𝑊𝑙 corresponds to the learnable weights associated with the l-th layer 

of the neural network. 

To improve experimental feasibility and obtain the latent representation of vertices 

𝑍 in graph 𝐺, we approximate the true posterior distribution with a Gaussian distribu-

tion 𝑁(∙) [21]. The feature matrix 𝑋 and adjacency matrix 𝐴 serve as inputs to the en-

coder, which produces a low-dimensional embedding of the graph 𝐺 via the designed 

two-layer Graph Convolutional Network.Consequently, we obtain 

 𝑞(𝑍|𝐴, 𝑋) = ∏ 𝑞(𝑧𝑠|𝐴, 𝑋)𝑆
𝑠=1  (17a)  

 𝑞(𝑧𝑠|𝐴, 𝑋) = 𝑁(𝑧𝑠|𝜇𝑠, 𝑑𝑖𝑎𝑔(𝜎2)) (17b) 

where μ = 𝑍(2) denotes the matrix of mean vectors, and 𝑧𝑠 ∈ 𝑅𝑆×1 denotes the latent 

representation corresponding to the s-th node, i.e., the s-th column of the matrix 𝑍, with 

each row 𝜇𝑠 representing the mean of the latent representation for node s. Similarly, the 

logarithm of the variance is computed as 𝑙𝑜𝑔𝜎 = 𝑓2(𝑍(1), 𝐴|𝑊1), where the weights 

𝑊1 are learned using the same parameters 𝑊0 shared with the first layer of the GCN. 

Let 𝐸 ∈ 𝑅𝑆×𝑆 be the identity matrix. We define the normalized adjacency matrix as 

𝐴̃ = 𝐴 + 𝐸, where 𝐴𝑞,𝑚 denotes the (q, m)-th element. The corresponding degree ma-

trix 𝐷 is diagonal, with each diagonal entry defined as 𝐷𝑞,𝑞 = ∑ 𝐴̃𝑞,𝑚
𝑆
𝑚=1 . Each layer 

of the GCN is then computed as: 

 𝑓𝐺(𝑍(𝑙−1), 𝐴|𝑊𝑙) = 𝑓(𝐷−
1

2𝐴̃𝐷−
1

2𝑍(𝑙−1)𝑊𝑙) (18) 

where 𝑓(∙) corresponds to a nonlinear activation function like ReLU. 

3) Decoder design procedure: The output matrix 𝑍 from the encoder is utilized as 

the input to the decoder, which is designed to reconstruct the original adjacency matrix 

𝐴. Specifically, the decoder computes the inner product between two latent variables, 

followed by the application of a sigmoid activation function to estimate the probability 

of a link between each pair of vertices, as shown in the following equation: 

 𝑝(𝐴̂|𝑍) = ∑ ∑ 𝑝(𝛿̂𝑞,𝑚|𝑧𝑞 , 𝑧𝑚)𝑆
𝑚=1

𝑆
𝑞=1  (19a) 

 𝑝(𝛿̂𝑞,𝑚 = 1|𝑧𝑞 , 𝑧𝑚) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑧𝑞
𝑇 , 𝑧𝑚) (19b) 

where 𝐴̂ = [𝛿̂𝑞,𝑚] ∈ 𝑅𝑆×𝑆  denotes the reconstructed adjacency matrix A  and 

𝑠𝑖𝑔𝑚𝑜𝑖𝑑(∙) represents the logistic sigmoid function, defined as 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) =
1

1+𝑒−𝑥. 

An increase in 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑧𝑞
𝑇 , 𝑧𝑚) suggests a greater probability of a connection be-

tween the two latent variables. 
As a result of the above operations, the decoder produces the reconstructed adja-

cency matrix 𝐴̂. Furthermore, a reconstruction loss function 𝜗𝑙𝑜𝑠𝑠 is introduced to quan-

tify the discrepancy between 𝐴̂ and the original adjacency matrix A. According to (17a) 

and (19a), the loss is defined as follows: 

 𝜗𝑙𝑜𝑠𝑠 = 𝐸𝑘(𝑍|𝐴, 𝑋)[𝑙𝑜𝑔𝑝(𝐴̂|𝑍)] − 𝜑[𝑘(𝑍|𝐴, 𝑋)|𝑝(𝑍)] (20) 
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where 𝑝(𝑍) = ∏ 𝑝(𝑧𝑠)𝑠 = ∏ 𝑁(𝑧𝑠|0, 𝐸)𝑠  serves as a Gaussian prior, and 

𝜑[𝑘(𝑍|𝐴, 𝑋)|𝑝(𝑍)] denotes the Kullback-Leibler (KL) divergence between the approx-

imate posterior 𝑘(𝑍|𝐴, 𝑋) and 𝑝(𝑍). 

4) Constructing malicious models and performing model poisoning: As illustrated 

in Fig. 2, the goal of graph signal processing is to extract and verify the features of 

matrix 𝑋. The design process begins with the construction of a Laplacian matrix de-

rived from the adjacency matrix of a benign model, i.e., 𝐴, as formulated below: 

 𝐿 = 𝑑𝑖𝑎𝑔(𝐴) − 𝐴 (21) 

Subsequently, singular value decomposition (SVD) is applied to the matrix 𝐿, i.e., 

𝐿 = 𝑈1Σ1𝑉1
𝑇, resulting in a complex unitary matrix that serves as the basis for the Graph 

Fourier Transform (GFT). This basis enables the transformation of graph data into the 

spectral domain. The associated diagonal matrix Σ contains the eigenvalues of 𝐿 along 

its main diagonal, which indicate the magnitude of each corresponding frequency com-

ponent. 

Through the described process, the attacker employs matrix 𝑈 together with the data 

feature matrix 𝑋, representing the local models, to construct matrix 𝐼. Matrix 𝐼 encap-

sulates the spectral-domain data features of all benign local models, thereby shifting 

the focus from inter-model correlations to the intrinsic data characteristics that authen-

ticate each local model. Matrix 𝐼 is constructed as follows： 

 𝐼 = 𝑈−1𝑋 (22) 

The attacker can similarly apply this process to the adjacency matrix predicted by 

the CAGA model. Consequently, the following expression can be derived: 

 𝐿̂ = 𝑑𝑖𝑎𝑔(𝐴̂) − 𝐴̂ (23) 

We perform singular value decomposition (SVD) on matrix L̂ to obtain an alterna-

tive graph Fourier transform (GFT) basis. i.e., 𝐿̂ = 𝑈2𝛴2𝑉2
𝑇, Utilizing this GFT basis 

along with the matrix 𝐼 derived from (22), we construct malicious local models 𝑋̂: 

  𝑋̂ = 𝑈2𝐼 (24) 

where 𝑋̂ ∈ 𝑅𝐾×𝑆. The vector 𝜃𝑗
𝑎(𝑡) in 𝑋̂ is considered a representation of a malicious 

local model. 

We define a pollution ratio ∝ to regulate the proportion of malicious data generated 

by the attacker that is shared with its seemingly benign peers. These peers remain non-

malicious until the attacker initiates the attack. The sharing mechanism is formalized 

as follows: 

 𝜃𝑗
𝑛𝑒𝑤 = {

𝜃𝑗
𝑎,𝑖 ,    𝑖𝑓 𝑖 ≤∝ 𝑆

𝜃𝑐,𝑖 ,    𝑖𝑓 𝑖 >∝ 𝑆
 𝑓𝑜𝑟 𝑖 = 1,···, 𝑆 (25) 



where 𝜃𝑗
𝑛𝑒𝑤  denotes the model parameters of the adversary’s accomplice generated 

through the sharing process, 𝜃𝑗
𝑎,𝑖

 represents the first i data features of the model param-

eters 𝜃𝑗
𝑎 generated by the adversary, and 𝜃𝑐,𝑖 indicates the data features from the i-th to 

the last of the benign model parameters 𝜃𝑐.Following the sharing operation, malicious 

clients, seemingly benign malicious clients, and benign clients jointly upload their 

model parameters to the server for global aggregation. 

4.2 Algorithm Design of the CAGA 

Algorithm 1 outlines the training procedure of the proposed CAGA attack.  

Algorithm 1: The proposed CAGA attack algorithm. 

1: Initialize:𝐺 = (𝑉, 𝐸, 𝑋), 𝑇𝑖𝑡𝑒𝑟 , 𝐾, 𝜃𝑗
𝑎(𝑡), 𝜃𝑔

𝑎(𝑡), 𝜆(1) ≥ 0, 𝜌(1) ≥ 0. 

    % Adversarial FL: 

2: for each round 𝑡 = 1,2,3,··· do 

3:     for each local iteration 𝑡𝑖𝑡𝑒𝑟 = 1,···, 𝑇𝑖𝑡𝑒𝑟  do 

4:        for each benign client 𝑐 = 1,···, 𝐾 do 

5:            Train the benign local model 𝜃𝑐(𝑡). 

6:        end for 

7:     end for 

8:    Seemingly benign malicious clients initially share their training data with the 

malicious clients. Subsequently, all user devices upload their local models 

𝜃𝑐(𝑡), 𝑐 = 1.···, 𝐾 to the server. 

9:   The attacker conducts the CAGA attack using the acquired feature matrix 𝑋 and 

derives the malicious model through the following procedure. 

10:         The adjacency matrix 𝐴(𝑡) = [𝛿𝑞,𝑚(𝑡)] ∈ 𝑅𝑆×𝑆 is constructed based on 

(15), and both A and the feature matrix 𝑋 are used as inputs to the encoder 

of the CAGA model. 

11:     The CAGA model is trained to maximize the reconstruction loss 

𝐿(𝛽𝑘,𝑗(𝑡), 𝜆(𝑡), 𝜌(𝑡)) − 𝜗𝑙𝑜𝑠𝑠 , thereby producing the predicted adjacency 

matrix 𝐴̂. 

12:           The matrix I is constructed according to (21) and (22), while the matrix X 

is obtained from (23) and (24). The malicious model parameters 𝜃𝑗
𝑎(𝑡) are 

then derived accordingly. 

13:  Update 𝜆(𝑡), 𝜌(𝑡), according to (13a) and (13b). 

14: The attacker shares its training data with the seemingly benign adversarial cli-

ents. 

15:  The seemingly benign adversarial clients update their local models using (25). 

16:  All clients upload their local model parameters to the server, which aggregates 

them to generate the contaminated global model 𝜃𝑔
𝑎(𝑡) and then broadcasts it 

to all clients. 

17:  Each client updates its local model based on the contaminated global model 

𝜃𝑔
𝑎(𝑡). i.e., 𝜃𝑐(𝑡) ← 𝜃𝑔

𝑎(𝑡), ∀𝑖. 

18: end for 
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Prior to launching the attack, all benign users (including the seemingly benign ad-

versarial users) complete one training round, during which the seemingly benign ad-

versarial users refrain from any malicious activity, as detailed in steps 3 to 7. Upon 

completion, the seemingly benign adversarial users share their training data with the 

malicious users and upload this data alongside that of the benign users to the server.  

Similarly, when the server broadcasts the global model, malicious users can easily 

access the global model parameters due to the presence of seemingly benign adversarial 

clients. The training objective of the CAGA model is to fully leverage the adjacency 

matrix 𝐴 and feature matrix 𝑋 , employing the Lagrangian method to maximize the 

model poisoning attack problem described in (8), as detailed in steps 10 to 12. The sub-

gradient descent method is used to update the dual variables 𝜆(𝑡) and 𝜌(𝑡), as described 

in step 13. 

Subsequently, the attacker shares the generated malicious model with the seemingly 

benign adversarial clients, who incorporate its parameters into their local models at a 

controlled ratio ∝. Because the malicious model exploits feature of benign models, the 

server is unable to detect the attacker. Upon completion of the sharing process, all users 

upload their training data to the server, resulting in a contaminated global model 𝜃𝑔
𝑎(𝑡). 

The server broadcasts the global model 𝜃𝑔
𝑎(𝑡) to all users, who subsequently update 

their respective local models based on the received global parameters. 

5 EXPERIMENTAL EVALUATION 

5.1 Experimental Parameters Set 

In our experimental evaluation, we assess the effectiveness of the proposed CAGA at-

tack on three widely used image classification benchmarks—MNIST, Fashion-MNIST, 

and CIFAR-10—and compare its performance with the existing data-agnostic GAE-

based poisoning attack under a unified federated learning framework. Table 1 presents 

all hyperparameter settings used in our experiments. 

Table 1.  Experimental parameters 

Parameter Value Parameter Value 

𝐾: Number of benign devices  10-25 1st hidden layer size of GCN 32 

𝐽: Number of attackers 2-10 2st hidden layer size of GCN 16 

𝑇𝑖𝑡𝑒𝑟 : Number of local iterations 5 Learning rate 0.01,0.001 

Communication rounds 100 batch size of the SVM 30 

To examine the impact of network scale and attacker ratio, the number of benign 

clients (𝐾) is set to 10, 15, 20, and 25, while the number of malicious clients (𝐽) is set 

to 2, 4, 6, 8, and 10. Each communication round consists of five local iterations per 

client, and the overall training process includes 100 rounds to capture the cumulative 

effects of poisoning over time. Both CAGA and the baseline GAE attack [22] adopt a 

two-layer GCN at the server. The first hidden layer comprises 32 units, and the second 

comprises 16 units. We set the learning rate of the SVM (Support Vector Machine) to 



0.001 and that of CAGA to 0.01. The batch size for the SVM used in credibility assess-

ment is fixed at 30 to ensure a balance between evaluation efficiency and classification 

performance. 

5.2 Performance Analysis of CAGA 

To assess the impact of the proposed CAGA attack on local clients, we configured 15 

benign users and 6 malicious users, and visualized the testing accuracy of five local 

models over 100 FL communication rounds on the MNIST, Fashion-MNIST, and 

CIFAR-10 datasets under three settings: no attack, the conventional GAE attack, and 

the proposed CAGA attack, as illustrated in Fig. 3. When no attack is present, FL ena-

bles rapid convergence of local testing accuracy across all datasets, as shown in Fig. 

3(a), (d), and (g). In contrast, Fig. 3(c), (f), and (i) indicate that the proposed CAGA 

attack effectively suppresses the convergence of local model accuracy. 

 
(a) No attack with MNIST.                 (b) GAE with MNIST.                 (c) CAGA with MNIST. 

 
(d) No attack with FashionMNIST.    (e) GAE with FashionMNIST.      (f) CAGA with FashionMNIST. 

 
(g) No attack with CIFAR-10.            (h) GAE with CIFAR-10.             (i) CAGA with CIFAR-10. 

Fig. 3. Testing accuracy variation chart of the local client 

Given 100 communication rounds and five benign clients, we evaluate the testing 

accuracy of their local models under three conditions: no attack, the conventional GAE 

attack, and the proposed CAGA attack. The experiments are conducted on three bench-

mark datasets: MNIST, Fashion-MNIST, and CIFAR-10. 

Taking the MNIST dataset as an example, we observed that the test accuracy of 

Client 2 decreased to 55% at the 75th round under the CAGA attack, whereas it de-

creased to 58% at the 100th round under the GAE attack. The test accuracy of Client 3 

began to decline after 60 rounds under the CAGA attack, while it continued to improve 
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under the GAE attack. Client 4’s accuracy increased more slowly with additional train-

ing rounds under the CAGA attack than under the GAE attack, suggesting that the 

CAGA attack has a stronger ability to suppress accuracy convergence. The average test 

accuracy of Client 5 over 100 rounds decreased by 6% under the CAGA attack com-

pared to the GAE attack. Although Client 1’s test accuracy slightly increased under the 

CAGA attack, the other clients were adversely affected. These results demonstrate that 

the proposed CAGA attack is more effective in degrading local model performance 

than the traditional GAE attack. 

To further demonstrate the high level of stealthiness of our proposed CAGA attack, 

we used the attacker detection model introduced in Section 3.1. We set up 15 benign 

clients and 6 malicious clients. We randomly selected 6 benign clients to calculate the 

Euclidean distance between their local models and the global model, and then computed 

the average distance. Subsequently, we plotted the Euclidean distances between benign 

user models and the global model under attack scenarios on the MNIST, Fash-

ionMNIST, and CIFAR-10 datasets, as well as the Euclidean distances between mali-

cious models and the global model under both GAE and CAGA attacks, as shown in 

Fig. 4, 5, and 6. 

 

Fig. 4. Euclidean distance between benign and global models across three datasets. 

 

Fig. 5. Euclidean distance between malicious and global models under the GAE attack. 

 

Fig. 6. Euclidean distance between malicious and global models under the CAGA attack. 

Specifically, the Euclidean distance between malicious models and the global model 

is typically greater than that between benign models and the global model. This differ-

ence makes the method effective for identifying attackers. 



Fig. 4 presents the Euclidean distances between benign models and the global model 

across various datasets and also shows the average Euclidean distance of the selected 

models. Under the proposed CAGA attack, the Euclidean distances between malicious 

models and the global model are comparable to or even smaller than those between 

benign models and the global model, as depicted in Fig. 6. Compared to the GAE attack, 

the Euclidean distances between malicious models and the global model are smaller 

under the CAGA attack. For instance, using the MNIST dataset, the average Euclidean 

distance between malicious models and the global model is 0.0157 under the CAGA 

attack, whereas it is 0.0363 under the GAE attack. This value is significantly larger than 

the Euclidean distance of 0.0184 between benign models and the global model. There-

fore, the CAGA attack demonstrates strong stealthiness. 

 
(a) MNIST                                 (b) FashionMNIST                               (c) CIFAR-10 

Fig. 7. Comparison of global accuracy under different attacks 

 

Fig. 8. Comparison of global accuracy under different numbers of attackers 

Fig. 7 illustrates the global accuracy under both the GAE and CAGA attacks. The 

ratio of attackers to benign users was set at 2:5. To verify the effectiveness of these 

attacks, we also visualized the global model's accuracy in the absence of any attack. 

The experimental results demonstrate that, on the MNIST and FashionMNIST datasets, 

the average global accuracy is lower under the CAGA attack than under the GAE at-

tack. On the CIFAR dataset, the effectiveness of the CAGA attack is comparable to that 

of the GAE attack. However, as shown in Fig. 6, even when the attack strength is sim-

ilar, the CAGA attack demonstrates a higher level of stealthiness. 
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Fig. 8 presents the variation in global model accuracy as the number of malicious 

users increases, with the number of benign users held constant at 25. The experimental 

results indicate that even a small number of attackers can significantly degrade model 

performance. Interestingly, when the number of attackers is low, the attack can still be 

nearly as effective as with more attackers. However, the Euclidean distance between 

their local models and the global model is relatively large. As a result, when there are 

only a few malicious participants, the CAGA attack is not adopted. This is because the 

CAGA method relies on collaboration among attackers, and with too few participants, 

the collaborative capability is diminished, leading to reduced stealthiness. 

6 CONCLUSION 

In this paper, we propose a collaborative model poisoning attack against federated 

learning, named CAGA. This approach leverages the parameters of benign local models 

and their correlations with the global model to craft malicious updates. These poisoned 

updates are propagated among benign clients in a viral manner, substantially degrading 

the accuracy of the global model. We conduct extensive experiments on three bench-

mark datasets: MNIST, Fashion-MNIST, and CIFAR-10. The experimental results 

demonstrate that CAGA outperforms conventional GAE-based methods in terms of 

both attack effectiveness and stealthiness. 
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